
Bookmarks in Grammar-Compressed Strings

Patrick Hagge Cording

joint work with Pawel Gawrychowski and Oren Weimann



Grammar compression

X7 = X6X5

X6 = X5X4

X5 = X4X3

X4 = X3X1

X3 = X1X2

X2 = b
X1 = a

a b

X1 X2

X4 X3

X6 X5

X7

a b a a b a b a a b a a b

X1 X2

X1 X1 X2 X1 X2

X1

X1 X2

X1 X1 X2

X3

X4 X3 X3 X3

X5 X4 X4 X3

X6 X5

X7

The grammar has n rules/nodes and generates a string of length N .

2 DTU Compute Bookmarks in Grammar-Compressed Strings 2.1.2017



Problem and motivation

Problem
• To store a grammar of size n compressing a string of size N , and a set of
positions {i1, . . . , ib} (bookmarks) such that any substring of length l crossing
one of the positions can be decompressed in O(l) time.

Motivation
• Compression of several files into one

• Indexes

3 DTU Compute Bookmarks in Grammar-Compressed Strings 2.1.2017



Results

Random access Time Space

Bille et al. [SODA ’11] O(logN + l) O(n)
Belazzougui et al. [ESA ’15] O(logτ N + l) O(nτ logτ Nn )
Belazzougui et al. [DCC ’14] O(l) O(n1−εNε)

Finger search Time Space

Bille et al. [FSTTCS ’16] O(l log l) O(n)

Balancing Time Space

Gagie et al. [LATA ’12] O(l) O(n log N
n

+ b log∗ N)

New result Time Space

This O(l) O((n+ b) max{1, log∗ n− log∗(n
b

+ b
n

)})

4 DTU Compute Bookmarks in Grammar-Compressed Strings 2.1.2017



Definition: stabbed substring

For a fixed k, the stabbed substring of a node Xi is the concatenation of
the suffix of Xl and prefix of Xr of length k.

Xi

Xl Xr

tXi

tXl tXr
rXi
2k

5 DTU Compute Bookmarks in Grammar-Compressed Strings 2.1.2017



Definition: bookmark substring

For a fixed k, the bookmark substring of a bookmark ip is the
concatenation of the k characters before and after ip.

S: 
ip

2k

6 DTU Compute Bookmarks in Grammar-Compressed Strings 2.1.2017



Definition: substring cover

For a substring S[i, j], a substring cover for S[i, j] is a set of nodes
X1, . . . , Xk s.t. S[i, j] is a substring the string tX1 . . . tXk .

k is the size of the cover.

7 DTU Compute Bookmarks in Grammar-Compressed Strings 2.1.2017



Basic solution

• Store stabbed substring (k = logN) for every node, OR

• Store bookmark substring (k = logN) for every bookmark

• Build O(logN)-time random access data structure of Bille et al.

• Query: if l > logN , use random access. Else read from stored substrings

• Time: O(l)

• Space: O(n+ b+ min{n, b} logN)

8 DTU Compute Bookmarks in Grammar-Compressed Strings 2.1.2017



SLP block restructuring

Restructure SLP s.t. for any substring s of length k, we can find O(1)
nodes covering s

k

s

Due to Gawrychowski [SPIRE ’12].

9 DTU Compute Bookmarks in Grammar-Compressed Strings 2.1.2017



Levelled solution: data structure

• Make τ copies of SLP

• Restructure for k = logN, log logN, log(3) N, . . . , log(τ) N

• Build random access data structure for all copies and original SLP

• Use basic solution on level where k = log(τ) N

• For each level, find and store O(1) nodes covering 2k length bookmark substrings

Space
• O(τ(n+ b) + min{n, b} log(τ) N) = O((n+ b) max{1, log∗ n− log∗(nb + b

n )})

10 DTU Compute Bookmarks in Grammar-Compressed Strings 2.1.2017



Levelled solution: query

• If log(k+1) N < l ≤ log(k) N then use random access data structure on level k
• If l < log(τ) N then use basic solution

Example

• Decompress log log logN < l ≤ log logN characters from ip

• O(l + log log logN) = O(l) time

k = log N k = log log N k=log log log N

ip ip ip

11 DTU Compute Bookmarks in Grammar-Compressed Strings 2.1.2017



Summary

Theorem
Given an SLP for S[1, N ] with n rules and positions i1, . . . , ib in S, we can
store S in space O((n+ b) max{1, log∗ n− log∗(nb + b

n)}) such that later,
given i ∈ {i1, . . . , ib} we can extract S[i, i+ l] in O(l) time.

Further work
• Remove the log∗ n factor

12 DTU Compute Bookmarks in Grammar-Compressed Strings 2.1.2017



Thank you.


