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Abstract. We consider the problem of storing a grammar of size n
compressing a string of size N , and a set of positions {i1, . . . , ib} (book-
marks) such that any substring of length l crossing one of the posi-
tions can be decompressed in O(l) time. Our solution uses space O((n+
b) max{1, log∗ n− log∗(n

b
+ b

n
)}). Existing solutions for the bookmarking

problem either require more space or a super-constant “kick-off” time to
start the decompression.

1 Introduction

Textual databases for e.g. biological or web-data are growing rapidly, and it is
often only feasible to store the data in compressed form. However, compressing
the data comes at a price: it may be necessary to decompress the entire file
in order to retrieve just a small portion of it. Inserting bookmarks in the com-
pressed file can accommodate this problem. A bookmark in a compressed string
is a position i from which any substring of length l crossing position i can be
decompressed in O(l) time.

A popular technique for compressing a string is to instead store a small
grammar that generates the string (and only the string). The idea dates back far
and has received much attention in the theory community while also being widely
used in practice. In particular, popular compression schemes such as LZ78 [15],
LZW [13], Re-pair [9], and Sequitur [11] produce grammars. Even the LZ77 [14]
compression scheme that does not produce a grammar, can be converted to a
grammar with only a logarithmic overhead in the space [5,12]. For our purposes,
we consider Straight Line Programs (SLPs). These are context-free grammar
in Chomsky Normal Form that generate exactly one string. SLPs capture any
grammar-based compression scheme.

For the bookmarking problem, we are given an SLP S of size n compressing
a string S of size N and a set of positions {i1, . . . , ib}, and we want to construct
a data structure that supports linear-time decompression of substrings crossing
any of the b positions.
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Related work. Gagie et al. [6] presented a bookmarking data structure that
uses O(n + b log∗N) space3 for balanced SLPs (i.e., SLPs whose parse tree is
balanced). When the SLP is unbalanced, we may use an algorithm to balance it
at the cost of adding nodes [5, 12], and as a result the space usage of their data
structure increases to O(n log N

n + b log∗N).
A more general problem is to support random access to the compressed

string (i.e., access to a single character of S without decompression). This does
not require any bookmarks to be predefined, but in turn incurs a “kick-off” time
when decompressing a substring. If we allow the kick-off time to be O(logN)
(i.e., O(l + logN) time to decompress a substring of length l), we may use
the O(n)-space data structure of Bille et al. [4]. For a faster kick-off time of
O(logτ N), for any 2 < τ ≤ logN , we may instead apply the data structure of
Belazzougui et al. [1] at the cost of increasing the space to O(nτ logτ

N
n ). The

data structure of Belazzougui et al. [2] supports random access to any character
of the compressed string in O(1) time and thereby allows decompression of any
substring in time linear in the substring’s length. However, this data structure
uses space O(n1−εN ε) for some constant 0 < ε ≤ 1.

The compressed finger search problem is somehow a hybrid of the bookmark-
ing problem and the random access problem. For this problem, we place a set of
fingers, and now we may answer random access queries in O(logD) time, where
D is the distance from a given finger to the index we query for [3]. Using this
data structure, we get a bookmarking data structure of O(n) space that can
decompress any substring of length l in O(l log l) time.

Our results. In this paper we present a bookmarking data structure for SLP-
compressed strings that uses space O((n+ b) max{1, log∗ n− log∗(nb + b

n )}) and
supports decompression of length-l substrings crossing bookmarks in O(l) time.
The space is measured in words and we assume the standard RAM model of
computation.

The general idea is to make τ copies of the SLP for some parameter τ . Each
copy is modified so that the decompression kick-off takes less time but only
supports decompression of substrings up to a certain length and from certain
positions. At query time, we then select the copy of the SLP that provides a
kick-off time of O(l).

2 Preliminaries

Let S be a string of length |S| consisting of characters from an alphabet of size
σ. We use S[i, j], 1 ≤ i ≤ j ≤ |S|, to denote the substring starting in position i
and ending in position j of S.

A Straight Line Program (SLP) S is a context-free grammar in Chomsky
normal form with n production rules that derives a single string S of size N . We

3 The bound is in fact O(z+b log∗N), where z is the size of the LZ77 parse of S. Since
it is known that z ≤ n′ ≤ n [12], where n′ is the size of the smallest SLP generating
S, we replace z by n for clarity.



represent the SLP as a rooted, ordered, and node-labelled directed acyclic graph
(DAG) with outdegree 2 and we will refer to production rules as nodes where it
is appropriate. We denote by v = uw that node v in the DAG has left-child u
and right-child w. A depth-first left-to-right traversal starting from a node v in
the DAG produces the string S(v). As a shorthand we sometimes use |v| instead
of |S(v)|.

All logarithms in this paper are base 2. As a shorthand to denote the loga-
rithm applied i times to a number n we write log(i) n, e.g., log(3) n = log log log n.
The iterated logarithm log∗ n is equal to the number of times the logarithm can
be applied to n before the result is less than 1, i.e., log∗ n = arg mini{log(i) n ≤
1}. We also need the up-arrow notation of Knuth [8] defined as follows: 2 ↑↑ 0 = 1
and 2 ↑↑ (k + 1) = 22↑↑k. Observe that k = log∗ n if and only if 2 ↑↑ (k − 1) <
n ≤ 2 ↑↑ k.

3 A Simple Solution

In this section we give a simple data structure to the bookmarking problem with
the following bounds.

Theorem 1. Given an SLP for S[1, N ] with n rules and positions i1, . . . , ib in
S, we can store S in O(n + b + min{n, b} logN) space such that later, given
i ∈ {i1, . . . , ib} we can extract S[i, i+ l] in O(l) time.

Our solution builds on the following data structure by Bille et al. [4].

Lemma 1 ([4]). Let S be a string of length N compressed by an SLP S of
size n. There is data structure of size O(n) that, given a node v in S, supports
decompression of a substring S(v)[i, i+ l] in O(log |v|+ l) time.

Notice that when l ≥ logN the decompression time in Lemma 1 is dominated
by the O(l) term. This means we only need to focus on the case where l < logN .

To obtain a O(n + b logN)-space solution, since l < logN , we can simply
store the substring S[i−logN, i+logN ] for each bookmark i ∈ {i1, . . . , ib} along
with the data structure of Lemma 1.

In the case where n < b, to obtain a O(n logN + b)-space solution, we show
that it is sufficient to store n substrings each of length O(logN). For this we use
the following lemma, stating that any substring of S is the concatenation of a
suffix of S(u) and a prefix of S(w) for some node v whose left child is u and right
child is w. The observation was first used for compressed pattern matching [10].
For the sake of completeness, we will give a proof using our terminology.

Lemma 2 ([10]). Let S be a string of length N compressed by an SLP S of
size n. Let r(v) = S(u)[max{1, |u| − k}, |u|]S(w)[1,min{1, k− 1}] be the relevant
substring with respect to k of a node v = uw in S. Then any substring of S of
length at most k is also a substring of some string in {r(v) | v ∈ S ∧ |v| ≥ k}.



Proof. The proof is by induction. For the base case, consider a node v = uw
where |v| ≤ 2k − 2 and |u| < k and |w| < k. Since r(v) = S(v) this obviously
contains every substring of length k. For the inductive step we again consider
some node v = uw and we know that S(v) = S(u) ◦ S(w). Assume that |u| ≥ k
and |w| ≥ k, then by the induction hypothesis it holds that the set of strings
{r(u′) | u′ ∈ S(u) ∧ |u′| ≥ k} ∪ {r(w′) | w′ ∈ S(w) ∧ |w′| ≥ k} contains all
substrings of length k in S(u) and S(w). The substrings of length k starting
in S(u) and S(w) are not guaranteed to be in this set, but since r(v) contains
exactly all these, they will be after adding r(v) to the set. For the cases when
|u| < k or |w| < k the same argument holds. ut

For our data structure, we set k = 2 logN and store the strings r(v) for all
v ∈ S. For each bookmark i we store the deepest node that generates the string
S[i− logN, i+ logN ]. Furthermore, we build the data structure of Lemma 1 for
use for the case where l ≥ logN .

Since |r(v)| ≤ 4 logN − 2 and we store O(1) words (pointers) for each book-
mark, and the data structure of Lemma 1 uses O(n) space, our data structure
uses O(n logN + b) space in total. This concludes the proof of Theorem 1.

4 A Leveled Solution

We now describe a data structure that seeks to reduce the logN factor of the
space usage in Theorem 1. The time to decompress a substring of length l crossing
some bookmark is still O(l). The key to our solution is a technique due to
Gawrychowski [7] captured by the following lemma.

Lemma 3 ([7]). Let S be a string of length N compressed into an SLP S of
size n. We can choose an arbitrary ` and modify S in O(N) time by adding
O(n) new variables such that we can write S as S = S(v1)S(v2) . . . S(vm) with
m = O(N/`) and |S(vi)| ≤ 2`−2. Furthermore, for any substring S[i, i+`] there
are a constant number of nodes v1, . . . , vc such that S[i, i + `] is a substring of
S(v1) . . . S(vc).

The lemma says that we can restructure the given SLP such that for any
substring S[i, i+ `] we can find O(1) nodes whose concatenation has total length
O(`) and contains S[i, i+ `] as a substring. We now describe how to apply this
restructuring procedure to get a bookmarking data structure using almost linear
space. In the description we use the parameter τ which is later to be minimized
subject to n and b.

Construction. First we make τ copies of S, denoted by S1, . . . ,Sτ . We then
apply the restructuring procedure for ` = logN, log(2)N, . . . , log(τ)N to the τ
copies of S to get S ′1, . . . ,S ′τ . Next, we build the data structure of Lemma 1
for each SLP S ′1, . . . ,S ′τ . For each S ′j , let a block node be a node v for which

|S(v)| = Θ(log(j)N). For each SLP S ′j and for each bookmark i we store the

O(1) block nodes generating the string containing S[i − log(j)N, i + log(j)N ].
We also store the relative index of position i in the string generated by the first



block node. On the lowest level (i.e., for S ′τ ) we apply the technique from the

previous section. I.e., if b ≤ n we use O(n+ b log(τ)N) space and if b > n we use

O(n log(τ)N + b) space.

Decompression. To decompress a substring of length l from a bookmark po-
sition i ∈ {i1, . . . , ib} we do the following.

If log(j+1)N < l ≤ log(j)N for some j < τ . We locate the block node that
contains i in S ′j and decompress the string starting in the relative position stored
for the current bookmark using the data structure of Lemma 1. If we reach the
end of the string generated by the current block node, we move on to the next
node that we stored and repeat the process from relative position 1. When we
decompress from a block node v in S ′j , the query time of Lemma 1 becomes

O(log log(j)N + l) = O(l) since log(j+1)N < l. We visit O(1) block nodes so the
total time to decompress S[i, i+ l] becomes O(l).

If on the other hand l < log(τ)N , then we use the solution chosen for the
bottom level, which according to Theorem 1 yields a decompression time of O(l).

Analysis. Our data structure creates τ copies of S. Each has size O(n) after
the restructuring of Lemma 3 and the application of Lemma 1, i.e, this requires
O(τn) space. For each bookmark, we store references to O(1) nodes in each copy

for a total of O(τb) space. For S ′τ we need O(min{n, b} log(τ)N) space as stated

in Theorem 1. Hence, the total space usage is O(τ(n+ b) + min{n, b} log(τ)N),

which is equal to O(τ(n + b) + min{n, b} log(τ) n), because n ≤ N ≤ 2n in any
SLP. It remains to choose τ as to minimize this expression.

We define x = n+b
min{n,b} ≥ 1. Then, the goal is to minimize min{n, b}f(τ),

where f(τ) = x·τ+log(τ) n, over all τ ≥ 1. We claim that f(τ) is minimized (up to
a constant multiplicative factor) for τ = max{1, log∗ n−log∗ x+1}, when f(τ) =
O(xmax{1, log∗ n − log∗ x}). If log∗ n − log∗ x + 1 < 2 then x > log n, so the
expression is minimized for τ = 1. Otherwise, define p = log∗ n and q = log∗ x,
where t = p−q+1 ≥ 2. By the properties of iterated log, 2 ↑↑ (p−1) < n ≤ 2 ↑↑ p
and 2 ↑↑≤ (q − 1) < x ≤ 2 ↑↑ q. Hence log(p−q+1) n ≤ 2 ↑↑ (q − 1) < x and
f(t) ≤ x(t + 1) ≤ 2x · t. We claim that, for any τ ≥ 1, f(τ) ≥ 1

4x · t, that is,
τ = t is the (asymptotically) best choice.

If τ ≥ 1
4 t then clearly f(τ) ≥ x · τ ≥ 1

4x · τ . It remains to analyze the case

τ < 1
4 t. We will prove that, for any τ < 1

4 t, log(τ) n ≥ 1
4x · t. Because log(τ) n is

monotone in τ , it is enough to prove that log( 1
4 t−1) n ≥ 1

4x·t, or by the properties
of iterated log 2 ↑↑ (p− 1

4 t) ≥ 2 ↑↑ q· 14 t. Because p− 1
4 t ≥ q+

1
4 t by the assumption

that p− q ≥ 1, this reduces to showing that 2 ↑↑ (q + 1
4 t) ≥ 2 ↑↑ q · 14 t.

Lemma 4. For any x, y ≥ 0, 2 ↑↑ (x+ y) ≥ 2 ↑↑ x · y.

Proof. If x = 0, we need to show that 2 ↑↑ y ≥ y, which holds for any y ≥ 0.
From now on, we assume that x ≥ 1 and apply induction on y ≥ 0.

For y = 0, the left side is positive and the right side is zero. For y = 1,
22↑↑x ≥ 2 ↑↑ x holds for all x ≥ 0. For y = 2, 2 ↑↑ (x + 2) > 22↑↑x ≥ 2 ↑↑ x · 2
holds for all x ≥ 0.



Now assume that 2 ↑↑ (x+ y) ≥ 2 ↑↑ x · y for some y ≥ 2. Then

2 ↑↑ (x+ y + 1) = 22↑↑(x+y) ≥ 22↑↑x·y ≥ (2 ↑↑ x)y.

So now it is enough to show that (2 ↑↑ x)y−1 ≥ y+ 1. But x ≥ 1, so this reduces
to 2y−1 ≥ y + 1, which holds for any y ≥ 3. ut

In conclusion, choosing τ = max{1, log∗ n − log∗ x + 1} gives us the total
space usage of O((n + b) max{1, log∗ n − log∗ x}). By rewriting this expression
to remove x we get the following Theorem.

Theorem 2. Given an SLP for S[1, N ] with n rules and positions i1, . . . , ib in
S, we can store S in space O((n + b) max{1, log∗ n − log∗(nb + b

n )}) such that
later, given i ∈ {i1, . . . , ib} we can extract S[i, i+ l] in O(l) time.

5 Conclusion

We have shown a bookmarking data structure that uses a little more than linear
space. If b ≤ n

log(c)N
or n log(c)N ≤ b the space becomes O(n+ b). Furthermore,

O(n + b) space can be achieved for any n and b if we are willing to pay a

O(log(c)N) kick-off time for decompression. It remains open whether there exists
a bookmarking data structure that uses O(n+ b) space and supports linear time
decompression, regardless of the relationship between n and b.
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