
Near-Optimal Compression for the Planar Graph Metric

Amir Abboud∗ Paweł Gawrychowski† Shay Mozes‡ Oren Weimann§

Abstract
The Planar Graph Metric Compression Problem is to com-
pactly encode the distances among k nodes in a planar graph
of size n. Two naïve solutions are to store the graph using
O(n) bits, or to explicitly store the distance matrix with
O(k2 logn) bits. The only lower bounds are from the semi-
nal work of Gavoille, Peleg, Pérennes, and Raz [SODA’01],
who rule out compressions into a polynomially smaller num-
ber of bits, for weighted planar graphs, but leave a large gap
for unweighted planar graphs. For example, when k =

√
n,

the upper bound is O(n) and their constructions imply an
Ω(n3/4) lower bound. This gap is directly related to other
major open questions in labeling schemes, dynamic algo-
rithms, and compact routing.

Our main result is a new compression of the planar
graph metric into Õ(min(k2,

√
k · n)) bits, which is optimal

up to log factors. Our data structure circumvents an
Ω(k2) lower bound of Krauthgamer, Nguyen, and Zondiner
[SIDMA’14] for compression using minors, and the lower
bound of Gavoille et al. for compression of weighted planar
graphs. This is an unexpected and decisive proof that
weights can make planar graphs inherently more complex.
Moreover, we design a new Subset Distance Oracle for planar
graphs with Õ(

√
k · n) space, and Õ(n3/4) query time.

Our work carries strong messages to related fields. In
particular, the famous O(n1/2) vs. Ω(n1/3) gap for distance
labeling schemes in planar graphs cannot be resolved with
the current lower bound techniques. On the positive side, we
introduce the powerful tool of unit-monge to planar graph
algorithms.

1 Introduction
The shortest path metric of planar graphs is one of
the most popular and well-studied metrics in Computer
Science. Countless papers, surveys, and textbooks
address the computational challenges that arise when
dealing with it. In this paper, we address a core problem
about this metric that has remained poorly understood.
We ask: How compressible is it? That is, how many
bits do we need, information theoretically, in order to
describe a set of distances in a planar graph?

∗Stanford University, Department of Computer Science, ab-
boud@cs.stanford.edu.
†University of Haifa, Department of Computer Science,

gawry@cs.uni.wroc.pl. Partially supported by the Israel Science
Foundation grant 794/13.
‡IDC Herzliya, Efi Arazi School of Computer Science,

smozes@idc.ac.il. Partially supported by the Israel Science Foun-
dation grants 794/13 and 592/17.

§University of Haifa, Department of Computer Science,
oren@cs.haifa.ac.il. Partially supported by the Israel Science
Foundation grants 794/13 and 592/17.

As we discuss shortly, a better understanding of
this core question is crucial to making progress on big
open problems in other well-studied subjects such as
Sparsification, Labeling Schemes, and Dynamic Data
Structures. But first, let us define our problem more
formally. In the Metric Compression problem, we are
given a set S of k points in some metric space with
distance function d, such as the metric of distances in
an n node planar graph, and the goal is to find an
encoding C that is as short as possible, yet still allows
us to compute d(vi, vj) for any two points vi, vj ∈ S.

Definition 1. The Planar Graph Metric Com-
pression Problem. Given a graph G from the family
of unweighted, undirected planar graphs with n nodes,
and a subset S of k distinguished nodes in G, compute a
bit string C that encodes the distances between all pairs
of nodes in S. That is, there is a decoding function
f (the same function for the entire graph family) that
given the encoding C and any two nodes vi, vj ∈ S re-
turns the vi-to-vj distance in G.

There are two naïve ways to solve this problem.
First, we can store all the distances explicitly as a k×k
matrix in the encoding C. The distance in a graph on
n nodes is some number in {0, 1, . . . , n}, and so this
matrix can be encoded using O(k2 log n) bits. The
second option, which is better whenever k2 > n, is to
let the encoding be the graph G itself. Naïvely, this is
O(n log n) bits, and more sophisticated encodings give
O(n) [17, 25, 64, 76]. The naïve upper bound for our
problem is therefore Õ(min{k2, n}).1 Is this the best
possible, or could there be a much better compression
into Õ(k · nε) or even Õ(k) bits?

For context, let us look at other metrics. One ex-
ample of a metric that admits an ultra-efficient com-
pression into Õ(k) bits is the metric of trees or bounded
treewidth graphs [23, 38]. For most metrics of interest,
however, the exact or lossless version of the compres-
sion problem is too difficult and no non-trivial upper
bounds, beyond log-factor improvements, are possible.
For example, in general (non-planar) graphs there is a
simple Ω(k2) lower bound: in any compression, each of

1We use the Õ(·) notation to hide polylogarithmic factors
(polylogarithmic in n).

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

mailto:abboud@cs.stanford.edu
mailto:abboud@cs.stanford.edu
mailto:gawry@cs.uni.wroc.pl
mailto:smozes@idc.ac.il
mailto:oren@cs.haifa.ac.il

the 2(k
2) possible graphs on k nodes must be encoded

differently. Instead, it is popular to seek the optimal
lossy compression from which the metric can be recov-
ered approximately, e.g. up to a multiplicative (1 + ε)
error. Indeed, if we are willing to pay a (1+ε) error (for
some fixed ε), then there are ingenious compressions of
the planar graph metric into Õ(k) bits [52, 56, 71]. But
do we have to pay this error, or are planar graphs re-
stricted enough to allow for non-trivial compression?

Open Question 1. Can we beat Õ(min{k2, n}) bits
for planar graph metric compression?

There are some lower bounds in our way. From
the seminal work of Gavoille, Peleg, Pérennes, and Raz
[38] we know that the metric of weighted planar graphs,
where the edge weights are polynomially bounded, does
not admit any non-trivial compression. The authors
show that any Boolean k × k matrix can be “encoded”
using the distances among a set of 2k nodes in a
weighted planar graph on n = O(k2) nodes, where the
edge weights are in [k]. Since we cannot compress an
arbitrary k × k matrix into less than k2 bits, we get a
nearly-tight lower bound of Ω(min{k2, n}) for weighted
planar graphs. For unweighted planar graphs, Gavoille
et al. simply subdivide the edges in their construction
and the number of nodes in the encoding grows to
n = Θ(k3), which leads to a much weaker lower bound of
Ω(
√
k · n) (see Section 4 for more details). For example,

when k =
√
n, the upper bound is Õ(n) and the lower

bound is Ω(n3/4). This subdivision of edges is rather
naïve, and the overall lower bound construction does
not seem to capture the full power of the planar graph
metric. In fact, it can be simulated by a grid graph
[3]. This naturally suggests the following intriguing
challenge of finding a more clever encoding of matrices
into planar graphs, which would lead to a negative
resolution to Open Question 1.

Challenge 1. Can we encode an arbitrary k × k
Boolean matrixM using the distances among a subset of
2k nodes {v1, . . . , v2k} in an unweighted planar graph
with O(k2) vertices, so that we can determine M [i, j] by
only looking at the distance between vi and vk+j in our
graph?

Before presenting our results, let us discuss the state
of the art on questions that are closely related to ours,
in which we are interested in data structures that are
not only as succinct as possible, but also have other
desirable features.

Sparsification. A natural way to compress a
graph is by deleting or contracting some of its edges
and nodes. Finding small subgraphs or minors that
preserve or approximate the distances among a given

subset of k nodes have been studied for planar graphs
[16,22,24,32,33,43,44,47,58,59] and for general graphs,
e.g. [27, 29, 68]. Such compressions are appealing algo-
rithmically, since we can readily feed them into our usual
graph algorithms, and recent research suggests that, in
many settings, near-optimal compression bounds can be
achieved using such sparsifiers (e.g. when compress-
ing general graphs with additive error [1, 2]). A dis-
couraging lower bound of Krauthgamer, Nguyen, and
Zondiner [58] shows that even in the case of unweighted
grid graphs, it is impossible to beat the naïve bound
using a (possibly weighted) minor. Thus, a positive an-
swer to Open Question 1 will have to involve a more
complicated data structure.

Labeling Schemes. An appealing way to repre-
sent graphs is to assign a label `v to each node v, so that
by looking at the labels of two nodes `s, `t we can infer
certain properties such as the distance between them
d(s, t). Finding so-called distance labeling schemes in
which the labels are as short as possible is a classical
subject of study [38, 45, 50, 67]. Such labels are used
for efficient algorithms both in theory [4, 72] and prac-
tice [30]. A famous open question is to close the rare
polynomial gap in the bounds for planar graphs that
has been embarrassingly open since the work of Gavoile
et al. [38]: the upper bound is O(n1/2) bits per label
(due to [42] who shaved a log factor over [38]), and the
lower bound is Ω(n1/3). The only known technique to
prove polynomial lower bounds2 is to argue that label-
ing schemes are one way to compress graphs, and then
use facts about the limits of graph compression. For
example, the lower bound for distance labeling of pla-
nar graphs [38] follows because labels of size O(n1/3−ε)
can be used to solve the metric compression problem
using O(k · n1/3−ε) bits, which contradicts the lower
bounds above. In fact, the tight lower bound for metric
compression of weighted planar graphs leads to a tight
lower bound for labeling schemes [3,38]. Thus, to prove
a tight lower bound of Ω(n1/2) for labeling schemes in
unweighted planar graphs, the only approach we have
with current techniques is to negatively resolve Open
Question 1, e.g. by accomplishing Challenge 1.

Routing and Dynamic Algorithms. A compact
routing scheme assigns names and tables to the nodes
of a graph, so that each node s can find out the first
edge on the shortest path (or some approximate path)
to any target node t only using the name of t and the

2The only result that somewhat deviate from this technique are
1.008 logn lower bound for nearest common ancestors in trees [12]
and 1/8 log2 n lower bound for distance in trees [11,38]. The gist
of both of them is being able to argue about how much information
can be shared by labels of two nodes. If the graph is not a tree,
this seems very challenging.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

local table stored at s. There is a vast literature on
the topic, seeking the best possible tradeoff between
sizes of the tables and the stretch in many different
graph families (we refer the reader to Peleg’s book [66]
and the extensive surveys [36, 37]). For planar graphs,
Abraham, Gavoille, and Malkhi [5] write: “Surprisingly,
for stretch 1, the complexity of the size of the routing
tables is not known.” A simple upper bound is Õ(n·

√
n)

total table size, and an adaptation of the same Gavoille
et al. construction gives a lower bound of Ω(n · n1/3)
[5]. It is likely that accomplishing Challenge 1 would
resolve this gap as well. Yet another problem with
similar state-of-the-art is the All Pairs Shortest Paths
problem in dynamic planar graphs. Here, the goal is to
have a data structure that supports efficient updates to
the graph (edge additions or removals), and can answer
shortest path queries efficiently. The breakthrough
algorithm of Fakcharoenphol and Rao [35], and the
later optimizations [39,49,51,56], achieve Õ(n2/3) time
for updates and queries. The only framework for
showing polynomial lower bound was recently proposed
by Abboud and Dahlgaard [3] who proved a lower bound
of n1/3−o(1) under the popular APSP Conjecture. Using
their framework, accomplishing Challenge 1 directly
leads to a higher lower bound of n1/2−o(1), as is known
in the weighted case.

History suggests that weighted planar graph metrics
might be harder to work with, but they are never
truly harder. In so many cases, a new algorithm for
the unweighted case is followed by an almost-as-good
algorithm for the weighted case, a few years later. For
example, a PTAS for the Travelling Salesman Problem
in the unweighted planar metric was found in 1995 [46],
and then for the weighted case in 1998 [14]. Perhaps it
is only a matter of time until our lower bounds for the
unweighted metric match the weighted.

1.1 Our Results Our first result is a new compres-
sion scheme for the planar graph metric, which achieves
the information theoretically best possible bit complex-
ity, up to log-factors. We give a positive resolution to
Open Question 1, deem Challenge 1 to be infeasible,
and show that unweighted planar graphs are inherently
less complex than weighted ones; in fact, they admit a
polynomially more efficient metric compression.

Theorem 1.1. Given an unweighted undirected planar
graph on n nodes and a subset S of k nodes, we can
return a binary encoding of length O(

√
k · n · log3 n)

from which all pairwise distances in S can be recovered
exactly.

This shrinks the gap in our understanding of the
planar metric compression problem from polynomial

to polylogarithmic (removing this polylogarithmic gap
remains an open question). For comparison, when
k =

√
n, we show that Θ̃(n3/4) bits are necessary

and sufficient, while in the weighted case the bound
is Θ̃(n). Our encoding cirumvents the lower bound of
Krauthgamer et al. [58] for compressions using minors,
and raises the question whether it can be matched via
other forms of sparsification or graphical compressions.

It is unclear whether our new compression scheme
will lead to improved upper bounds for labeling, routing,
or dynamic algorithms. In Section 6, we discuss the
difficulty in turning it into a labeling scheme. Still, it
certainly shakes our beliefs about the right bounds for
those problems. Even if better upper bounds are not
possible, it is no longer a mere puzzle as in Challenge 1
that is standing in the way of higher lower bounds –
substantially new techniques and frameworks must be
developed.

Distance Oracles. Our first result was a math-
ematical advance in the understanding of the planar
graph metric. Next, we use it algorithmically to achieve
a new Subset Distance Oracle that could be an appeal-
ing choice in many applications.

A distance oracle is an encoding of a graph from
which a pairwise distance can be queried efficiently.
Since the seminal paper of Thorup and Zwick [73],
a central subject of study in Graph Algorithms has
been to understand the inherent tradeoff between the
parameters of these distance oracles (see the survey by
Sommer [70]): The size of the compression, the query
time for returning a distance, the error in the answers,
the preprocessing time to construct the compression,
and so on.

Many exact distance oracles for planar graphs have
been proposed [13, 20, 31, 35, 65, 78], mostly focusing on
the tradeoff between space and query time, showing that
with space s the query time can be made Õ(n/

√
s) [62].

Cohen-Addad, Dahlgaard, and Wulff-Nilsen [26] show
that the technique of abstract Voronoi diagrams recently
introduced into the field of planar graphs by Cabello
[21] leads to an oracle with O(n5/3) space and Õ(1)
query time, suggesting that a better tradeoff is possible.
Indeed, in SODA’18 [41] the oracle was improved to
O(n3/2) space and Õ(1) query time and the tradeoff
was improved to s space and Õ(n3/2/s) query time.

To get even better tradeoffs we might allow a (1+ε)
error [52, 56, 71]: we can achieve very small (1 + δ)n
space and fast Õ(1) query time. Note that o(n) space
is impossible in this setting (i.e., when considering
distances between all nodes), no matter what query
time we allow. However, another natural way to get
better tradeoffs is to restrict our attention to a subset
of the nodes. A Subset Distance Oracle is a small space

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

data structure that can efficiently return the distance
between any pair of nodes from a set S of k nodes. Here,
for any k = o(n), e.g. k =

√
n, our new compression

scheme suggests that a distance oracle might have o(n)
space.

Subset distance oracles arise naturally. In typical
applications of distance oracles, one can predict that
all queries will be among a subset of k = o(n) nodes.
Space efficiency is often a high priority. For example,
if our graph is the national road network, one might be
interested in a mobile app that can return the distance
between any pair of bus stops.

Our second result is the first subset distance oracle
with non-trivial space bounds. Notably, all previous
distance oracles in the literature work equally well for
weighted and unweighted graphs, while ours uses new
techniques that are provably impossible for weighted
graphs. Indeed, as we mentioned earlier, subset distance
oracles for weighted graphs require Ω(min{k2, n}) space.

Theorem 1.2. There is a polynomial-time algorithm
that, given an unweighted undirected planar graph on
n nodes and a subset S of k nodes, returns a data
structure of size O(

√
k · n · log3 n) words that, given

any pair of nodes in S, can return their distance in
O(min{n3/4,

√
k · n} · log4 n) time.

The main open question left by our work is whether
our query time can be improved, perhaps all the way
down to Õ(1). This would be an essentially optimal
distance oracle. But even as it is, our query time is
sublinear, and our space is sublinear for any k = o(n),
making it an appealing choice in applications with strict
space constraints.

Finally, an intriguing and wide open question is
to extend (any of) our upper bounds to directed un-
weighted planar graphs. Can we accomplish Chal-
lenge 1 if we allow directed edges? Our tools heav-
ily rely on the graph being undirected, yet it remains
unclear if a higher lower bound can be proven for di-
rected unweighted graphs. For such graphs, the current
lower bound remains Ω(

√
k · n) and the upper bound

Õ(min{k2, n}).

1.2 Technical Overview We exhibit the first use
of the unit-Monge property to the algorithmic study
of planar graphs. It is well known that distances in
a planar graph enjoy this property, due to the non-
crossing nature of shortest paths in the plane, but
prior to our work, only the (non-unit) Monge property,
was known to be algorithmically exploitable for planar
graphs. For the past few decades, it has been heavily
utilized in numerous algorithms for problems related

to shortest paths or minimum cuts in planar graphs
(e.g. [18–21, 35, 40, 49, 51, 55, 60–63]), and beyond, in
dozens of papers on computational geometry (e.g. [6–
10,40,51,53]) and pattern matching (e.g. [28,48,69,75]).
Meanwhile, the stronger unit-Monge property has only
been exploited for algorithms on sequences where it
has already led to several breakthroughs. For example,
several variants of edit distance on strings of length n
can be solved in Õ(n) time [75]. These variants use the
unit-Monge property to compute all pairwise distances
between vertices on the boundary of an n × n grid
graph. Using the weaker (non-unit) Monge property
(i.e., treating the grid as an arbitrary planar graph
with n2 vertices) results in an Õ(n2) running time. We
refer the reader to the 159-page monograph of Tiskin
[74] for a survey on the unit-Monge property and its
applications.

Recall that we want to encode the distances among
k nodes in a planar graph. Let us assume that we
are lucky and these k nodes are exactly the nodes of
a single face of the graph, and that this face is a simple
cycle. Denote the nodes appearing on the face in order
s1, . . . , sk/2, t1, . . . , tk/2, and for simplicity assume that
we only want to encode si-to-tj distances. LetM be the
k/2×k/2 matrix of distances so thatM [i, j] = d(si, tj).
This matrix has the Monge property: For any i, j we
have thatM [i+1, j]−M [i, j] ≤M [i+1, j+1]−M [i, j+1].
This is because the si-to-tj shortest path and the si+1-
to-tj+1 shortest path must cross. Moreover, it is unit-
Monge, that is, M [i + 1, j] −M [i, j] ∈ {−1, 0, 1}. This
is because there is an edge between si and si+1 and so
the distances involving these nodes are always at most
1 apart.

Our gains come from the fact that unit-Monge
matrices are compressible into O(k log k) bits! For non-
unit Monge matrices, the construction of Gavoille et
al. implies an Ω(k2) lower bound. Another striking
example for the extra power of the unit-Monge property
is the fact that (a compact representation of) the
distance product of two n × n such matrices can be
computed in O(n log n) time [75], while for non-unit
Monge matrices only O(n2) algorithms are possible. We
do not use this fact in this paper, and do not know of a
problem on planar graphs where this property is useful.

The main issue for us, and in general when exploit-
ing Monge properties, is that the nodes we care about
do not necessarily lie on a cycle. The simple solution is
to add a cycle connecting our k nodes and assign weight
+∞ to the new edges so that they do not change the
distances, or more formally, to triangulate the graph.
After we do this, we have the Monge property, but be-
cause of the infinite weight edges, we do not have the
unit-Monge property. This solution is common to all

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

the algorithms cited above that use the Monge property,
and is quite reasonable when the graph is weighted to
begin with. For unweighted graphs, on the other hand,
our work proves that it is too lossy and a more involved
solution leads to much better results.

At a very high-level, our approach is to use a
Baker-like [15] decomposition into slices (vertices at
consecutive levels of some specific BFS tree) whose
boundaries are cycles, and to store distances to the slice
boundaries. Observe that when we argued above that
the unit Monge property holds because there is an edge
between si and si+1, we did not require that there is also
an edge between tj and tj+1. In our solution there is an
edge between consecutive vertices on the boundary cycle
of each slice. Therefore, even if we triangulate each slice
using infinite weight edges, we can still exploit the unit
Monge property when storing distances between certain
vertices in a slice and the slice boundary.

The decomposition into slices is such that, after
triangulation, the slices have small cycle separators. We
recursively separate the vertices of the set S within
each slice using small cycle separators. We store
distances between separators and the slice boundary
(using the unit Monge property) and between vertices
of S and separators (using the fact that separators are
small). Significant technical issues arise with the nesting
structure of slices. This gives rise to so-called holes in
a slice. Dealing with multiple holes requires a detailed
study of additional structural properties, and a more
complicated recursive solution based on these properties
(see Section 3.2). In essence, we show that whenever a
naïve solution does not work in the presence of multiple
holes, there is one hole that can be handled efficiently
using a different approach.

We believe it is very likely that other problems in
unweighted planar graphs can be solved by exploiting
the unit-Monge property. Our near-optimal metric
compression serves as a proof of concept that this is
possible. However, technical challenges might have to
be overcome in each specific application. In particular,
the fast distance product algorithm for unit-Monge
matrices [75] appears to be a strong and relevant
technique that we are so far unable to exploit for solving
problems in planar graphs.

2 Preliminaries
We assume that G is connected, otherwise we handle
each connected component separately. We assume basic
familiarity with planar graphs and planar graph duality.
We denote the primal graph by G and the dual graph
by G∗. For a spanning tree T of G, we use T ∗ to denote
the spanning tree of G∗. It is well known [77] that the
set of edges of G not in T form a spanning tree T ∗ of

G∗. We often refer to T ∗ as the cotree of T [34]. For
a spanning tree T of G and an edge e of G not in T ,
the fundamental cycle of e with respect to T in G is the
simple cycle consisting of e and the unique simple path
in T between the endpoints of e.

Given an assignment of nonnegative weights to the
faces of G, we say that a simple cycle C is a balanced
separator if the total weight of faces strictly enclosed
by C and the total weight of faces not enclosed by C
are each at most 5/6 of the total weight.3 We often
assign weights to vertices rather than to faces. Finding
a balanced separator with respect to vertex weights
reduces to the case of face weights (for each vertex,
simply remove its weight and add it to an incident face).
It is well known (see, e.g., [57]) that in triangulated
planar graphs there exists a balanced separator that is
a fundamental cycle assuming that no face has more
than 1/2 of the total weight (in fact, this is true for any
planar graph such that T ∗ has maximum degree 3). For
vertex-weights, if no vertex has more than 1/2 of the
total weight and the graph is triangulated and there
are no self loops then by evenly transferring the weights
to faces we obtain that no face receives more than 1/2
of the total weight (because every node is incident to
at least two faces) and we can invoke the face-weights
version of the balanced separator. Many planar graph
algorithms triangulate the graph by adding edges to
ensure that short balanced cycle separators exists. The
lengths of the added edges is set to be sufficiently large
so as not to change distances in the graph. This is
clearly not possible in unweighted planar graphs, and is
one of the obstacles we will need to overcome.

2.1 The Monge and Unit-Monge properties
One of the main tools we use for succinct representation
of distances in unweighted undirected planar graphs is
the unit Monge property, implied by the non-crossing
nature of shortest paths in the plane. We say that a
path P crosses another path Q if there is a path R that
is a common subpath of P and Q such that (i) the first
(last) vertex of R is not the first (last) vertex of P or
Q, and (ii) the edge of P that precedes the subpath R
enters Q from one side and the edge of P that follows
R leaves Q from the other side.

We next present a sequence of lemmas that uti-
lize this property to efficiently store distances be-
tween vertices on cycles. We begin with encoding dis-
tances between disjoint sets of vertices on a single face
(Lemma 2.1), then encoding distances between all ver-
tices on a single face (Lemma 2.2), and finally, en-

3It is more usual to require that the total weight is at most
either 2/3 or 3/4. However, in our particular application 5/6 turns
out to be more convenient.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

coding the distances between the vertices of two faces
(Lemma 2.3).

Lemma 2.1. Let C = (v1, v2, . . . , v|C|) be the cyclic
walk of a face of a planar graph partitioned
into two parts C1 = (v1, v2, . . . , v`) and C2 =
(v`+1, v`+2, . . . , v|C|). Then, for any subset C ′2 of C2,
all distances between vertices of C1 and vertices of C ′2
can be encoded in Õ((|C1|+ |C ′2|) log |C|) bits.

Proof. Let C ′2 = {vp1 , vp2 , . . . , vps}. We define an `× s
matrix M such that M [i, j] equals the distance in G
between vi and vpj . The matrix M is Monge, that is
M [i + 1, j] − M [i, j] ≤ M [i + 1, j + 1] − M [i, j + 1]
for any i ∈ [1, ` − 1] and j ∈ [1, s − 1]. This is
because the shortest vi-to-vpj and vi+1-to-vpj+1

paths
must necessarily cross. Furthermore, the matrix M is
unit-Monge, that is M [i + 1, j] − M [i, j] ∈ {−1, 0, 1}
for any i ∈ [1, ` − 1] and j ∈ [1, s], because there is
an edge (vi, vi+1). Consequently, for any i ∈ [1, ` −
1], the sequence of differences M [i + 1, j] − M [i, j] is
nondecreasing and contains only values from {−1, 0, 1},
so can be encoded by storing the positions of the first
0 and the first 1. Storing these positions for every
i ∈ [1, ` − 1] takes O(` log s) bits. To encode M , we
additionally store M [0, j] for every j ∈ [1, s] using
O(s log |C|) bits. �

We stress that in the statement of Lemma 2.1, the
vertices C1 must be consecutive on the face, but the
vertices of C ′2 need not. This suffices for the unit Monge
property to apply. We will critically use this fact in our
construction.

Lemma 2.2. Let C = (v1, v2, . . . , v|C|) be the cyclic
walk of a face of a planar graph. Then, all distances
between vertices of C can be encoded in O(|C| log2 |C|)
bits.

Proof. We recursively encode all distances between ver-
tices from a contiguous fragment of C using Lemma 2.1.
We start with the whole v1, v2, . . . , v|C|. To encode
the distances between all vertices vi, vi+1, . . . , vj , where
i < j, we set m = b(i+ j)/2c and proceed as follows:

1. Recursively encode the distances between all ver-
tices vi, vi+1, . . . , vm.

2. Recursively encode the distances between all ver-
tices vm+1, vm+2, . . . , v|C|.

3. Apply Lemma 2.1 with C1 = (vi, vi+1, . . . , vm) and
C ′2 = {vm+1, vm+2, . . . , vj}.

The total size of the encoding is described by the
recurrence T (s) = O(s log |C|) + 2T (s/2), hence solves
to O(|C| log2 |C|). �

vi+1

vi

uj

uj+1

P
P 0

P 00

Cint

Cext

u1

v1

Figure 1: The Monge property in Lemma 2.3.

Lemma 2.3. Let Cext = (v1, v2, . . . , v|Cext|) and Cint =
(u1, u2, . . . , v|Cint|) be the cyclic walks of two faces of a
planar graph. Then, all distances between a prefix C ′ext
of Cext and any subset C ′int of Cint can be encoded in
Õ((|C ′ext|+ |C ′int|) log n) bits.

Proof. We first choose a shortest path P between C ′ext
and Cint and let vi and uj be its endpoints. We make
an incision along P and apply Lemma 2.1 to encode
the distances between C ′ext and C ′int corresponding to
shortest paths that do not cross P using O((|C ′ext| +
|C ′int|) log n) bits of space (the incision makes the size
of the face we apply Lemma 2.1 to O(n)). It remains to
encode distances corresponding to shortest paths that
do cross P . Without loss of generality P connects v1
and u1. We orient Cext and Cint so that after making
an incision along P the vertices v2 and u2 are adjacent
to the endpoints of P .

Consider a shortest path P ′ from vi to uj crossing
P , see Figure 1. Because both P and P ′ are shortest
paths, P ′ can be assumed to cross P exactly once. Let
P ′′ be a shortest path vi+1 to uj+1 crossing P . Similarly,
P ′′ can be assumed to cross P exactly once. We claim
that P ′ must cross P ′′. Otherwise, by considering an
incision along P ′ we can conclude that P ′′ crosses P
an even number of times but this is a contradiction.
Therefore, any such P ′ and P ′′ must cross. This means
that the matrix M , where M [i, j] is set to be the length
of a shortest path between vi and uj crossing P once, is
Monge. That is,

M [i+ 1, j + 1] +M [i, j] ≥M [i+ 1, j] +M [i, j + 1].

Additionally, M [i, j] −M [i + 1, j] ∈ {−1, 0, 1} because
(vi, vi+1) is an edge. We can hence apply the reason-
ing from Lemma 2.1 to encode M using O((|C ′ext| +
|C ′int|) log n) bits. �

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

3 The Encoding
Our encoding is based on decomposing the input graph
G into slices. To define the slices, recall the face-vertex
incidence graph FV (G) of a planar graph G: It has a
vertex for every vertex v of G and a vertex for every
face f of G, and if a vertex v of G is incident to a face f
of G then there is an edge between their corresponding
vertices in FV (G).

We run a breadth-first search in FV (G), starting
from the node representing the infinite face of G. After
every even number of steps, the yet unexplored part
of the graph can be decomposed into a number of
connected components, the boundary of each being a
simple cycle. More formally, we assume that the infinite
face of G is a triangle by enclosing the whole graph
in a triangle, which is connected to one of the original
vertices with a single edge. We define the level of a
face f or a vertex v of G to be its depth in the BFS
tree of FV (G). Thus, e.g., the level of the infinite
face of G is zero, and the level of the vertices incident
to the infinite face of G is 1. For each even integer
i ≥ 2, consider the set of connected components of the
subgraph of G∗ induced by the faces (of G) with level
at least i. We define K≥i to be the set of subgraphs
of G induced by the faces (of G) in each of these
connected components of G∗. We call each element
K ∈ K≥i a level-i component. We use a tree K called
the component tree of G to capture the nesting of level
components. The nodes of K are the level components
of G. A level component K is an ancestor of a level
component K ′ in K if the set of faces in K contains the
set of faces in K ′. Since we assume that the infinite face
of G is a simple triangle, K is indeed a tree whose root
is the component corresponding to the set of all faces of
G except for the infinite face.

The boundary of a component K is the set of edges
that are incident to a face in K and to a face not
in K. It is not difficult to see that the boundary of
each component K is a simple cycle in G, and that the
boundaries of different components are edge-disjoint.
See [54,57] for these and other properties of components
and the component tree. For a node k ∈ K, we associate
k with the boundary cycle Ck of the level component
represented by k, and define the cost of k denoted
cost(k) to be the length of Ck. For example, for the root
r of K we have that Cr is a triangle and that cost(r) = 3.

Lemma 3.1. For any w ≥ 1, there exists δ ∈ [0, w)
such that the total cost of all nodes of K at depth
δ, δ + w, δ + 2w, . . . is O(n/w).

Proof.
∑
v∈K cost(v) = O(n) because cycles corre-

sponding to the nodes of K are pairwise edge dis-
joint. Let S(δ) consist of all nodes of K at depth

δ, δ + w, δ + 2w, Then S(δ) ∩ S(δ′) = ∅ for δ 6= δ′

and
∑
δ∈[0,w)

∑
v∈S(δ) cost(v) = O(n), so there exists

δ ∈ [0, w) such that
∑
v∈S(δ) cost(v) = O(n/w) as

claimed. �

To define the slices we apply Lemma 3.1 and call the
nodes of K at depth δ, δ+w, δ+2w, . . .marked. The root
of K is also marked. Then, for every marked node v ∈ K,
the slice of v is the subgraph of G enclosed by Cv and
not strictly enclosed4 by Cu for any marked descendent
u of v. The embedding of slices is inherited from the
embedding of G. Thus, the boundary of the infinite
face of the slice s of v is Cv. The cycle Cv is also called
the boundary of the slice s. Each cycle Cu corresponding
to a marked descendant u of v such that there are no
other marked nodes on the v-to-u path becomes a face
in the slice s. Such a face is called a hole of s, and
Cu is called the boundary of the hole. We sometimes
refer to the boundary of a slice as its external boundary,
to emphasize that we do not mean the boundary of
the holes of the slice. Note that, by definition, Cu is
the external boundary of the level component that is
embedded in the hole u. Because the total cost of all
marked nodes is O(n/w) and the cost of the root is 3,
the total size of all boundaries in all slices is O(n/w).
Additionally, by construction, for any slice s, a breadth-
first search of FV (s), the face-vertex incidence graph
of s, starting at the infinite face of s, terminates after
O(w) iterations and every hole is a leaf in the obtained
breadth-first search tree.

By definition of slices, each slice contains faces and
vertices at O(w) consecutive levels. We would like to
use in our solution short (i.e., O(w)) fundamental cycle
separators within each slice. However, the diameter of
a slice is not necessarily O(w) because face sizes may be
large. To deal with this issue we triangulate the faces
so that a BFS tree of a slice will have depth O(w), and
will be consistent with the BFS tree of FV (s).

Let TFV be the BFS tree of FV (s). We add edges
to s to make it a triangulated graph s′ in the following
manner. For any two vertices v and u that are incident
to the same face in s, and v is a grandparent of uin
TFV , and vu is not an edge in s, we add vu as an
artificial triangulation edge. Adding these edges can be
done consistently with the embedding of s because the
path in TFV can be embedded on the same plane as s
such that s and TFV only intersect at vertices of s. See
Figure 2. We introduce an artificial vertex vs embedded
in the infinite face of s and triangulate the infinite face
of s by adding edges between vs and every vertex of the

4A vertex or an edge x is enclosed by a cycle C if x is incident
to a face enclosed by C. If x is enclosed by C but x 6∈ C then x
is said to be strictly enclosed by C.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

infinite face of s. Similarly, we triangulate each hole h
of s by introducing an artificial vertex vh, embedded in
h, and adding edges between vh and every vertex on the
boundary of h. Any remaining non-triangulated faces
are triangulated arbitrarily.

Figure 2: Triangulating a slice. The vertices and edges of
a slice s with two holes are shown in solid black. In this
example w = 2. Edges of TFV , the BFS tree of FV (s) are
shown in double red lines. Only some of the edges of TFV

are shown to avoid clutter. Artificial triangulation edges are
shown in dashed gray. The BFS tree Ts of the triangulation
of s is shown in blue.

Lemma 3.2. a BFS of s′ starting from vs produces
a spanning tree Ts with the property that vertex v is
the parent of vertex u in Ts if and only if v is the
grandparent of u in TFV .

Proof. By construction of s′, for every grandparent to
grandchild path in TFV there is a corresponding edge
in s′. Hence, there exists a BFS tree Ts rooted at the
artificial vertex vs that satisfies the statement of the
lemma. Note that all the artificial vertices embedded
in holes of s are leaves of Ts, and hence satisfy the
statement of the lemma vacuously. �

Let Ts be the BFS tree of s′ from Lemma 3.2.
The utility of using artificial triangulation edges in s′

is that now any fundamental cycle C w.r.t. Ts consists
of two paths in Ts, each consisting of O(w) vertices.
However, C may use edges that are not original edges
of s (i.e., artificial triangulation edges). We do not want
to consider such edges when dealing with distances,
because distances in s′ differ from distances in s. To this
end we use the notion of a Jordan curve. A Jordan curve
in s is an embedded curve that intersects the embedding
of s only at vertices of s. Since the embedding of the
triangulation s′ is consistent with that of s, each path
in Ts is a Jordan curve in s. We say that Ts is a Jordan
tree in s. In particular, any fundamental cycle w.r.t.
Ts is a Jordan cycle (closed Jordan curve) in s. We
next describe how the tree Ts can be used to recursively
decompose s into subgraphs called regions.

A region R is a subgraph of s (not of s′). The
boundary of R is defined as the set of vertices of R
that either belong to the external boundary of s, or to
the boundary of a hole of s, or are incident (in s) to
both an edge in R and to an edge not in R. Thus, for
example, the boundary of the region consisting of the
entire slice s consists of the external boundary Cext of
s and of the boundaries of all the holes of s. Let R
be a region. Let C be a fundamental cycle w.r.t. Ts.
The tree Ts may contain edges that are not edges of R
(either because they are triangulation edges, or because
they are edges of s that do not belong to the region
R). Since the embedding of Ts is consistent with the
embedding of any subgraph of s, C is a Jordan cycle in
R. The operation of separating R using C yields two
subgraphs. One is the subgraph induced by the faces of
R strictly enclosed by C and the other is the subgraph
induced by the faces of R not strictly enclosed by C.
This view of Ts as a Jordan tree in any region allows
us to reuse the same tree Ts throughout the recursive
decomposition. Note that, if R′ is one of the regions
obtained by separating R using C, then the boundary
of R′ is larger than the boundary of R by O(w) vertices.
This is true since the Jordan cycle C consists of O(w)
vertices of R. Also note that the boundary vertices of
R′ that belong to C lie on a single face of R′. However,
they are not necessarily consecutive on that face (they
were consecutive in the Jordan tree Ts, but this tree
contains triangulation edges, whereas R′ does not, so in
R′ such consecutive vertices lie on the same face, but
are not necessarily adjacent). We will nonetheless be
able to use the unit Monge property because, as pointed
out earlier, Lemmas 2.1 and 2.3 only require one of the
subsets to be consecutive along a face.

This recursive process can be described by a binary
tree Ts. Each node v of Ts corresponds to a region

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

(subgraph) Rv of s. The root of Ts is the entire slice s.
Each non-leaf node v of Ts is associated with a (Jordan)
fundamental cycle separator of Ts, denoted Sepv, whose
precise choice is described in the next subsection. The
regions of the two children of v are the regions obtained
by separating Rv using the Jordan cycle Sepv.

3.1 The simplified case of a single hole We begin
with the simplified case, in which we assume that each
slice has a single hole. This is the case, for example,
when the input planar graph is a grid (with possibly
subdivided edges).

First we use Lemmas 2.2 and 2.3 to store, for
each slice s with external boundary Cext, and a sin-
gle hole h with boundary Ch the following distances.
The boundary-to-boundary distances: the distances
(in s) among the vertices of Cext, and the hole-to-
boundary distances: the distances (in s) between the
vertices of Cext and the vertices of Ch.

Boundary-to-boundary and hole-to-boundary dis-
tances encode distances “between slices”. We also need
to encode distances “within slices”. We will use the fact
that s has a spanning tree of depth O(w) to decompose
s into regions, each containing a single distinguished
node (i.e., a single node from S), using separators that
consists of O(w) vertices. Then we can afford to store,
for each distinguished node, its distance to the entire
boundary of its region, and, using the unit-Monge prop-
erty, to also store the distances between the O(w) ver-
tices on the separator used to obtain each region R to
the vertices of Cext and Ch (i.e., the boundary of s)
that belong to R. These distances will suffice for recon-
structing the distance between any pair of distinguished
nodes.

Let Ss denote the set of distinguished vertices in
slice s. We use fundamental (Jordan) cycle separators
w.r.t. the tree Ts to recursively divide s into regions,
until each region contains a single distinguished vertex.
Consider a step in the recursion involving a region Rv
that corresponds to a node v in the recursive decomposi-
tion tree Ts. We separate Rv into two subregions by tak-
ing Sepv to be a fundamental cycle separator w.r.t. Ts
that balances the number of distinguished vertices in Rv
(i.e., assigning unit weight to each distinguished vertex
in Rv and zero weight to all other vertices). Note that,
since we use balanced separators, the depth of the re-
cursion tree Ts is O(log |Ss|) = O(log n). Recall that the
fundamental cycle separators w.r.t. Ts do not cross each
other, and, by construction of Ts in Lemma 3.2, each
fundamental cycle separator crosses each of the external
boundary of s and the hole of s at most twice. There-
fore, the boundary of each region Rv contains O(log n)
vertex disjoint maximal subpaths of Cext, and O(log n)

vertex disjoint maximal subpaths of Ch. Furthermore,
for any two regions at the same depth in Ts, the maxi-
mal subpaths of these two regions may share only their
endpoints.

At the step of the recursive decomposition corre-
sponding to node v ∈ Ts with separator Sepv and two
children u,w, we store S-to-separator distances: ex-
plicitly store the distances (in Rv) between every vertex
of S in Rv and every vertex of Sepv, separator-to-
boundary distances and separator-to-hole distances:
for i ∈ {u,w}, the distances (in Ri) between every ver-
tex of Sepv and every maximal subpath of Cext or Ch
on the boundary of Ri, using Lemma 2.1 or Lemma 2.3
(depending whether they lie on the same face or on two
distinct faces of Ri). Finally, for every leaf v ∈ Ts,
we store S-to-boundary distances and S-to-hole dis-
tances: the distance between the unique distinguished
vertex in Rv to every vertex of Cext or Ch on the bound-
ary of Rv.

Analysis. We first show that the total space is
Õ(
√
k · n), and then show that the distances between

any pair of vertices in S can be recovered using just
the information we stored. Since the total size of all
slice boundaries is O(n/w), storing the boundary-to-
boundary distances and the hole-to-boundary distances
takes Õ(n/w) using Lemmas 2.2 and 2.3. Since the
depth of Ts is O(log n), each vertex of Ss belongs to
O(log n) regions in the decomposition of s. Since, in
addition, |Sepv| = O(w) for every v ∈ Ts, the total
space required for storing the S-to-separator distances
is Õ(k ·w). Consider a region R of a slice s. Recall that
the vertices of Cext (Ch) that belong to R lie on O(log n)
vertex disjoint maximal subpaths of Cext (Ch). The
endpoints of each such maximal subpath may belong to
another region R′ at the same depth in Ts. Therefore,
R shares O(log n) vertices of Cext (Ch) with other
regions at the same depth in Ts. Finally, recall that
the number of regions of s is Õ(|Ss|). Therefore, using
Lemma 2.1 or Lemma 2.3, the total space for storing the
separator-to-boundary and separator-to-hole distances
is Õ(n/w+ k+ k ·w). In more detail, let ci be the total
number of slice/hole boundary vertices in the i-th slice.
Then, in every slice every boundary/hole vertex that is
not an endpoint of a maximal subpath contributes at
most once at each level of recursion. At each level, we
have at most k recursive calls, so at most O(k log n)
maximal subpaths and at most k fundamental cycle
separators. Therefore, the total space is O((

∑
i ci +

k log n + k · w) log n) = Õ(n/w + k + k · w). Storing
S-to-boundary distances and S-to-hole distances at the
leaves of the recursion tree requires total Õ(k+n/w) bits
since each boundary or hole vertex belongs to exactly
one leaf region, except for O(k log n) vertices (endpoints

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

of maximal subpaths). Choosing w =
√
n/k proves the

space bound.
Finally, we prove that the distances between any

pair of vertices in S can be recovered using just the
information we stored. For any x, y ∈ S, if a shortest
x-to-y path does not leave s then x, y ∈ Ss, and
the distance can be obtained using the S-to-separator
distances stored in the lowest common ancestor of the
regions of x and y in Ts. Otherwise, let P be a shortest
path between vertices x ∈ Ss′ and y ∈ Ss (where s′ is
either s or, wlog, enclosed by the hole of s). Let P [i, j]
denote the subpath of P between vertices i and j. Let v
be the first vertex of P that belongs to the boundary of
s′ or to the boundary of a hole of s′. If P [x, v] contains
some vertex of a fundamental cycle separator used in
processing s′, let u be the last vertex of P that belongs
to the earliest such separator. If u does not exist, then
the length of P [x, v] is stored as an S-to-boundary or
an S-to-hole distance. If u exists then the length of
P [x, u] is stored as a S-to-separator distance, and the
length of P [u, v] is stored as a separator-to-boundary or
separator-to-hole distance. Let w be the last vertex of P
that belongs to the boundary of s. The length of P [v, w]
can be computed from boundary-to-boundary and hole-
to-boundary distances since P [v, w] can be decomposed
into subpaths between boundary vertices of slices. The
length of the suffix P [w, y] can be computed in a similar
manner to that of the prefix P [x, v].

3.2 The general case A difficulty that arises in the
presence of multiple holes is that since the number
of holes is not bounded by a constant, we cannot
afford to store distances involving holes. For example,
storing hole-to-boundary distances between the external
boundary Cext of a slice s and the boundary of each hole
of s requires Ω(|Cext|) = Ω(n/w) bits per hole. Since
the number of holes can be Ω(n), the total space could
be Ω(n2/w).

The role of storing distances involving boundaries
of holes was to allow the recovery of distances to
distinguished vertices enclosed in these holes. We
modify our approach for processing a slice s to take into
account the distinguished vertices enclosed in holes of s
as well as the distinguished vertices in s itself. As in the
single hole case, the slice s will be recursively divided
using fundamental cycle separators. For any region R
encountered along the recursive process, let SR denote
the subset of the distinguished vertices in R, as well as
those enclosed by any hole in R. Thus, for example,
Ss is the set of all vertices in S that are enclosed (in
G) by the external boundary of slice s. We say that a
Jordan cycle separator C of a region R is good if it is
balanced w.r.t. SR and does not go through any hole of

R. The problem with Jordan separators that go through
some hole h is that they partition the distinguished
vertices enclosed by h in an unspecified way since these
distinguished vertices are not represented in R. It is not
hard to see that if a good separator always exists then
we do not need to store any distances involving holes.

In reality we cannot always find a good separator.
Consider, for example, the case where some hole h of a
region R encloses most of the vertices of SR. Clearly,
a separator that is balanced w.r.t. SR must go through
h. Thus, there is no good separator in such a case.
We show, however, that we can always either find a
good separator, or there exists some hole (which we
call a disposable hole) that can be dealt with in a
special way. This is reminiscent of recursive procedures
based on heavy path decomposition, where heavy nodes
(disposable holes in our case) are treated differently
than light ones. We guarantee that, in either case, each
resulting subregion contains only a constant fraction of
SR, so the depth of the recursion is O(log n). We next
explain the details.

Good separators and disposable holes. Let R
be a region. We define the weight of each vertex v
of R to be 1 if v is a distinguished vertex. For each
hole h of R, we define the weight of the artificial vertex
vh embedded in h to be the number of distinguished
vertices strictly enclosed (in the whole graph G) by the
boundary of h. All other vertices are assigned weight
zero.

Recall that a cycle separator is good if it does not
go through any hole. We would like to separate R using
a good fundamental cycle separator Ce of some edge
e w.r.t. Ts. If we can find such separator Ce where
e is not incident to vh for some hole h, then Ce is a
good separator (since the vertices vh are leaves of the
spanning tree Ts). Otherwise, we must separate R with
a fundamental cycle separator that goes through holes.
We next define disposable holes, and then show that we
can allow the fundamental cycles to go through such
holes.

Let k be a node (level component) in K. Let Ck be
the boundary cycle of k. Let e be an edge of Ck. Note
that e /∈ Ts. This is because both endpoints e have the
same level, so, by Lemma 3.2, neither can be the parent
of the other in Ts. Let f, g be the endpoints of e in
the dual graph, such that f is a face in k and g a face
not in k. Since e /∈ Ts, e is in the cotree T ∗s . Consider
breaking T ∗s into two subtrees by deleting e. We say that
the edge e is light if the subtree of T ∗s that contains g has
weight at most W/2 where W is the total weight of the
vertices of R. Note that we defined weights of primal
vertices, whereas the vertices of T ∗s are primal faces.
To define face weights, evenly redistribute the weight of

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

vh

e≤W/2

root of Ts

f

g

Figure 3: An illustration of a region with a disposable hole.
The edges of a boundary of a hole h are shown in double-
line grey. Since the boundary of a hole is a level cycle, none
of the edges of the boundary of h belongs to the spanning
tree Ts (blue). The artificial triangulation vertex vh of h
and the triangulation edges (grey dashed) are shown. The
cotree T ∗s is shown in thin red. Suppose that the number
of distinguished nodes enclosed by h is at least W/2 (so the
weight of vh is at least W/2). Then, for any edge e of the
boundary of h, the part of T ∗s \ e that does not contain faces
of h weighs at most W/2, so e is a light edge and h is a
disposable hole.

each vertex among all of its incident faces. There is an
equivalent, primal view of light edges: The Jordan cycle
Ce partitions R into two subgraphs, exactly one of which
contains the faces of the level component corresponding
to k. We say e is light if the weight of the subgraph that
does not contain the level component k is at most half
the weight of R. We say that a level component k is
disposable in region R if there are boundary edges of k
in R, and if every edge e of the boundary of k that is also
in R is light. Note that this definition also applies to
holes (since holes are level components). See Figure 3.

Before showing why disposable holes exist and that
they are useful, we first mention a simple property of
T ∗s and use it to prove the existence of disposable holes.

Property 3.1. The cotree T ∗s enters each level compo-
nent exactly once.

Proof. The spanning tree Ts is monotone with respect
to node levels. Thus, if e is an edge of the boundary
of a level component k, then one of the components of
T ∗s \e contains no other faces, vertices or edges of k. See
Figure 4 for an illustration. �

Figure 4: An example of the interaction between the
spanning tree Ts (blue), the cotree T ∗s (red), and boundary of
level components (black cycles). Since Ts is monotone with
respect to levels, T ∗s enters each level component exactly
once.

Lemma 3.3. If a region R contains more than one ver-
tex with non-zero weight, then there exists either a good
balanced fundamental cycle separator or a disposable
hole in R.

Proof. Let W be the total weight of vertices in R.
Consider the component tree K. Let u be a deepest
disposable component in K such that Cu has an edge in
R. If u is a hole of R then we found a disposable hole,
and we are done. Otherwise, we next show that there
exists a good separator.

Let u1, u2, . . . , ud be the children of u in K (if there
is no disposable component in R, then define u to
be R, Cu to be the external boundary of R, and let
u1, . . . , ud be the set of rootmost components in K such
that Cui

has an edge in R). Since none of the ui’s is
disposable, for each ui there exists exactly one boundary
edge ei = (fi, gi) (here we wrote ei as a dual edge, and
fi is the endpoint of ei that belongs to ui), such that
the subtree of T ∗s \ ei that contains gi has weight at
least W/2. Consider the following two phase process
(see Figure 5 for an illustration): Let T ∗0 = T ∗s . If T ∗i
contains more than a single face of some uj (in which
case it must contain all faces of uj by Property 3.1),
then T ∗i+1 is obtained from T ∗i by rooting T ∗i at gj and
deleting all the strict descendants of fj in T ∗i , so that fj
becomes a leaf. The weight assigned to fj in T ∗i+1 is the
total weight of all the vertices in the deleted subtree.
Thus, the weight of T ∗i+1 remains W , and, by definition
of ej , the weight of fj is at most W/2. The first phase
terminates when T ∗i contains at most one face (fj) from
each uj . In the second phase, while T ∗i contains an
edge e of Cu that is not a leaf edge of T ∗i , then T ∗i+1 is

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

obtained from T ∗i by rooting T ∗i at the endpoint g of e
that belongs to u, and deleting all the strict descendants
of the other endpoint f of e in T ∗i , so that f becomes
a leaf. Similarly to the first phase, the weight of f in
T ∗i+1 is set to the total weight of all the vertices in the
deleted subtree. Since u is disposable, the weight of f
is at most W/2.

Let T ∗t be the resulting tree. Since T ∗t contains at
most one face from each ui, T ∗t contains no triangulation
edges of a hole (both endpoints of a triangulation edge of
a hole belong to the hole). Furthermore, the total weight
of T ∗t is W , and every leaf of T ∗t created during the two
phase process has weight at most W/2 (by definition).
For the remaining nodes of T ∗t , the degree is at most 3
and the weight is also at mostW/2, because the original
weights in T ∗s are at most W/2 (otherwise, the node
corresponds to a hole of weight at least W/2 that is,
by definition, disposable, and we are done). Therefore,
there exists an edge e whose deletion from T ∗t results in
two trees, none of which weighs more than 5W/6. By
construction of the weights of T ∗t , the balance of the
fundamental cycle of e w.r.t. Ts is exactly the ratio of
the weights of the subtrees obtained by deleting e from
T ∗t . Therefore, the fundamental cycle Ce of e w.r.t. Ts
is a balanced Jordan cycle separator. Since no edge of
T ∗t is a triangulation edge of a hole, we have that Ce is
a good separator. �

With this structural lemma we can now describe our
oracle. Consider a slice s and let Gs be the subgraph of
G enclosed by the boundary of s. The goal of processing
slice s is to store information (distances) so that the
following distances (in Gs) can be recovered from the
information stored for all slices contained in Gs.

1. The distance between any two distinguished nodes
in Gs,

2. The distance between any distinguished node in Gs
and any vertex on the boundary of s.

3. The distance between any two vertices on the
boundary of s.

Encoding this information for all slices guarantees that
distances between the distinguished vertices in the
whole graph are captured.

The encoding. To process a slice s, we first en-
code boundary-to-boundary distances: the distances
(in Gs) between vertices on the boundary of s using
Lemma 2.2. We then triangulate s and define its span-
ning tree Ts using Lemma 3.2.

Next, we recursively separate s using fundamental
cycle separators. The initial region R is the entire
slice s. Its boundary is the external boundary Cext of

e1
f1

e2

e2

f2

f1

Figure 5: Illustration of the process of constructing the
cotree T ∗t according to which a good separator is found.
Three level boundaries are shown (black cycles). The
external one is Cu, the two cycles enclosed by Cu are Cu1

and Cu2 . The subfigures show the process of splitting the
cotree T ∗s , first at e1, then at e2. In the second phase the
cotree is further split at the two remaining edges of Cu. The
resulting tree T ∗t is an induced subtree of T ∗s in which a
balanced edge-separator can be found. Since none of the
edges of T ∗t has both endpoints in any ui, none of the edges
of T ∗t are triangulation edges of a hole.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

s. A region R is separated into subregions obtained
by cutting R along some fundamental cycle separator
C w.r.t. Ts. Since we only use fundamental cycle
separators w.r.t. the same tree Ts, the separators never
cross. Hence, the boundary of each new region R′

consists of the contiguous portion of C that belongs to
R, and possibly portions of the boundary of R. Since C
crosses Cext at most twice (at most once for each of the
two paths in the fundamental cycle C), the number of
contiguous maximal fragments of Cext in the boundary
of R′ is at most one plus the number of such fragments
in the boundary of R. Consequently, the number of
contiguous maximal fragments of Cext in the boundary
of any region is bounded by the depth of the recursion,
which we will show is Õ(1).

We now explain how to choose the fundamental
cycle separator C with which we separate R. This is
achieved using two interleaving recursive processes. We
refer to the first one as the outer recursion, and to the
second one as the hole elimination recursion. In a step
of the outer recursion we apply Lemma 3.3.

If we find a good balanced fundamental cycle sep-
arator C, then we use it to separate the region R. Ev-
ery vertex in SR explicitly stores S-to-separator dis-
tances: its distance (in Gs) to every vertex of C. In ad-
dition, for each subregion R′, for each contiguous max-
imal fragment bi of Cext in R′, we encode separator-
to-boundary distances: the distances (in R′) between
bi and C using Lemma 2.1 or Lemma 2.3 (depending on
whether the vertices of the separator C and the vertices
of bi lie on a single or two faces of R′). Then, we call
the outer recursion recursively for each subregion R′.
The outer recursion terminates when there is at most
one vertex with positive weight in the current region
R. If the only remaining object is an artificial vertex
vh, we apply Lemma 2.3 to encode hole-to-boundary
distances: the distances (in R) between the boundary
Ch of h and bi, for each contiguous maximal fragment
bi of Cext in R. If the only remaining object is a distin-
guished vertex u, we store S-to-boundary distances:
the distances (in Gs) from u to every vertex of every bi.
If the current region R contains no vertices with positive
weight, the outer recursion terminates.

If, on the other hand, we found a disposable hole h,
we store hole-to-boundary distances: distances be-
tween the boundary Ch of h and every contiguous max-
imal fragment bi of Cext in R. The weight of the ar-
tificial vertex vh is set to zero. This reflects the fact
that for the rest of the processing of s, distinguished
vertices enclosed by the hole h will not be treated indi-
vidually and directly, but rather by encoding distances
involving the vertices of Ch. From this point on, ver-
tices of S inside h are no longer considered vertices of

SR. We then call the hole elimination process for the
hole h in region R (see Figure 6). In a single step of
the hole elimination recursion, a region R is separated
using a fundamental cycle separator C w.r.t. Ts that is
balanced w.r.t. the number of vertices of Ch in R (i.e.,
a weight 1 is assigned to each vertex of Ch and 0 to
all other vertices). Note that C is necessarily a funda-
mental cycle w.r.t. Ts of some triangulation edge that is
incident to vh. The boundary of each of the two result-
ing regions contains a single contiguous portion of Ch
consisting of roughly half the vertices of Ch in R. Sim-
ilarly to the single hole case, we store S-to-separator
distances: distances (in Gs) from every vertex of SR
to every vertex of C. For each subregion R′ obtained
by separating R along C, for each contiguous fragment
bi of Cext in R′, we encode separator-to-boundary
distances: the distances (in R′) between bi and C us-
ing Lemma 2.1 or Lemma 2.3, and separator-to-hole
distances: the distances (in R′) between C and the sin-
gle contiguous fragment of Ch that belongs to R′ using
Lemma 2.1. We then apply the hole elimination process
recursively to each subregion R′. It terminates when
the current region R contains at most two consecutive
vertices of Ch, or when it contains at most one distin-
guished vertex. When this happens, we continue with
the outer recursion on R.

We next prove that the total depth of the entire
recursive procedure is O(log2 n).

Analyzing the recursion depth. We begin with
the initial region R0 being the entire slice. In a single
step of the outer recursion, if we find a good separator
then we use it to separate the current region R0 thus
decreasing the weight of each resulting region R by
a constant factor. If however we do not find a good
separator, then we apply the hole elimination process
on a disposable hole h of the current region R0. Since
|Ch| = O(n), and since every recursive call to the hole
elimination process decreases the number of nodes of
Ch by half, we get that after O(log n) recursive calls the
hole elimination process terminates, with each resulting
region R containing only two nodes of Ch. Observe that
these two nodes must be adjacent on Ch (see Figure 6).
Let e be the edge between them and let Ce be the
fundamental cycle of e w.r.t. Ts. Since h is disposable,
the weight of the region R′ obtained by separating R0

using Ce is at most half the weight of region R0. Since
R = R′ ∪ {vh} and since the weight of vh is zero this
means that the weight of R is at most half the weight
of R0. We conclude that every O(log n) consecutive
recursive calls the total weight of a region decreases by
a constant factor. This shows that the depth of the
recursion is O(log2 n).

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

vh

R R0

e

vh

Figure 6: Illustration of the process of eliminating a disposable hole. A disposable hole h with artificial vertex vh in a
region R0 is shown in top-left. The spanning tree Ts is indicated in blue. R0 is recursively separated using fundamental
cycle separators that are balanced w.r.t. the number of nodes of the boundary Ch of h. The elimination process finishes
(bottom-left) when the current region R contains only two consecutive vertices of Ch, which are the endpoints of some
edge e. This region R differs from the the region R′ obtained by separating R0 using the fundamental cycle of e w.r.t. Ts

by a single vertex (vh).

Correctness. We next prove that the distance
between any two distinguished vertices in S can be
recovered from our encoding.

Lemma 3.4. The length of a shortest path P in Gs from
any x ∈ Ss to any y ∈ Cext can be recovered from the
encoding.

Proof. If P contains some vertex of a fundamental cycle
separator used in processing s, let v be the last vertex
of P that belongs to the earliest such separator. By
choice of the earliest separator, the x-to-v distance (in
Gs) is stored (S-to-separator distance). By choice of
the last vertex on P that belongs to that separator, the
v-to-y distance (in the region of s that contains P [v, y])
is stored (separator-to-boundary distance). Thus, the
length of P can be recovered. If P contains no such
vertex, then x and y are in the same region when the
recursion terminates, so the x-to-y distance (in Gs) is
stored as a S-to-boundary distance. �

We extend the previous lemma and show that it applies
also to distinguished vertices enclosed by holes of s (i.e.,
for Ss instead of Ss).

Lemma 3.5. The length of a shortest path P in Gs from
any x ∈ Ss to any y ∈ Cext can be recovered from the
encoding.

Proof. The proof is by induction on the nesting depth
of slice s. The base case follows from Lemma 3.4. For
the inductive step, if x ∈ Ss we are done by Lemma 3.4,
so assume x is enclosed by some hole h of s.

If P contains some vertex of a fundamental cycle
separator used in processing s before hole h is elimi-
nated, let v be the last vertex of P that belongs to the
earliest such separator. By choice of the earliest separa-
tor, the x-to-v distance (in Gs) is stored (S-to-separator

distance), and by choice of the last vertex of that sep-
arator on P , the v-to-y distance (in a region of s that
contains P [v, y]) is stored (separator-to-boundary dis-
tance). Thus, the length of P can be recovered.

If P contains no such vertex, then the artificial
vertex vh and y are in the same region R when either
the recursion terminates, or the hole h is eliminated.
In either case, the Ch-to-y distances are stored (hole-
to-boundary distance). Decompose P into a maximal
prefix P [x, v] enclosed by the slice s′ whose boundary
is Ch, a maximal suffix P [w, y] enclosed by R, and an
infix P [v, w]. The length of the prefix is stored by the
inductive hypothesis for s′. The length of the infix is
represented by the boundary-to-boundary distances for
s′. The length of the suffix is stored (hole-to-boundary
distance). �

Finally, we extend the previous lemma and show that it
applies to any two distinguished vertices.

Lemma 3.6. The length of a shortest path P in Gs from
any x ∈ Ss to any y ∈ Ss can be recovered from the
encoding.

Proof. Assume, wlog, that both x and y are enclosed
in holes of s (the other cases are similar and less
general). If P contains some vertex of a fundamental
cycle separator used in processing s before either hole
is eliminated, then let v be a vertex of P that belongs
to the earliest such separator. By choice of the earliest
separator, both the x-to-v and the y-to-v distances (in
Gs) are stored (S-to-separator distance). Thus, the
length of P can be recovered.

Otherwise, the hole of x and the hole of y are in
the same region R when one of them, say the hole h of
x, is eliminated. If P intersects one of the fundamental
cycle separators used during the elimination process of
hole h, then let v be the last vertex on the earliest such

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

v

u

Cext

q
t

r
xy

Figure 7: An illustration of one of the cases in the proof of
Lemma 3.6. A slice s with two holes is shown. The boundary
Cext is double-lined. A x-to-y shortest path P is shown in
solid black. The vertices x and y belong to different holes
of s (black cycles). The path P crosses a fundamental cycle
separator (blue, parts that do not belong to s are dashed)
used in eliminating the hole to which y belongs.

separator (see Figure 7). By choice of earliest separator,
the x-to-v distance is stored (S-to-separator distance).
By Lemma 3.5, the length of the maximal suffix P [w, y]
enclosed in h is also stored. Let u be the first vertex
of P [v, w] that belongs to either Cext or Ch (u exists
because y is enclosed by Ch and v is not).

• If u belongs to Cext then the length of P [v, u] is
stored (separator-to-boundary distance). In this
case, let q be the last vertex of P that belongs
to Cext. The length of P [u, q] is represented by
boundary-to-boundary distances for Cext. Let t
be the first vertex of P [q, y] that belongs to Ch.
The length of P [q, t] is represented as a hole-to-
boundary distance (when h is eliminated). Let r
be the last vertex of P [t, y] that belongs to Ch.
The length of P [t, r] is represented by boundary-
to-boundary distances for Ch, and the length of
P [r, y] is represented by Lemma 3.5. See Figure 7
for an illustration.

• If u belongs to Ch then the length of P [v, u] is
represented as a separator-to-hole distance. The
representation of the suffix P [u, y] is then similar
to the previous case.

Finally, we need to treat the case where P does
not intersect any fundamental cycle used in eliminating
the hole h. In this case P can be decomposed into a
x-to-Cext prefix, a Ch-to-y suffix, and subpaths of P
between vertices of Ch ∪ Cext. The prefix and suffix

are represented by Lemma 3.5. The other subpaths
are represented as hole-to-boundary or boundary-to-
boundary distances as in the two cases above. �

Finally, we now show that the entire encoding requires
only Õ(

√
k · n) bits.

The encoding size. The space required for the
boundary-to-boundary distances for all slices is O(n/w ·
log2 n) since the total boundary size is O(n/w), and by
Lemma 2.2.

We next bound the total space required for S-to-
separator distances for all slices. Whenever a distin-
guished vertex stores its distances to a path P explicitly,
the total weight of its region decreases by a constant fac-
tor within O(log n) recursive steps (either immediately,
if this happens in the outer recursion, or otherwise by
the time the hole-elimination process ends). So this can
happen O(log n) times per distinguished vertex. Be-
cause |P | = O(w) (by the height of Ts), this sums up to
a total of O(k · w · log3 n) bits.

Consider now a specific slice s. We have already ar-
gued that the depth of the recursive process to handle a
slice is O(log2 n). Similarly to the analysis in Section 3.1
of the single hole case, the total space required for stor-
ing separator-to-boundary distances using Lemma 2.1
or Lemma 2.3 at all calls at the same recursive level is
O((|∂s|+ (ks − 1) +w(ks − 1)) log n), where ∂s denotes
the boundary of slice s, and ks denotes the number of
distinguished nodes in slice s plus the number of holes of
s that enclose at least one distinguished node. Note that
ks is an upper bound on the number of regions at any
level of the recursive process handling s. Also note that
a slice with ks = 1 is not partitioned at all, so stores
no separator-to-boundary distances. Hence the terms
with (ks − 1). For exactly the same reasons, the to-
tal space required for storing separator-to-hole distances
using Lemma 2.1 at all calls at the same recursive level
(this only happens in the hole-elimination recursion) is
O((|∂hs| + (ks − 1) + w(ks − 1)) log n), where ∂hs de-
notes the boundaries of the holes of s. Summing over all
O(log2 n) recursive levels, the space required for storing
separator-to-boundary and separator-to-hole distances
for slice s is O((|∂s|+ |∂hs|+(ks−1)+w(ks−1)) log3 n)
By Lemma 3.1,

∑
∂s + ∂hs over all slices is O(n/w).

We claim that, since the total number of distinguished
nodes in G is k, the sum

∑
(ks−1) over all slices is O(k).

Assuming the claim, the total space required for storing
separator-to-boundary and separator-to-hole distances
for all slices is O((n/w + k + wk) log3 n).

To prove the claim consider a tree whose nodes rep-
resent slices s with ks ≥ 1, or distinguished vertices.
The root of the tree is the slice whose external bound-
ary is the infinite face of G. The descendants of a node
representing a slice s are the nodes representing the dis-

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

tinguished nodes in s as well as the nodes representing
slices s′ with ks′ ≥ 1 whose external boundaries are the
holes of s. Thus, the degree of the node representing a
slice s is ks. The total number of leaves of this tree is k,
and the sum represents the sum over deg(v)− 1 over all
nodes v in the tree. This sum is bounded by the number
of leaves in the tree, which is k, proving the claim.

Hole-to-boundary distances are stored using
Lemma 2.3 for at most one hole in each region along
the recursion. Each invocation of Lemma 2.3 for hole Ch
and boundary fragment bi requires O((|Ch|+ |bi|) log n)
bits. For a single level of the recursion, this sums up
to O(((ks − 1) + |∂s| + |∂hs|) log n) because there are
at most 2(ks − 1) vertices that contribute in more than
one region (endpoints of bi’s). As above, summing
over all levels of the recursion and all slices, this gives
O((k + n/w) log3 n) The bound for S-to-boundary
distances is O((k + n/w) log n) for the same reasons.

To conclude, we showed that the total size of the
entire encoding is bounded by O((n/w + k · w) log3 n),
which is O(

√
k · n · log3 n) by choosing w =

√
n/k.

4 A Tight Lower Bound
Recall that Gavoille et al. [38] show how to construct,
given a Boolean k

2 ×
k
2 matrix B, a planar grid G(B)

containing O(k3) vertices, such that B can be recovered
from the distances between k distinguished vertices of
G(B). This shows that, for k ≤ n1/3, encoding all
distances between k vertices of a planar graph requires
Θ(k2) bits. For k ≥ n1/3, we consider t Boolean
k
2t ×

k
2t matrices B1, B2, . . . , Bt. For each of these

matrices, we construct a planar grid containing O((k2t)
3)

vertices. The disjoint union of all these grids is a planar
graph on O(t(k2t)

3) = O(k3/t2) vertices, such that all
Boolean matrices can be recovered from the distances
between the k distinguished vertices. Hence, encoding
all such distances requires Ω(t(k2t)

2) = Ω(k2/t) bits.
Setting t =

√
k3/n we obtain that encoding all distances

between the k distinguished vertices of a planar graph
on n vertices requires Ω(

√
k · n) bits.

5 Query Time
The goal of Section 3 was to guarantee that all distances
between distinguished vertices are captured, but we
were not concerned with the complexity of retrieving
such a distance. In this section we explain how to
augment the encoding to allow efficient extraction of
the stored distances, proving Theorem 1.2.

We start with reformulating our encoding using the
notion of dense distance graphs. Vertices of a dense
distance graph are listed explicitly, but its edges are
described implicitly with unit Monge matrices. Each

such matrix describes lengths of the edges between every
u ∈ U and v ∈ V , for some subsets of nodes U and V .
The matrix is represented using O(|U | + |V |) words as
described in Lemma 2.1. In particular, we may have
|U | = |V | = 1 and then the matrix simply stores the
length of a single edge explicitly. The size of a dense
distance graph is the total number of vertices plus the
sum of |U | + |V | over all matrices describing length of
the edges. By construction, our encoding described in
Section 3 is based on defining a dense distance graph
of size O(

√
k · n log2 n). Note that in Section 3 we

measure size by bits, and here by size of the dense
distance graph. Every distinguished node of the original
graph is a vertex of the dense distance graph, and
the distance between two distinguished nodes of the
original (unweighted) graph is the same as the distance
between their corresponding vertices in the (weighted)
dene distance graph. Fakcharoenphol and Rao designed
an efficient algorithm for computing the shortest paths
in such a graph, nicknames the FR-Dijkstra: 5

Lemma 5.1. ([35]) Distance between any two vertices
of a dense distance graph of size s can be found in
O(s log2 s) time.

Applying Lemma 5.1 gives us an oracle of
size O(

√
k · n log2 n) words, answering queries in

Õ(
√
k · n log4 n) time. For very large k, say k = Ω(n),

the query time is clearly not optimal, as there exists an
oracle of size Õ(n) answering queries in Õ(

√
n) [35] time.

In the remaining part of this section we will describe
how to construct an oracle of size Õ(

√
k · n) answering

queries in Õ(n3/4) time.
To improve the query time, we apply the vanilla

planar separator lemma.

Lemma 5.2. For any planar graph G on n nodes, there
exists a partition of the nodes of G into sets A, B, and
S, such that |A|, |B| ≤ 2

3n, |S| = O(
√
n), and there are

no edges between the nodes of A and B.

We recursively apply Lemma 5.2 to construct a
hierarchical decomposition of the whole graph. The
recursion is described by a binary tree K, where every
node u ∈ K corresponds to an induced subgraph G(u)
of the original graph. We let n(u) and s(u) denote
the number of nodes and distinguished nodes in G(u),
respectively. We terminate the recursion as soon as

5In the original paper and most of the subsequent work,
the dense distance graph is obtained from an r-division of a
planar graph. The vertices are the boundary nodes and distances
between boundary nodes in the same region are represented with
multiple Monge matrices. However, it is easy to see that their
algorithm work for any dense distance graph as defined above.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

s(u) ≤
√
n(u). If u ∈ K is a leaf, we define its

set of distinguished nodes D(u) to consists of all the
distinguished nodes of G(u). Otherwise, D(u) consists
of the following nodes:

1. the separator of G(u),

2. for every child v of u that is a leaf, all the
distinguished nodes of G(v),

3. for every child v of u that is not a leaf, the separator
of G(v).

Then, we construct a dense distance graph of size
O(
√
n(u)|D(u)| log2 n(u)) capturing distances between

any two nodes from D(u) in G(u).
To calculate the distance dG(u, v) between two

distinguished nodes u and v in G, we locate the deepest
nodes u′ and v′ of K, such that u ∈ G(u′) and v ∈ G(v′).
Then, we consider the union of all dense distance graphs
constructed for the nodes of K on the paths from u′ and
v′ to the root. Note that the same node of G might
appear in more than one of these dense distance graphs,
and we identify all of its copies. By construction,
the obtained dense distance graph captures the sought
distance. Furthermore, its size is bounded by

max
u∈K

O(
√
n(u)|D(u)| log2 n(u))) =

max
u∈K

O(

√
n(u)

√
n(u) log2 n(u)) = O(n3/4 log2 n).

Therefore, by Lemma 5.1 we can answer a query in
O(n3/4 log4 n) time. It remains to bound the size of
the resulting oracle.

Lemma 5.3. The dense distance graph constructed for
node u ∈ K is of size O(

√
n(u) · s(u) · log2 n(u)).

Proof. To prove the lemma it is enough to bound |D(u)|
by O(s(u)). If u is a leaf, this is clear. Otherwise,
s(u) >

√
n(u) and D(u) consists of the following nodes:

1. the separator of G(u) of size O(
√
n(u)) = O(s(u)).

2. for every child v of u that is a leaf, all s(v) ≤ s(u)
distinguished nodes of G(v),

3. for every child v of u that is not a leaf, the separator
of G(v) of size O(

√
n(v)) = O(

√
n(u)) = O(s(u)).

Node u has at most two children, so indeed D(u) =
O(s(u)). �

To upper bound the size of the oracle, we need to
upper bound the sum

∑
u∈K

√
n(u) · s(u) · log2 n(u).

To this end, we separately consider all nodes u ∈
K such that n(u) ∈ [(2

3)`+1n, (2
3)`n), for every

` = 0, 1, . . . , O(log n). Fix ` and call these nodes
u1, u2, . . . , ut. Then, no ui is a descendant of another uj ,
so every node of the original graph appears in at most
one G(ui). Therefore,

∑
i s(ui) ≤ k and

∑
i n(ui) ≤ n.

From the latter inequality and the lower bound on n(u)
we obtain that t ≤ (3

2)`+1. Now we want to upper bound
the following sum:

∑
i

√
n(ui) · s(ui) ≤

√(
2

3

)`
n
∑
i

√
s(ui)

= O(
√
n/t ·

∑
i

√
s(ui)).

From the concavity of f(x) =
√
x, the above sum is

maximized when s(ui) = k/t, so we obtain:∑
i

√
n(ui) · s(ui) = O(

√
n/t · t ·

√
k/t) = O(

√
k · n).

To obtain an upper bound on
∑
u∈K

√
n(u) · s(u) ·

log2 n(u), we only need to multiply the above bound by
log n because for every u ∈ K there exists ` such that
n(u) belongs to the appropriate interval, so the total
size of the oracle is O(

√
k · n · log3 n).

6 Labeling Schemes for Unit-Monge Matrices
A distance labeling scheme is a way to compress graphs
that allows for distributed decoding. The goal is to
assign a label `v for each node v, so that by looking
at the labels of two nodes `s, `t (without access to
the original graph) we can infer the distance between
them d(s, t). The main question one asks about such
schemes is how small can the labels be? A famous open
question is to close the gap between the O(

√
n) upper

bound [38, 42] and the Ω(n1/3) [38] lower bound for
planar graphs. The only known technique capable of
proving a tight lower bound is via a lower bound for
the metric compression problem: if you show that the
metric cannot be compressed intoO(k·n1/2−ε) bits, then
you show that labels of size O(n1/2−ε) are impossible.
Our work deems this approach impassable, since such
compressions are indeed possible. Optimistically, it is
natural to ask if our upper bound for compression could
lead to a better upper bound for labeling. Our encoding
assigns o(n1/2) bits per node, but can we distribute
these bits to the nodes while allowing any pair of nodes
to deduce the distance from their local information?

Unfortunately, it appears that there is a fundamen-
tal difficulty with converting our encoding into a dis-
tance labeling scheme. The heart of our encoding is
a method for capturing pairwise distances between a
large subset of nodes of the graph using space propor-
tional to the size of the subset, see Lemma 2.1. A key

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

part in the proof of the lemma is an efficient encoding
of an n× n matrix into Õ(n) bits, as long as it has the
unit-Monge property. Translating this into a distance
labeling scheme would require being able to assign a la-
bel to every row and every column of a given unit-Monge
matrix M , such that M [i, j] can be computed from the
label of the i-th row and the j-th column. We call this
labeling unit-Monge matrices for extracting an element.
In this section we show almost tight Θ̃(

√
n) bounds for

the size of a label in this problem. The lower bound
shown in Lemma 6.2 is a strong indication that con-
verting our structure into a labeling scheme with labels
of length Õ(n1/3) would require a major modification.

We start with recalling the following connection
between unit-Monge matrices and permutation matri-
ces. P is a permutation matrix if every row and
every column contains at most one 1 and 0s else-
where. Then, it is straightforward to verify that, for
any permutation matrix P the matrix M defined as
M [i, j] =

∑
i′≥i,j′≥j P [i′, j′] is a unit-Monge matrix. In

fact, essentially any unit-Monge matrix can be obtained
through such transformation, see e.g. Section 2 in [74].

Lemma 6.1. For any unit-Monge matrix M , there ex-
ists a permutation matrix P , such that M [i, j] = H[i] +
V [j] +

∑
i′≥i,j′≥j P [2i′, 2j′], for some vectors H and V .

Consequently, we can focus on assigning a label to
every row and column of P , such that given the label
of the i-th row and the j-th column we can compute∑
i′≥i,j′≥j P [i′, j′]. We call this problem labeling n× n

permutation matrices for dominance sum queries.

Lemma 6.2. Labeling n × n permutation matrices for
dominance sum queries is possible with O(

√
n log n) bits.

Proof. We can assume that there is exactly one 1 in ev-
ery row and column of P . Therefore, the input is fully
described by a permutation π. Any permutation on n
elements can be decomposed by up to

√
n increasing

subsequences I1, I2, . . . and up to
√
n decreasing subse-

quences D1, D2, The label of every row and every
column consists of O(log n) bits stored for every such
subsequence, thus O(

√
n log n) bits in total. We think of

every subsequence as a set of points (x1, y1), (x2, y2), . . .
and the O(log n) bits corresponding to this subsequence
in the label of the i-th row and the j-th column should
be enough to determine the number of points (xk, yk)
such that xk ≥ i and yk ≥ j. We separately describe
what should be stored for an increasing subsequence and
then for a decreasing subsequence.

Consider an increasing subsequence consisting of
points (x1, y1), (x2, y2), . . ., such that xk < xk+1 and
yk < yk+1 for every k = 1, 2, Then, the label of

the i-th row stores the smallest k such that xk ≥ i, and
similarly the label of the j-th row stores the smallest k
such that yk ≥ j. By taking the maximum of these two
numbers we can determine the number of points (xk, yk)
such that xk ≥ i and yk ≥ j.

Now consider a decreasing subsequence consisting
of points (x1, y1), (x2, y2), . . ., such that xk < xk+1 and
yk > yk+1 for every k = 1, 2, Then, the label of the
i-th (j-th) row stores the smallest (largest) k such that
xk ≥ i (yk ≥ j). Denoting the number stored for the
i-th row and the j-th row by ` and r, respectively, the
number of points (xk, yk) such that xk ≥ i and yk ≥ j
can be calculated as max(0, r − `+ 1). �

Lemma 6.3. Labeling n × n permutation matrices for
dominance sum queries requires Ω(

√
n) bits.

Proof. We conceptually divide an n × n matrix P into
blocks of size

√
n×
√
n, thus creating an

√
n×
√
nmatrix

B, where every entry B[i, j] corresponds to a block of
P . For every block B[i, j] we choose one bit b[i, j]. We
will show that then it is always possible to construct the
matrix P , such that all bits b[i, j] can be retrieved from
the labels of rows of the form 1 +α ·

√
n and columns of

the form 1 +α ·
√
n. Then it follows that we can encode

n bits of information in 2
√
n labels, hence one of these

labels must consist of 1
2

√
n bits.

We construct P incrementally. We call a row or a
column of P active if there is no 1 there. We start with
an empty P and keep adding 1s there while making sure
that there is at most one 1 in every row and column.
Given the labels of all rows 1 + α ·

√
n and all columns

of the form 1 + α ·
√
n we can count 1s in every block

of P . The goal is to ensure that this count is equal to
b[i, j]. Assume that this is already the case for every
b[i, j] such that i < i′ or i = i′ and j < j′ and consider
b[i′, j′]. If b[i′, j′] = 0 we continue. Otherwise, we have
to choose exactly one active row r in the range [1 + i′ ·√
n, (i′+ 1) ·

√
n] and exactly one active column c in the

range [1 + j′ ·
√
n, (j′+ 1) ·

√
n], and set P [r, c] = 1, thus

making both r and c inactive. This clearly guarantees
that there is exactly one 1 in the corresponding block
of P . The only problem is to guarantee that there is
at least one active row and column in the appropriate
ranges. However, we have deactivated less than i′ rows
in the range [1+i′ ·

√
n, (i′+1) ·

√
n] so far, and similarly

less than j′ columns in the range [1+j′ ·
√
n, (j′+1)·

√
n],

so indeed there exist an active row and column. �

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

References

[1] A. Abboud and G. Bodwin. The 4/3 additive spanner
exponent is tight. In 48th STOC, pages 351–361, 2016.

[2] A. Abboud, G. Bodwin, and S. Pettie. A hierarchy of
lower bounds for sublinear additive spanners. In 28th
SODA, pages 568–576, 2017.

[3] A. Abboud and S. Dahlgaard. Popular conjectures as
a barrier for dynamic planar graph algorithms. In 57th
FOCS, pages 477–486, 2016.

[4] I. Abraham, S. Chechik, and C. Gavoille. Fully dy-
namic approximate distance oracles for planar graphs
via forbidden-set distance labels. In 44th STOC, pages
1199–1218, 2012.

[5] I. Abraham, C. Gavoille, and D. Malkhi. Compact
routing for graphs excluding a fixed minor. In 19th
DISC, pages 442–456, 2005.

[6] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and
R. Wilber. Geometric applications of a matrix-
searching algorithm. Algorithmica, 2:195–208, 1987.

[7] A. Aggarwal, M. M. Klawe, S. Moran, P. Shor,
and R. Wilber. Geometric applications of a matrix-
searching algorithm. Algorithmica, 2(1):195–208, 1987.

[8] A. Aggarwal, M. M. Klawe, S. Moran, P. W. Shor,
and R. E. Wilber. Geometric applications of a matrix-
searching algorithm. Algorithmica, 2:195–208, 1987.

[9] A. Aggarwal and J. K. Park. Notes on searching in
multidimensional monotone arrays (preliminary ver-
sion). In 29th FOCS, pages 497–512, 1988.

[10] A. Aggarwal and S. Suri. Fast algorithms for comput-
ing the largest empty rectangle. In 3rd SoCG, pages
278–290, 1987.

[11] S. Alstrup, I. L. Gørtz, E. B. Halvorsen, and E. Porat.
Distance labeling schemes for trees. In 43rd ICALP,
pages 132:1–132:16, 2016.

[12] S. Alstrup, E. B. Halvorsen, and K. G. Larsen. Near-
optimal labeling schemes for nearest common ances-
tors. In 25th SODA, pages 972–982, 2014.

[13] S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid,
and C. D. Zaroliagis. Planar spanners and approximate
shortest path queries among obstacles in the plane. In
4th ESA, pages 514–528. Springer, 1996.

[14] S. Arora, M. Grigni, D. R. Karger, P. N. Klein,
and A. Woloszyn. A polynomial-time approximation
scheme for weighted planar graph tsp. In 9th SODA,
pages 33–41, 1998.

[15] B. S. Baker. Approximation algorithms for NP-
complete problems on planar graphs. Journal of the
ACM, 41(1):153–180, 1994.

[16] A. Basu and A. Gupta. Steiner point removal in graph
metrics. Unpublished manuscript, http://www.math.
ucdavis.edu/~abasu/ papers/ SPR.pdf , 2008.

[17] G. E. Blelloch and A. Farzan. Succinct representations
of separable graphs. In 21st CPM, pages 138–150,
2010.

[18] G. Borradaile, P. N. Klein, S. Mozes, Y. Nussbaum,
and C. Wulff-Nilsen. Multiple-source multiple-sink

maximum flow in directed planar graphs in near-linear
time. In 52nd FOCS, pages 170–179, 2011.

[19] G. Borradaile, P. Sankowski, and C. Wulff-Nilsen.
Min st-cut oracle for planar graphs with near-linear
preprocessing time. In 51st FOCS, pages 601–610,
2010.

[20] S. Cabello. Many distances in planar graphs. Algorith-
mica, 62(1-2):361–381, 2012.

[21] S. Cabello. Subquadratic algorithms for the diameter
and the sum of pairwise distances in planar graphs. In
28th SODA, pages 2143–2152, 2017.

[22] H. T. Chan, D. Xia, G. Konjevod, and A. W. Richa. A
tight lower bound for the steiner point removal problem
on trees. In 9th APPROX, pages 70–81, 2006.

[23] S. Chaudhuri and C. D. Zaroliagis. Shortest paths
in digraphs of small treewidth. part I: Sequential
algorithms. Algorithmica, 27(3):212–226, 2000.

[24] Y. K. Cheung, G. Goranci, and M. Henzinger. Graph
minors for preserving terminal distances approximately
- lower and upper bounds. In 43rd ICALP, pages
131:1–131:14, 2016.

[25] Y. Chiang, C. Lin, and H. Lu. Orderly spanning
trees with applications to graph encoding and graph
drawing. In 22nd SODA, pages 506–515, 2001.

[26] V. Cohen-Addad, S. Dahlgaard, and C. Wulff-Nilsen.
Fast and compact exact distance oracle for planar
graphs. In 58th FOCS, pages 962–973, 2017.

[27] D. Coppersmith and M. Elkin. Sparse sourcewise
and pairwise distance preservers. SIAM Journal on
Discrete Mathematics, pages 463–501, 2006.

[28] M. Crochemore, G. Landau, and M. Ziv-Ukelson. A
subquadratic sequence alignment algorithm for unre-
stricted scoring matrices. SIAM Journal on Comput-
ing, 32:1654–1673, 2003.

[29] M. Cygan, F. Grandoni, and T. Kavitha. On pairwise
spanners. In 30th STACS, pages 209–220, 2013.

[30] D. Delling, A. V. Goldberg, R. Savchenko, and R. F.
Werneck. Hub labels: Theory and practice. In 13th
SEA, pages 259–270, 2014.

[31] H. Djidjev. On-line algorithms for shortest path
problems on planar digraphs. In 22nd WG, pages 151–
165, 1996.

[32] M. Elkin, Y. Emek, D. A. Spielman, and S.-H. Teng.
Lower-stretch spanning trees. SIAM Journal on Com-
puting, 38(2):608–628, 2008.

[33] M. Englert, A. Gupta, R. Krauthgamer, H. Racke,
I. Talgam-Cohen, and K. Talwar. Vertex sparsifiers:
New results from old techniques. SIAM Journal on
Computing, 43(4):1239–1262, 2014.

[34] D. Eppstein. Dynamic generators of topologically
embedded graphs. In 14th SODA, pages 599–608, 2003.

[35] J. Fakcharoenphol and S. Rao. Planar graphs, negative
weight edges, shortest paths, and near linear time. J.
Comput. Syst. Sci., 72(5):868–889, 2006.

[36] C. Gavoille. Routing in distributed networks:
Overview and open problems. ACM SIGACT News,
32(1):36–52, 2001.

[37] C. Gavoille and D. Peleg. Compact and localized

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf

distributed data structures. Distributed Computing,
16(2-3):111–120, 2003.

[38] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Dis-
tance labeling in graphs. Journal of Algorithms,
53(1):85–112, 2004.

[39] P. Gawrychowski and A. Karczmarz. Improved bounds
for shortest paths in dense distance graphs. Arxiv
1602.07013, 2016.

[40] P. Gawrychowski, S. Mozes, and O. Weimann. Subma-
trix maximum queries in Monge matrices are equivalent
to predecessor search. In 42nd ICALP, pages 580–592,
2015.

[41] P. Gawrychowski, S. Mozes, O. Weimann, and
C. Wulff-Nilsen. Better tradeoffs for exact distance or-
acles in planar graphs. In 29th SODA, 2018.

[42] P. Gawrychowski and P. Uznanski. A note on distance
labeling in planar graphs. Arxiv 1611.06529, 2016.

[43] G. Goranci, M. Henzinger, and P. Peng. Improved
guarantees for vertex sparsification in planar graphs.
Arxiv 1702.01136, 2017.

[44] G. Goranci and H. Räcke. Vertex sparsification in
trees. In 14th WAOA, pages 103–115, 2016.

[45] R. Graham and H. Pollak. On embedding graphs in
squashed cubes. In Graph Theory and Applications,
volume 303 of Lecture Notes in Mathematics, pages 99–
110. Springer Berlin Heidelberg, 1972.

[46] M. Grigni, E. Koutsoupias, and C. Papadimitriou. An
approximation scheme for planar graph TSP. In 36th
FOCS, pages 640–645, 1995.

[47] A. Gupta. Steiner points in tree metrics don’t (really)
help. In 12th SODA, pages 220–227, 2001.

[48] D. Hermelin, G. Landau, S. Landau, and O. Weimann.
A unified algorithm for accelerating edit-distance via
text-compression. Algorithmica, 65:339–353, 2013. A
reliminary version in 26th STACS 2009.

[49] G. F. Italiano, Y. Nussbaum, P. Sankowski, and
C. Wulff-Nilsen. Improved algorithms for min cut and
max flow in undirected planar graphs. In 43rd STOC,
pages 313–322, 2011.

[50] S. Kannan, M. Naor, and S. Rudich. Implicit repre-
sentation of graphs. SIAM Journal on Discrete Math-
ematics, 5(4):596–603, 1992.

[51] H. Kaplan, S. Mozes, Y. Nussbaum, and M. Sharir.
Submatrix maximum queries in Monge matrices and
Monge partial matrices, and their applications. In 23rd
SODA, pages 338–355, 2012.

[52] K.-i. Kawarabayashi, P. N. Klein, and C. Sommer.
Linear-space approximate distance oracles for planar,
bounded-genus and minor-free graphs. In 38th ICALP,
pages 135–146, 2011.

[53] M. M. Klawe and D. J. Kleitman. An almost linear
time algorithm for generalized matrix searching. SIAM
Journal Discret. Math., 3(1):81–97, 1990.

[54] P. Klein and S. Mozes. Optimization algorithms for
planar graphs. http://planarity.org. Book draft.

[55] P. Klein, S. Mozes, and O. Weimann. Shortest paths in
directed planar graphs with negative lengths: a linear-
space O(n lg2 n)-time algorithm. ACM Transactions

on Algorithms, 6(2):2–13, 2010.
[56] P. N. Klein. Multiple-source shortest paths in planar

graphs. In 16th SODA, volume 5, pages 146–155, 2005.
[57] P. N. Klein, S. Mozes, and C. Sommer. Structured

recursive separator decompositions for planar graphs
in linear time. In 45th STOC, pages 505–514, 2013.

[58] R. Krauthgamer, H. L. Nguyen, and T. Zondiner.
Preserving terminal distances using minors. SIAM
Journal on Discrete Mathematics, 28(1):127–141, 2014.

[59] R. Krauthgamer and I. Rika. Refined vertex sparsifiers
of planar graphs. Arxiv 1702.05951, 2017.

[60] J. Lacki, Y. Nussbaum, P. Sankowski, and C. Wulff-
Nilsen. Single source - all sinks max flows in planar
digraphs. In 53rd FOCS, pages 599–608, 2012.

[61] J. Łącki and P. Sankowski. Min-cuts and shortest
cycles in planar graphs in O(n log log n) time. In 19th
ESA, pages 155–166, 2011.

[62] S. Mozes and C. Sommer. Exact distance oracles for
planar graphs. In 23rd SODA, pages 209–222, 2012.

[63] S. Mozes and C. Wulff-Nilsen. Shortest paths in planar
graphs with real lengths in O(nlog2n/loglogn) time.
In ESA, pages 206–217, 2010.

[64] J. I. Munro and V. Raman. Succinct representation of
balanced parentheses, static trees and planar graphs.
In 38th FOCS, pages 118–126, 1997.

[65] Y. Nussbaum. Improved distance queries in planar
graphs. In Workshop on Algorithms and Data Struc-
tures. Springer, 2011.

[66] D. Peleg. Distributed computing: a locality-sensitive
approach. SIAM, 2000.

[67] D. Peleg. Proximity-preserving labeling schemes.
Journal of Graph Theory, 33(3):167–176, 2000.

[68] S. Pettie. Low distortion spanners. ACM Transactions
on Algorithms, 6(1):7:1–7:22, 2009.

[69] J. Schmidt. All highest scoring paths in weighted grid
graphs and their application to finding all approximate
repeats in strings. SIAM Journal on Computing,
27(4):972–992, 1998.

[70] C. Sommer. Shortest-path queries in static networks.
ACM Computing Surveys (CSUR), 46(4):45, 2014.

[71] M. Thorup. Compact oracles for reachability and
approximate distances in planar digraphs. Journal of
the ACM, 51(6):993–1024, 2004.

[72] M. Thorup and U. Zwick. Compact routing schemes.
In 13th SPAA, pages 1–10, 2001.

[73] M. Thorup and U. Zwick. Approximate distance
oracles. Journal of the ACM, 52(1):1–24, 2005.

[74] A. Tiskin. Semi-local string comparison: algorithmic
techniques and applications. Arxiv 0707.3619, 2007.

[75] A. Tiskin. Fast distance multiplication of unit-Monge
matrices. In 21st SODA, pages 1287–1296, 2010.

[76] G. Turán. On the succinct representation of graphs.
Discrete Applied Mathematics, 8(3):289–294, 1984.

[77] K. G. C. von Staudt. Geometrie der Lage. Bauer und
Raspe, Nürnberg, 1847.

[78] C. Wulff-Nilsen. Algorithms for planar graphs and
graphs in metric spaces. PhD thesis, PhD thesis,
University of Copenhagen, 2010.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

http://planarity.org

	Introduction
	Our Results
	Technical Overview

	Preliminaries
	The Monge and Unit-Monge properties

	The Encoding
	The simplified case of a single hole
	The general case

	A Tight Lower Bound
	Query Time
	Labeling Schemes for Unit-Monge Matrices

