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Edit Distance of Trees

Input: Two ordered vertex-labelled rooted trees F and G and a cost function.

Output: The minimum cost of transforming F into G by a sequence of elemen-

tary edit operations:

• changing the label of a node v ,

• deleting a node v and setting the children of v as the children of v ’s parent

(in the place of v in the left-to-right order),

• inserting a node v (defined as the inverse of a deletion).
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Remark: The cost function may require space quadratic in the size of the trees.
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History

O(n2d4) =

O(n6) [Tai; JACM 1979]

O(n2d2) =

O(n4) [Zhang, Shasha; SICOMP 1989]

O(n3 log n) [Klein; ESA 1998]

O(n3) [Demaine, Mozes, Rossman, Weimann; TALG 2009]

The last three results are based on decomposition algorithms.

Fact: Given two forests F and G , the rightmost (or leftmost) roots of F and G

are either matched or (at least) one of them is deleted.

Dynamic Programming: consider all three such options and recurse.

dec.

algs

Ω(n2 log2 n) [Dulucq, Touzet; JDA 2005]

Ω(n3) [Demaine, Mozes, Rossman, Weimann; TALG 2009]

No O(n3−ϵ) [Bringmann, Gawrychowski, Mozes, Weimann; TALG 2020]

under the APSP hypothesis or the stronger k-Clique hypothesis.

Question: What if the depths of the trees are bounded by some parameter d?

E.g., when the trees are stars the problem is essentially string edit distance.
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Our Results

1. There is no o(n2d2)-time decomposition algorithm.

2. There is no O(n2d1−ϵ)-time algorithm for any constant ϵ > 0 when

d = poly(n) under the APSP hypothesis.

APSP hypothesis: Computing all-pairs shortest paths in an n-vertex graph with

polynomial edge-weights cannot be done in time O(n3−ϵ).

Instead of reducing APSP to TED, we reduce from the equivalent NegativeTri-

angle problem [Vassilevska Williams, Williams; JACM 2018]:

NegativeTriangle: Check whether a complete tripartite graph with parts of size

at most n and polynomial edge-weights contains a negative triangle, that is, if

there exist vertices u, v , z with w(u, v) + w(v , z) + w(z , u) < 0.
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NegativeTriangle to TED

Theorem [Bringmann, Gawrychowski, Mozes, Weimann; TALG 2020]

Computing the minimum weight of a triangle in a complete undirected n-vertex

graph reduces in O(n2) time to solving an instance of TED with trees of size

O(n) such that:

▶ deleting or inserting any node costs zero;

▶ the trees are two opposing combs of depth 2n + 1;

▶ TED(F ,G ) = −3M2+ minimum weight of a triangle, where M ∈ N.

F G

For this talk assume that M = 0.

The constructed trees are deep.

But, the shapes of the trees do not depend on the graph.

The whole game is labelling the nodes and defining the substitution costs.
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▶ TED(F ,G ) = −3M2+ minimum weight of a triangle, where M ∈ N.

F G

For this talk assume that M = 0.

The constructed trees are deep.

But, the shapes of the trees do not depend on the graph.

The whole game is labelling the nodes and defining the substitution costs.
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Strategy

NegativeTriangle, with 3n vertices

O(n3/d3) instances of NegativeTriangle, each with 3d vertices

O(n3/d3) instances of TED, each on a pair of combs of depth 6d + 1

TED, over O(n1.5/
√
d)-size, O(d)-depth trees
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Many Smaller NegativeTriangle Instances

Split each part into ⌈n/d⌉ chunks of size at most d .

O(n3/d3) choices of triplets.

Output size: O(d2 · n3/d3) = O(n3/d).

Time: O(n2 + n3/d). Recall that d is polynomial!
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Many TED instances

F4 F5 F6

G1

G2

G3
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The Final Step

$ $ $ $ $ $ $ $ $

#

F1 F2 F3 F4 F5 F6 F7 F8 F9

F

G1 G2 G3

$ $ $

#

G

cmatch(#,#) = cmatch($, $) = −ψ, for huge ψ

cmatch(x , y) = ∞ for (x , y) /∈ Σ2 ∪ {#}2 ∪ {$}2

Roots matched, each $ in G matched with a $ in F .

TED(F ,G ) = −4ψ + minp
∑s

j=1 TED(Fp(j),Gj)

over incr. functions p : {1, 2, 3} → {1, 2, . . . , 9}.
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Wrap-up

NegativeTriangle, with 3n vertices

O(n3/d3) instances of NegativeTriangle, each with 3d vertices

O(n3/d3) instances of TED, each on a pair of combs of depth 6d + 1

TED, over O(n1.5/
√
d)-size, O(d)-depth trees

O(n2 + n3/d) time

O(n3/d) time

O(n3/d) time

An algorithm for TED that takes time O(size2 · depth1−ϵ) gives:

O((n1.5/
√
d)2 · d1−ϵ) = O(n3/d ϵ)

and hence a strongly subcubic algorithm for NegativeTriangle.
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Final Remarks and Open Problems

Recent breakthrough O(n2.9546)-time algorithm when all operations cost 1 [Mao;

FOCS 2021]; announced improvement to O(n2.9149) [Dürr; arXiv 2022].

Can it be adapted for shallow trees?

Can we improve the conditional lower bound or get one for smaller alphabets?

Perhaps using the instance in the tight lower bound for decomposition algorithms.
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The End

There is no o(n2d2)-time decomposition algorithm.

There is no O(n2d1−ϵ)-time algorithm for any constant ϵ > 0 when d = poly(n)

and Σ = Ω(n) under the APSP hypothesis.

Thank you for your attention! Questions?
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