
Distance Oracles for Vertex-Labeled Graphs

Danny Hermelin1, Avivit Levy2, Oren Weimann3, and Raphael Yuster4

1 Max-Planck Institut fur informatik, hermelin@mpi-inf.mpg.de
2 Shenkar College and CRI at University of Haifa, avivitlevy@shenkar.ac.il

3 Weizmann Institute, oren.weimann@weizmann.ac.il
4 University of Haifa, raphy@math.haifa.ac.il

Abstract. Given a graph G = (V,E) with non-negative edge lengths
whose vertices are assigned a label from L = {λ1, . . . , λ`}, we construct
a compact distance oracle that answers queries of the form: “What is
δ(v, λ)?”, where v ∈ V is a vertex in the graph, λ ∈ L a vertex label, and
δ(v, λ) is the distance (length of a shortest path) between v and the clos-
est vertex labeled λ in G. We formalize this natural problem and provide
a hierarchy of approximate distance oracles that require subquadratic
space and return a distance of constant stretch. We also extend our so-
lution to dynamic oracles that handle label changes in sublinear time.

1 Introduction

In this paper we consider an all-pairs shortest paths variant on vertex-labeled
graphs: We are given an undirected graph G = (V,E) with m = |E| edges and
n = |V | vertices. Each edge is assigned a nonnegative length and each vertex
is assigned a label, given as a function λ : V → L, where L = {λ1, . . . , λ`} is
a set of ` ≤ n distinct labels. The goal is to preprocess G in order to answer
vertex-label distance queries, i.e. queries of the form: “What is δ(v, λ)?”, where
v ∈ V is a vertex in the graph, λ ∈ L a label, and δ(v, λ) is the distance (length
of a shortest path) between v and the closest vertex labeled λ in G.

Vertex-labeled graphs are commonly used to analyze behaviors and structures
of networks. Typically, labels specify a common functionality of a set of nodes
in the network. Often in such networks we are not interested in shortest paths
between two specific vertices, but rather from a specific vertex to any vertex that
can provide a specific function. For instance, in a computer network labels might
indicate different types of servers in the network, while in an automotive network
they can indicate different services provided for drivers on the road. Common
type of queries in these types of networks include queries such as “What is the
closest FTP server?” or “Where is the closest McDonald’s?”

A simple solution for the above problem is to construct a table indexed
by vertex-label pairs, storing at entry (v, λ) the distance δ(v, λ), thus allowing
queries to be answered in O(1) time. Such a table can be constructed with
` calls to a standard single-source shortest-paths algorithm such as Dijkstra’s
Algorithm. This is done by constructing for each label λ ∈ L, an auxiliary graph
Gλ, created by removing all vertices labeled λ from G and adding a new vertex

vλ which is adjacent to all neighbors of the removed vertices (using appropriate
minimum edge-lengths). Running Dijkstra’s Algorithm in Gλ from vλ gives all
distances in G to vertices labeled λ. The total running time of this construction
is O(m`) and the space required for the table is O(n`).

There are two problems with this solution. First, the O(n`) space requirement
is unacceptable in many cases, especially when the number of labels ` in the graph
is quite large. It is therefore beneficial in these cases to replace this solution by a
more compact data structure, perhaps at the cost of providing only approximate
distances. Such data structures have been coined approximate distance oracles
in the literature. The second problem with the data structure is its inability so
support efficient changes of labels. A change of a label can reflect a change in its
functionality or in availability of services in the network. Indeed, even a single
label change may incur Ω(n) changes in the data structure.

Distance oracles for unlabeled graphs have been studied quite extensively. A
seminal result of Thorup and Zwick [9] achieves for any given integer k ≥ 2, an
O(kn1+1/k) space oracle which returns distances with at most (2k − 1) stretch
in O(k) time. That is, given an input pair of vertices (u, v), the oracle outputs
a distance dist(u, v) with δ(u, v) ≤ dist(u, v) ≤ (2k − 1) · δ(u, v), where δ(u, v)
is the actual distance between u and v. An earlier observation by Matoušek [4]
shows that this is essentially optimal for any k, assuming a conjecture of Erdős [3]
concerning the girth of undirected graphs. A derandomization of the oracle was
presented in [6], and faster construction times where presented in [2] and [1]
with a slight increase of the promised stretch. Recently, Pǎtraşcu and Roditty [5]
showed how to construct, for unweighted graphs, an oracle of size O(n5/3) that,
when queried about a pair of vertices (u, v), returns in O(1)-time a distance
dist(u, v) bounded by δ(u, v) ≤ dist(u, v) ≤ 2δ(u, v) + 1. For further results see
also [5, 9].

Applying the existing approximate distance oracles to labeled graphs faces
several obstacles. First of all, one might be tempted to construct an oracle for
the complete bipartite graph B(G) formed on the vertex sets V and L, where
the length of the edge {v, λ} is set to δ(v, λ). However, the oracle constructed for
this graph might output false distances, as paths in B(G) using an intermediate
vertex λ ∈ L do not occur in G. Similarly, the solution that adds a new vertex
for each label, connecting it with zero weight edges to all vertices with the same
label, fails. Another option is to build ` different oracles, one per each label. This
unfortunately yields a solution that requires more space than the naive O(n`)
solution described above, even when using the optimal construction of Thorup
and Zwick. Thus, “black-box” solutions such as these are destined for failure.

The next obvious approach is to hack and modify the existing oracles, adapt-
ing them to support vertex-label queries. However, this has difficulties as well. All
known oracles achieving close to optimal stretch are highly dependent on know-
ing both the source and the target vertex. For instance, Thorup and Zwick’s
(2k − 1)-stretch oracles find the path between the pair of query vertices by ad-
vancing from both of them simultaneously. This obviously cannot be applied to
vertex-label queries, as we only know the identity of the source vertex in our

query. There is, however, another oracle scheme by Thorup and Zwick [8] de-
signed for routing that does not switch between query vertices. Oracles produced
by this scheme require O(kn1+1/k) space, and answer queries with 4k−5 stretch
in O(k) time. We show in Section 2 how to adapt this scheme to vertex-label
oracles achieving the same performance.

Theorem 1 (Thorup-Zwick Vertex-Label Distance Oracles). A vertex-
label distance oracle of expected size O(kn1+1/k) with stretch (4k− 5) and query
time O(k) can be constructed in O(kmn1/k) time.

There are two problems with the oracles given by Theorem 1. First, the
expected space of the oracles depends only on the number of vertices in the
graph, and not on the number of labels. This might be too much when ` is
significantly smaller than n. For instance, when say ` = O(

√
n), the trivial

O(n`) solution discussed above gives an O(n3/2)-space oracle which produces
exact distances, as opposed to the stretch-3 distances returned by the oracle of
Theorem 1. This problem becomes even more apparent when ` = polylog(n).
The second problem is that the oracles given in Theorem 1 cannot be adapted
to support dynamic labels efficiently. Indeed, even a single label change requires
in the worst case reconstruction of almost the entire oracle from scratch.

In Section 3, we address the first issue raised above, and give a first step
towards the second issue as well. We show how to construct an alternative scheme
of vertex-label distance oracles which have expected space bounds depending on
both ` and n, thereby achieving better bounds than the scheme of Theorem 1.
While the stretch of this scheme grows exponentially in k, we are able to obtain
the same stretch as in Theorem 1 for the cases of k = 2 and k = 3. Furthermore,
for the case of ` = polylog(n), our scheme gives an O(n lg n)-space oracle with
constant stretch, while Theorem 1 cannot achieve even poly-logarithmic stretch
within comparable space bounds.

Theorem 2 (Compact Vertex-Label Distance Oracles). A vertex-label
distance oracle of expected size O(kn`1/k) with stretch (2k − 1) and query time
O(k) can be constructed in O(kmnk/(2k−1)) time.

The oracle schemes given by both theorems above still do not support label
changes. Nevertheless, in Section 4 we show how the scheme of Theorem 2 can
be modified in a way that allows oracles supporting such updates in sublinear
time. This results in oracles with size asymptotically the same as the ones given
by Theorem 1, and with stretch slightly bigger then the stretch of the oracles
given in Theorem 2.

Theorem 3 (Dynamic Vertex-Label Distance Oracles). A vertex-label
distance oracle of expected size O(kn1+1/k) with stretch (2 ·3k−1 +1) can support
label changes in O(kn1/k lg n) time and queries in O(k) time.

We also remark that it is possible to combine our construction with the ideas of
Pǎtraşcu and Roditty [5] to obtain a stretch-3 oracle of expected size O(n5/3),
supporting label changes in in O(n2/3 lg n) time (see Section 4).

2 Adaptation of Thorup-Zwick Oracles

In this section we outline a simple adaptation of Thorup and Zwick’s [9] result
that supports vertex-label distance queries, thus providing a proof for Theorem 1.
Our adaptation is based on an alternative query algorithm given by Thorup and
Zwick in [8]. We will use the following notation throughout the section, and the
remainder of the paper. For a pair of vertices u and v, we let δ(u, v) denote the
distance between u to v, where δ(u, v) =∞ if there is no path connecting them.
For a non-empty vertex-subset S ⊆ V , we let δ(v, S) := minu∈S δ(u, v), and we
set δ(v, ∅) := ∞. For a label λ ∈ L, we denote by δ(v, λ) the distance δ(v, Vλ),
where Vλ := {v ∈ V : λ(v) = λ}.

The data structure. For a given positive integer k, the preprocessing algorithm
of Thorup and Zwick constructs the sets V = A0 ⊇ A1 ⊇ · · · ⊇ Ak−1 ⊇ Ak = ∅.
These sets are referred to as the levels of G, and a vertex v is said to be in
level i if v ∈ Ai. The i-th level Ai is constructed by sampling vertices of Ai−1
independently at random, taking a vertex v ∈ Ai−1 to Ai with probability n−1/k.
For i ∈ {1, . . . , k− 1}, the i-th pivot of a vertex v ∈ V , denoted pi(v), is defined
to be the vertex closest to v in the i-th level of G. That is, δ(v, pi(v)) = δ(v,Ai).
We also set p0(v) := v. The oracle stores for each vertex v, the identity of each
of its k pivots, along with the k distances δ(v, pi(v)). In addition, v stores the
distances to all vertices in its bunch B(v), where

B(v) :=

k−1⋃
i=0

{
u ∈ Ai \Ai+1 : δ(v, u) < δ(v,Ai+1)

}
.

We next describe the additional information that our adaptation requires.
For a label λ ∈ L, define the bunch B(λ) by B(λ) :=

⋃
v∈Vλ B(v). Now for every

vertex u ∈ B(λ), we define uλ to be the λ-labeled vertex closest to u and that
satisfies u ∈ B(uλ). For each λ ∈ L and u ∈ B(λ), we store the distance δ(u, uλ).
Note that each one of these distances is computed by the original Thorup-Zwick
construction. Furthermore, the additional space required by our construction
does not change the asymptotic size of the original oracles, since∑

λ∈L

|B(λ)| =
∑
λ∈L

∣∣∣ ⋃
v∈Vλ

B(v)
∣∣∣ ≤∑

λ∈L

∑
v∈Vλ

|B(v)| =
∑
v∈V
|B(v)|.

Adapted query algorithm. Our adapted query algorithm examines each of the
k vertices pi(v) for 0 ≤ i < k, starting with p0(v) := v. For each such vertex
w := pi(v), we check if w ∈ B(λ). If so, we declare i to be a valid index and we
compute the distance δ(v, w) + δ(w,wλ) in O(1) time (via hash tables). After
Θ(k) time, our query algorithm returns the distance

dist(v, λ) := min{δ(v, w) + δ(w,wλ) : w = pi(v) and i is valid }.

The important difference between our query algorithm and that of [8] is that
we need to check all valid indices while [8] can stop when it reaches the first

valid index. In other words, the query algorithm of [8] upon query (v, u) returns
dist(v, u) = δ(v, w) + δ(w, u) where w = pi(v) for the smallest i such that w =
pi(v) ∈ B(u). They show (Lemma A.1 in [8]) that the stretch is then bounded by
dist(v, u) ≤ (4k − 3) · δ(v, u). In our settings, let u be the (unknown) λ-labeled
vertex such that δ(v, u) = δ(v, λ). When we discover the first w = pi(v) ∈ B(λ),
we cannot promise that δ(w,wλ) ≤ δ(w, u) since maybe w 6∈ B(u). We can
however guarantee, from the definition of B(λ), that for some i we will have
w = pi(v) ∈ B(u). We therefore have that dist(v, λ) ≤ (4k− 3) · δ(v, λ). Finally,
the same argument used in [8] (Lemma A.2) shows how the stretch bound can
be reduced from (4k − 3) to (4k − 5), thus proving Theorem 1.

3 More Compact Oracles

In what follows we describe our vertex-label distance oracles for vertex-labeled
graphs. In particular, we provide a complete proof of Theorem 2.

3.1 The Data Structure

The first step in constructing our (2k−1)-stretch oracle is similar to the Thorup-
Zwick adaptation of Section 2. For a given positive integer k, we first construct
the sets V = A0 ⊇ A1 ⊇ · · · ⊇ Ak−1 ⊇ Ak = ∅ which will form the levels of G.
However, unlike the construction of Section 2, we select the vertices into levels
with probability depending on `. That is, the i-th level Ai is constructed by
sampling vertices of Ai−1 independently at random, taking a vertex v ∈ Ai−1 to
Ai with probability `−1/k. Thus, for any v ∈ V , the probability that v ∈ Ai for
some i ∈ {0, . . . , k − 1}, is exactly `−i/k. The following bound on the expected
size of Ai follows immediately:

Lemma 1. E[|Ai|] = n`−i/k for each i ∈ {0, . . . , k − 1}.

The idea of sampling vertices with probability independent of n was already
suggested by Roditty, Thorup, and Zwick in [6]. The problem they considered
was a distance oracle that answers δ(u, v) queries where u can be any vertex but
v is known to belong to some subset S ⊂ V . For this problem, they showed that
if we sample vertices with probability |S|−1/k then the original Thorup-Zwick
oracle works and requires only O(n|S|−1/k) space. For our problem however,
the original Thorup-Zwick oracle can not be made to work if we sample with
probability `−1/k. This is because we are not dealing with a set of vertices but
rather with a set of sets (the set of labels where each label is a set of vertices). We
now show how to overcome this by presenting a different oracle that in particular
uses balls instead of bunches.

For a vertex v ∈ Ai\Ai+1, we define the ball of v to be the set of labels B(v) of
all vertices in G that are closer to v than Ai+1. That is, B(v) = {λ(u) : δ(u, v) <
δ(v,Ai+1)}. Notice the difference between our balls and Thorup-Zwick’s bunches.
Each vertex stores all the labels in its ball in an appropriate hash table which
allows us to determine in O(1) time whether λ ∈ B(v), for any label λ ∈ L.

Furthermore, we store the distances δ(v, λ) to each label λ ∈ B(v), allowing
O(1) answers to vertex-label queries for labels appearing inside the ball of the
query vertex. Note that as Ak = ∅, we have δ(v,Ak) =∞ for all v ∈ V , and so
B(v) = L for any vertex v ∈ Ak−1. Nevertheless, the following lemma shows that
the expected number of labels is not big at vertices appearing in lower levels.

Lemma 2. E[|B(v)|] ≤ `(i+1)/k for any vertex v ∈ Ai \Ai+1, i ∈ {0, . . . , k− 1}.

Proof. The lemma is clearly true for i = k − 1. Let i ∈ {0, . . . , k − 2}, and let
v ∈ Ai \ Ai+1. Consider the vertices of G sorted by non-decreasing distance
from v, breaking ties arbitrarily. For each label λ ∈ L, keep in this list the first
vertex labeled λ. An upper bound on |B(v)| is the location of the first element
from Ai+1 in the list. Therefore, the size of B(v) is bounded from above by a
geometric random variable with rate `−(i+1)/k. Hence, the expected size of B(v)
is at most `(i+1)/k. ut

To complete the description of our distance oracle, we assign routers to the
vertices in our graph. For a vertex v ∈ Ai \ Ai+1, i ∈ {0, . . . , k − 2}, we let the
router of v, denoted r(v), be a vertex for which δ(v, r(v)) = δ(v,Ai+1). That is,
r(v) is the closest vertex to v at the next level of G. Since vertices at level k− 1
have no vertices at the next level, we set r(v) = v for all v ∈ Ak−1. Along with
the ball of labels B(v) stored at each vertex v ∈ V , our distance oracle also stores
at v the identity of its router r(v), together with the distance δ(v, r(v)). Thus,
the total space required by our data structure is (asymptotically) the total sizes
of the balls B(v), which can easily be bounded using Lemma 1 and Lemma 2.

Lemma 3. The expected space of our data structure is O(kn`1/k).

Proof. According to the above, to prove the lemma it suffices to bound the total
expected size of all balls B(v), v ∈ V . Since the vertices of G are partitioned
into the levels Ai \Ai+1, we can write this expected total size as:

E
[∑

v

|B(v)|
]

=
∑
i

∑
v∈Ai\Ai+1

E[|B(v)|]

≤
∑
i

∑
v∈Ai\Ai+1

`(i+1)/k <
∑
i

|Ai| · `(i+1)/k

≤
∑
i

n`−i/k · `(i+1)/k = kn`1/k.

Here, the first inequality comes from Lemma 2 and the last inequality comes
from Lemma 1. ut

3.2 Vertex-Label Queries

We next proceed to describe how a vertex-label query is processed. Let (v ∈
V, λ ∈ L) denote an input vertex-label pair. The query algorithm starts by
determining whether λ is in the ball of v. If so, the exact distance δ(v, λ) is

retrieved immediately. Otherwise, it hops to the router of v, and continues the
search there. If λ /∈ B(r(v)), the algorithm hops to the router of r(v), and so
forth.

To be more precise, let us introduce the following notation: For i ∈ {0, . . . , k−
1}, we let ri denote the vertex r(i)(v), where r(i) is the function resulting in
concatenating r with itself i times. That is, ri = r(ri−1) for i ∈ {1, . . . , k − 1},
and r0 = v. (Again, notice the difference between these routers and the pivots of
Section 2.) The query algorithm determines the smallest integer i0 ∈ {0, . . . , k−
1} for which λ ∈ B(ri0), and returns the distance

dist(v, λ) :=
∑

0≤i<i0

δ(ri, ri+1) + δ(ri0 , λ).

See Figure 1 for an example. Note that as rk−1 ∈ Ak−1, we have λ ∈ B(rk−1),
and so i0 is well-defined. Furthermore, the path from v to ri0 , and then from ri0
to a vertex labeled λ, gives a path from v to a vertex labeled λ as required.

Fig. 1. An example of the query procedure for k = 4. The input to the query is (v, 1),
and the arrows depict the output path. The dashed circles around v, r1, r2, and r3
represent the balls around them. The gray colored vertices are the vertices which are
stored at each ball (the distances are assumed to be Euclidean).

Determining the smallest integer i0 for which λ ∈ B(ri0) takes O(k) time, by
iteratively hopping through the ri’s. Furthermore, as the distances δ(ri, ri+1),
for i ∈ {0, . . . , i0 − 1}, have been stored by our data-structure, along with the

distance δ(ri0 , λ), we can report the resulting distance dist(v, λ) in O(k) time
as well. This gives us the promised O(k) query time of Theorem 2. The next
lemma shows that the stretch of our query is also as stated in Theorem 2:

Lemma 4. δ(v, λ) ≤ dist(v, λ) ≤ (2k − 1) · δ(v, λ) for all (v, λ) ∈ V × L.

Proof. Let (v, λ) ∈ V × L, and let i0 ∈ {0, . . . , k − 1} denote the smallest
integer for which λ ∈ B(ri0). Then dist(v, λ) :=

∑
0≤i<i0 δ(ri, ri+1) + δ(ri0 , λ),

where r0 := v and ri := r(ri−1) for all i ∈ {1, . . . , k − 1}. The lower bound
δ(v, λ) ≤ dist(v, λ) in the lemma follows from the fact that dist(v, λ) is the
length of an actual path from v to a vertex labeled λ. The proof of the upper
bound relies on the following crucial inequality which follows from our definition
of the balls B(v), and from the fact that λ /∈ B(ri) for all i ∈ {0, . . . , i0 − 1}:

δ(ri, ri+1) ≤ δ(ri, λ) for all i ∈ {0, . . . , i0 − 1}. (1)

As an intermediate step in proving the upper bound, we use (1) to prove
inequality (2) below by induction on i:

δ(ri, λ) ≤ 2i · δ(v, λ) for all i ∈ {0, . . . , i0}. (2)

For i = 0, we have δ(r0, λ) = δ(v, λ) so (2) holds. Assume therefore that i > 0,
and that (2) holds for all j < i. By the triangle-inequality, we get the following
bound δ(ri, λ) ≤

∑
0≤j<i δ(rj , rj+1) + δ(v, λ). Thus, by (1) and our inductive

hypothesis we have:

δ(ri, λ) ≤
∑

0≤j<i δ(rj , rj+1) + δ(v, λ)

≤
∑

0≤j<i δ(rj , λ) + δ(v, λ)

≤
∑

0≤j<i 2j · δ(v, λ) + δ(v, λ)

= 2i · δ(v, λ).

Inequality (2) therefore holds. Now, using (1) and (2) the upper bound easily
follows as

dist(v, λ) =
∑

0≤i<i0 δ(ri, ri+1) + δ(ri0 , λ)

≤
∑

0≤i<i0 δ(ri, λ) + δ(ri0 , λ)

≤
∑

0≤i<i0 2i · δ(v, λ) + 2i0 · δ(v, λ)

= (2i0+1 − 1) · δ(v, λ).

This proves the upper bound in the lemma, since i0 ≤ k − 1. ut

3.3 Construction

The time to construct the data structure is composed of two parts. The first is
the time to find for every vertex v the distance from v to all vertices B̂(v) =
{u : δ(u, v) < δ(v,Ai+1)}. Observe that B(v) can be immediately obtained

from B̂(v). A simple modification of Dijkstra’s Algorithm starting from source v

computes B̂(v) by inspecting only |B̂(v)| vertices. The inspected edges are only

edges (u,w) where u ∈ B̂(v) or w ∈ B̂(v). There are at most n · |B̂(v)| such
edges so the total expected time complexity is∑

i

∑
v∈Ai\Ai+1

n · E[|B̂(v)|] = kn2`1/k = O(kn2+1/k).

The second (and dominating) term of the construction time is to find δ(v, λ)
for every v ∈ Ak−1 and every λ ∈ L. This can either be done by running (the
standard version of) Dijkstra’s Algorithm from ` sources in total O(m`) time, or
from |Ak−1| sources in total O(m · |Ak−1|) time. The value O(m ·min{`, |Ak−1|})
is maximized when ` = |Ak−1| = n/`1−1/k and amounts to O(mnk/(2k−1)). This
concludes the proof of Theorem 2.

4 Oracles Supporting Dynamic Labels

In this section we consider the situation where the labels may change dynami-
cally. That is, we want a distance oracle that not only supports the usual vertex-
label distance queries, but also supports updates of the form change(v, λ), for
v ∈ V and λ ∈ L, which sets the label of v to be λ and leaves all labels of
vertices in V \ {v} unchanged. We will show how to modify the oracle scheme
of Section 3 so that it supports such queries, at an increase to the stretch and
space of the constructed oracles. The main difficulty in achieving this comes
from the fact that a vertex may be present in Ω(n) balls, and thus a change in
its label may require updating Ω(n) hash-tables. The following describes how to
overcome this.

4.1 The Data Structure

The construction of our dynamic distance oracle scheme is similar to the con-
struction of Section 3. Below we focus on the main changes. As in Section 3, we
first select the sets of vertices V = A0 ⊇ A1 ⊇ . . . ⊇ Ak−1 ⊇ Ak = ∅. However,
here we select the vertices in the levels with probability depending on n, as in
Section 2. That is, we select Ai by sampling vertices of Ai−1 independently at
random with probability n−1/k. Thus, the probability that an arbitrary vertex
v ∈ V is in Ai is exactly n−i/k, and the expected-size of Ai is n1−i/k. Again, the
sets Ai are referred to as the levels of G, and we designate for each vertex v ∈ V
a router r(v) ∈ V , defined identically as in Section 3.

The main difference between our static and dynamic schemes lies in the
definition of balls. Here our balls will be sets of vertices instead of sets of labels.
Moreover, we store half-balls rather than balls. For a vertex v ∈ Ai \ Ai+1, we

define the half-ball of v as the set of verticesB
1
2 (v) := {u : δ(u, v) < 1

2 ·δ(v, r(v))}.
That is, a vertex u is in B

1
2 (v) if it is closer to v than half the distance from v

to its router. We also define the cluster C(v) of a vertex v ∈ V to be the set of

all vertices for which v is in their half-ball. That is, C(v) := {u : v ∈ B 1
2 (u)}.

Let us next describe the exact information stored for each vertex v ∈ V . First,
we store the cluster C(v) of v, along with all distances δ(v, u) for u ∈ C(v).

Second, we store all distances to vertices u in the half-ball B
1
2 (v) of v. The

distances to vertices in the half-ball are organized into heaps, one per each label
appearing in B

1
2 (v), that support the following three generic operations:

– insert(δ): insert a new distance δ into the heap.
– remove(δ): remove an existing distance δ from the heap.
– minimum(): return the minimum distance in the heap.

A standard construction of a heap supports the first two operations above
in O(lg n) time (even O(lg lg n) time if the edge lengths are integral [10]), while
minimum() requires constant time. Apart from the cluster C(v), the heaps, the
router r(v) and the distance δ(v, r(v)), we also store a hash table at v which
allows us to determine in O(1) time whether there exists a vertex labeled λ in

B
1
2 (v), given any label λ ∈ L. In Section 4.2 below we show that the expected

size of C(v) is O(kn1/k) for every vertex v ∈ V . All other information stored at

v is asymptotically at most |B 1
2 (v)|, which by similar arguments as those used

in Section 3, can also be bounded by O(kn1/k) in expectation. Thus, the total
size of our data structure can be bounded as in the lemma below.

Lemma 5. The expected size of our data structure is O(kn1+1/k).

4.2 Label Changes

We next turn to describe how our oracle supports updates of the form
change(v, λ). The key idea is to use the information stored at the cluster C(v)
of v. We begin by bounding the size of C(v) in expectation.

Lemma 6. E[|C(v)|] ≤ kn1/k for any vertex v ∈ V .

Proof. For i ∈ {0, . . . , k − 1}, let Ci(v) denote the set of vertices u ∈ Ai \ Ai+1

for which v ∈ B 1
2 (u). To prove the lemma, we show that the expected size of

Ci(v) is bounded by n1/k. This indeed proves the lemma, since C(v) =
⋃
i Ci(v),

and so by linearity of expectation we get

E[|C(v)|] =
∑
i

E[|Ci(v)|] ≤
∑
i

n1/k = kn1/k.

For this, let Bi+1(v) denote the set of all vertices u ∈ Ai \ Ai+1 closer to
v than Ai+1, i.e. Bi+1(v) := {u ∈ Ai \ Ai+1 : δ(v, u) < δ(v,Ai+1)}. We first
argue that the expected size of Bi+1(v) is at most n1/k using a similar argument
as the one used in Lemma 2. Indeed, the size of Bi+1(v) can be bounded by
the first location of a vertex from Ai+1 in the list of all vertices in Ai sorted
in increasing distance from u. Thus, E[|Bi+1(v)|] is bounded from above by a
geometric random variable with rate n−1/k, and so E[|Bi+1(v)|] ≤ n1/k.

To complete the proof of the lemma, we argue that Ci(v) ⊆ Bi(v). Consider
an arbitrary vertex u ∈ Ai\Ai+1, and suppose that u /∈ Bi+1(v). Let w ∈ V be a

vertex satisfying δ(v, w) = δ(v,Ai+1). Then δ(u, r(u)) ≤ δ(u,w), since w ∈ Ai+1

and δ(u, r(u)) = δ(u,Ai+1) by definition. Furthermore, as u /∈ Bi+1(v), we have
δ(v, w) ≤ δ(v, u). Thus,

δ(u, r(u)) ≤ δ(u,w) ≤ δ(u, v) + δ(v, w) ≤ 2δ(u, v),

and so v /∈ B 1
2 (u) by definition. It follows that u /∈ Ci(v), and so Ci(v) ⊆ Bi(v).

ut

The idea behind our label changing procedure is simple: Given an update
request of the form change(v, λ), we check which half-balls v belongs to using
C(v), and update the corresponding heaps at each half-ball. More precisely,

for each vertex u for which v ∈ B
1
2 (u), we perform a remove(δ) operation

on the λ(v)-heap of u with δ := δ(u, v), and perform an insert(δ) operation
on the λ-heap with the same δ. This requires O(lg n) time for each vertex u

with v ∈ B
1
2 (u), i.e. u ∈ C(v), since the distance δ(u, v) is stored in C(v).

Thus, according to Lemma 6, we get the following processing time for each label
update.

Lemma 7. The time required for computing change(v, λ) is O(kn1/k lg n).

4.3 Vertex-Label Queries

Fig. 2. A graphical depiction of a half ball.

The query procedure of our oracle is similar to the algorithm in Section 3.2.
Again the routers r0, . . . , rk−1 are defined by r0 := v and ri := r(ri−1) for i ∈

{1, . . . , k− 1}. The algorithm determines the smallest integer i0 ∈ {0, . . . , k− 1}
for which λ ∈ B 1

2 (ri0), and returns the distance

dist(v, λ) :=
∑

0≤i<i0

δ(ri, ri+1) + δ(ri0 , λ).

The distance δ(ri0 , λ) is retrieved via a single minimum() query to the λ-heap

stored at B
1
2 (ri0). The total running-time of our query algorithm is thus O(k).

The next lemma bounds the stretch of the output dist(v, λ), completing the
proof of Theorem 3.

Lemma 8. δ(v, λ) ≤ dist(v, λ) ≤ (2 · 3k−1 − 1) · δ(v, λ) for any (v, λ) ∈ V × L.

Proof. Let (v, λ) ∈ V ×L, and let i0 ∈ {0, . . . , k−1} denote the smallest integer

for which λ ∈ B 1
2 (ri0). We use the following inequality which follows from our

definition of the half balls B
1
2 (v), and from the fact that λ /∈ B

1
2 (ri) for all

i ∈ {0, . . . , i0 − 1}:

δ(ri, ri+1) ≤ 2 · δ(ri, λ) for all i ∈ {0, . . . , i0 − 1}. (3)

Using induction on i and (3), one can show the following inequality holds in a
similar manner as was done in the proof of Lemma 4:

δ(ri, λ) ≤ 3i · δ(v, λ) for all i ∈ {0, . . . , i0}. (4)

Thus, we get

dist(v, λ) =
∑

0≤i<i0 δ(ri, ri+1) + δ(ri0 , λ)

≤
∑

0≤i<i0 2 · δ(ri, λ) + δ(ri0 , λ)

≤
∑

0≤i<i0 2 · 3i · δ(v, λ) + 3i0 · δ(v, λ)

= (2 · 3i0 − 1) · δ(v, λ),

which proves the lemma since i0 ≤ k − 1. ut

This completes the proof of the first part of Theorem 3.

4.4 Small Stretch vs. Efficient Update/Space

We conclude this section by showing that by combining our construction with
some of the ideas in [5], it is possible to achieve a stretch-3 oracle with space
O(n5/3) and label-update time O(n2/3 lg n). Thus, this oracle gives a better
stretch than the stretch-5 given by the oracle of Theorem 3, but requires sub-
stantially more space and label-update time.

Consider our construction for k = 2. Then G has three levels V := A0 ⊇
A1 ⊇ A2 := ∅, with only A1 non-trivial. In contrast to our original construction,
we consider balls, rather than half-balls, around vertices of G. That is, the set
B(v) := {u ∈ V : δ(v, u) < δ(v, r(v))} for v ∈ V . Pǎtraşcu and Roditty [5] show
how to randomly select the set A1 such that the following three properties hold:

– E[|A1|] ≤ n2/3.
– E[|B(v)|] ≤ n1/3 for any v ∈ A0 \A1.
– E[|C(v)|] ≤ 2n2/3 for any v ∈ V .

The first two properties imply that our oracle requires O(n5/3) space since
we store all O(n4/3) distances δ(u, v) for which u ∈ V and v ∈ A0 \ A1, and all
O(n5/3) distances δ(u, v) for which u ∈ V and v ∈ A1. The last property implies
that, as in Section 4.2, we can support label updates for any v ∈ V in O(n2/3 lg n)
time. Moreover, since we store distances in balls, rather than half-balls, the
stretch analysis of Lemma 4 applies for this construction. Plugging k := 2 in
Lemma 4, we get an O(n5/3)-space oracle with stretch 3 and O(n2/3 lg n) label
update time.

5 Discussion

In this paper we defined the natural generalization of distance oracles to vertex-
labeled graphs and provided small space and stretch approximate distance ora-
cles. Observe that the known lower bounds [5, 7, 9] for unlabeled graphs apply
for the generalization when all vertices are uniquely labeled. These lower bounds
imply that for any fixed k ≥ 1, any oracle with stretch 2k−1 requires Ω(n1+1/k)
space. Thus, our O(n`1/2)-space oracle with stretch 3 is optimal up to a loga-
rithmic factor. However, we do not know of any better lower bounds, even more
so for the dynamic case. Considering this, we list below the important open
questions that remain from our work:

1. Is there a vertex-label (2k− 1)-stretch oracle scheme with O(kn1+1/k) space
and O(k) query time?

2. Is it possible to get a general scheme of space O(kn`1/k), with poly(k) stretch
and O(k) query time?

3. Can one get a scheme as in (2) that also supports efficient label updates?
4. Are there O(kn`1/k)-space oracles supporting efficient label updates?
5. Are there O(n3/2)-space oracles with stretch-3 constant-time queries and
O(n1/2) label updates?

References

1. S. Baswana, A. Gaur, S. Sen, and J. Upadhyay, Distance oracles for unwieghted
graphs: Breaking the quadratic barrier with constant additive error, Proc. of
the 35th International Colloquium on Automata, Languages and Programming
(ICALP), 2008, pp. 609–621.

2. S. Baswana and T. Kavitha, Faster algorithms for approximate distance oracles and
all-pairs small stretch paths, Proc. of the 47th IEEE Symposium on Foundations
of Computer Science (FOCS), 2006, pp. 591–602.

3. P. Erdős, Extremal problems in graph theory, Theory of graphs and its applications
(1964), 29–36.

4. J. Matoušek, On the distortion required for embedding finite metric spaces into
normed spaces, Israel Journal of Mathematics (1996), no. 93, 333–344.

5. M. Pǎtraşcu and L. Roditty, Distance oracles beyond the thorup-zwick bound, Proc.
of the 51st annual symposium on Foundations Of Computer Science (FOCS), 2010,
pp. 815–823.

6. L. Roditty, M Thorup, and U. Zwick, Deterministic constructions of approximate
distance oracles and spanners, Proc. of the 32nd International Colloquium on Au-
tomata, Languages and Programming (ICALP), 2005, pp. 261–272.

7. C. Sommer, E. Verbin, and W. Yu, Distance oracles for sparse graphs, Proc. of
the 50th IEEE Symposium on Foundation of Computer Science (FOCS), 2009,
pp. 703–712.

8. M. Thorup and U. Zwick, Compact routing schemes, Proc. of the 13th ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA), 2001, pp. 1–10.

9. , Approximate distance oracles, Journal of the ACM 52 (2005), no. 1, 1–24.
10. P. van Emde Boas, R. Kaas, and E. Ziljstra, Design and implementation of an

effcient priority queue, Mathematical Systems Theory 10 (1977), 99–127.

