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Binary search

Optimal solution:

Always ask about the number in the middle of the
range of potential solutions.

blog2 nc questions in the worst case, where n is the
size of the range.

The searching problem is easy:

Only two “directions”: greater and smaller numbers.

Potential solutions constitute a totally ordered set.

But there is a greater challenge to face!
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Searching in caves
trees

Waldo hides in a cave.

The cave consists of chambers and corridors.

The graph of the cave is a tree.

Goal: Figure out which chamber Waldo is in.
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Given is a partial order S (or its diagram).

Waldo secretly chooses x ∈ S.

Goal: Find out x by asking Waldo questions: “Is x ≤ y?”

For some posets the problem is identical to searching in
trees in the edge-query model.
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Optimal strategies
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E D H F I

A B C D F G

By a strategy for a given problem we mean a decision
tree for solving this problem.

By an optimal strategy for this problem we mean the
shallowest decision tree for solving this problem.

A sample optimal strategy in the vertex-query model:
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Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:

edge-query model: optimal strategy in O(n4 log3 n)

Laber, Nogueira [ENDM 2001]:
edge-query model: 2-approximation in O(n log n)

Carmo, Donadelli, Kohayakawa, Laber [TCS 2004]:
finding optimal poset searching strategy is NP-hard
approximate strategies for random posets

Onak, Parys [FOCS 2006]:
edge-query model: optimal strategy in O(n3)

vertex-query model: optimal strategy in O(n)
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Our Results

O(n) in the edge-query model [SODA 2008]
novel bottom-up construction algorithm
a method for reusing parts of already computed
subproblems
from a solution in the form of an edge-weighed tree
to a decision tree solution in O(n)

Applications
file system synchronization
bug detection
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Short overview:

Reduce the problem to optimizing a strategy function.

Recursively construct an optimum strategy function.

We start with the vertex-query model.
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Mutual correspondence

A strategy of k queries in the worst case
⇒ a strategy function bounded by k

Idea: If we ask about a vertex v, let f(v) be the number of
further questions we need to ask before we find the
target.
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f(v) = 3:

f(v) = 2:

f(v) = 1:

⇒

A:1

B:2 C:0 D:3

E:2F:1

G:0 H:0

I:0



Conclusion

It suffices to construct a strategy
function of the least maximum!
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Visibility sequences

The visibility sequence from a vertex v is the sequence of
all values visible from v, enumerated from the greatest to
the least. 0

3 1 2

05

4 6

1

←− vertex v

The visibility sequence from v: (6, 5, 3, 2)

The visibility sequences are ordered lexicographically.
For instance, (8, 4, 3, 2) > (7, 6, 4, 2, 1).
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Extension operator

1. Root the input tree arbitrarily.

2. At each vertex v:
(a) Take recursively computed strategy functions on

subtrees rooted at children of v.
(b) Extend them to the subtree rooted at v. In

vertex-query model we only need to fix f(v).

To get a correct strategy function, it suffices to know the
visibility sequences from children of v in their subtrees.

An extension operator is a procedure that takes those
visibility sequences, extends the function, and returns
the visibility sequence from v in the subtree rooted at v.



An Optimal Extension

A minimizing extension is one that gives the
lexicographically smallest visibility sequence at v.

minimizing extensions accumulate to an optimal
solution [OP 2006].



Vertex-query model

0

1

5

1

2

0

2

3

s1 s2 s3

An extension operator V for a vertex v:



Vertex-query model

0

1

5

1

2

0

2

3

s1 s2 s3

q = 2

An extension operator V for a vertex v:
1. Find the greatest value q that occurs in more than

one sequence.



Vertex-query model

0

1

5

1

2

0

2

3

s1 s2 s3

q = 2

f(v) = 4

An extension operator V for a vertex v:
1. Find the greatest value q that occurs in more than

one sequence.
2. Let f(v) be the least value greater than q that does

not occur in any visibility sequence.



Vertex-query model

0

1

5

1

2

0

2

3

s1 s2 s3

q = 2

f(v) = 4 4

5

V[s1, s2, s3]

An extension operator V for a vertex v:
1. Find the greatest value q that occurs in more than

one sequence.
2. Let f(v) be the least value greater than q that does

not occur in any visibility sequence.
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Vertex-query model

One can show that V is minimizing.

The whole computation takes O(n log n) time, as in the
vertex-query model the required vertex can always be
located in at most blog2 nc queries.

The running time can be improved to O(n) fairly simple.
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Edge-query model

Questions about edges.
Ask about an edge e.
Learn which endpoint of e is closer to Waldo.
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An extension assigns all f(ei)’s 

f(ei)= f(ej)

f(ei) is not in si

f(ei) is in sj f(ej) > f(ei) 

u is in si and sj max{f(ei), f(ei)} > u
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From Strategy Function to 

Decision Tree in O(n) Time

For all edges e

let s = visibility sequence at bottom(e)

if s contains no values smaller than  f(e)
set bottom(e) as the solution when the query on e returns bottom(e)

else, let v1 <...< vk < f(e) in s, let ei be the edge vi is assigned to
set ek as the solution when the query on e returns bottom(e) 

for every 1≤ i <k  set ei as the solution when the query on ei+1 returns top(ei+1)

set top(e1) as the solution when the query on e1 returns top(e1) 

c

a
3

d

fe

g

2 1

2 1

1

(a,c)?

(a,b)? (c,e)?

a c

(a,d)?

a b

b

b

d

d
a

a

(c,f)? (e,g)?

c e

f

f
c

c
g

g
e

e



Thank you !!
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