
Binary Searching a Tree

Oren Weimann
MIT, CSAIL

Joint work with
Shay Mozes (Brown University)

Krzysztof Onak (MIT)

How old is Waldo?

How quickly can you learn Waldo’s age?

How old is Waldo?

How quickly can you learn Waldo’s age?

You can ask Waldo if he’s x years old.

How old is Waldo?

How quickly can you learn Waldo’s age?

You can ask Waldo if he’s x years old.

Possible answers:
“Yes, I’m x years old.”
“No, I’m younger.”
“No, I’m older.”

How old is Waldo?

How quickly can you learn Waldo’s age?

You can ask Waldo if he’s x years old.

Possible answers:
“Yes, I’m x years old.”
“No, I’m younger.”
“No, I’m older.”

How old is Waldo?

How quickly can you learn Waldo’s age?

You can ask Waldo if he’s x years old.

Possible answers:
“Yes, I’m x years old.”
“No, I’m younger.”
“No, I’m older.”

How old is Waldo?

How quickly can you learn Waldo’s age?

You can ask Waldo if he’s x years old.

Possible answers:
“Yes, I’m x years old.”
“No, I’m younger.”
“No, I’m older.”

How old is Waldo?

How quickly can you learn Waldo’s age?

You can ask Waldo if he’s x years old.

Possible answers:
“Yes, I’m x years old.”
“No, I’m younger.”
“No, I’m older.”

How old is Waldo?

How quickly can you learn Waldo’s age?

You can ask Waldo if he’s x years old.

Possible answers:
“Yes, I’m x years old.”
“No, I’m younger.”
“No, I’m older.”

How old is Waldo?

How quickly can you learn Waldo’s age?

You can ask Waldo if he’s x years old.

Possible answers:
“Yes, I’m x years old.”
“No, I’m younger.”
“No, I’m older.”

How old is Waldo?

How quickly can you learn Waldo’s age?

You can ask Waldo if he’s x years old.

Possible answers:
“Yes, I’m x years old.”
“No, I’m younger.”
“No, I’m older.”

Binary search

Optimal solution:

Always ask about the number in the middle of the
range of potential solutions.

Binary search

Optimal solution:

Always ask about the number in the middle of the
range of potential solutions.

blog2 nc questions in the worst case, where n is the
size of the range.

Binary search

Optimal solution:

Always ask about the number in the middle of the
range of potential solutions.

blog2 nc questions in the worst case, where n is the
size of the range.

The searching problem is easy:

Binary search

Optimal solution:

Always ask about the number in the middle of the
range of potential solutions.

blog2 nc questions in the worst case, where n is the
size of the range.

The searching problem is easy:

Only two “directions”: greater and smaller numbers.

Binary search

Optimal solution:

Always ask about the number in the middle of the
range of potential solutions.

blog2 nc questions in the worst case, where n is the
size of the range.

The searching problem is easy:

Only two “directions”: greater and smaller numbers.

Potential solutions constitute a totally ordered set.

Binary search

Optimal solution:

Always ask about the number in the middle of the
range of potential solutions.

blog2 nc questions in the worst case, where n is the
size of the range.

The searching problem is easy:

Only two “directions”: greater and smaller numbers.

Potential solutions constitute a totally ordered set.

But . . .

Binary search

Optimal solution:

Always ask about the number in the middle of the
range of potential solutions.

blog2 nc questions in the worst case, where n is the
size of the range.

The searching problem is easy:

Only two “directions”: greater and smaller numbers.

Potential solutions constitute a totally ordered set.

But there is a greater challenge to face!

Searching in caves

Waldo hides in a cave.

Searching in caves

Waldo hides in a cave.

The cave consists of chambers and corridors.

Searching in caves
trees

Waldo hides in a cave.

The cave consists of chambers and corridors.

The graph of the cave is a tree.

Searching in caves
trees

Waldo hides in a cave.

The cave consists of chambers and corridors.

The graph of the cave is a tree.

Goal: Figure out which chamber Waldo is in.

Two query models

1. Questions about vertices

Two query models

1. Questions about vertices
Ask about a vertex-chamber v.

Two query models

1. Questions about vertices
Ask about a vertex-chamber v.
Learn either that Waldo is in v, or which corridor
outgoing from v leads to Waldo.

Two query models

1. Questions about vertices
Ask about a vertex-chamber v.
Learn either that Waldo is in v, or which corridor
outgoing from v leads to Waldo.

Two query models

1. Questions about vertices

2. Questions about edges

Two query models

1. Questions about vertices

2. Questions about edges
Ask about an edge-corridor e.

Two query models

1. Questions about vertices

2. Questions about edges
Ask about an edge-corridor e.
Learn which endpoint of e is closer to Waldo.

Two query models

1. Questions about vertices

2. Questions about edges
Ask about an edge-corridor e.
Learn which endpoint of e is closer to Waldo.

Searching in partial orders

≤

≤

≤

≤

≤

≤

≤

≤

a

b

c

d

e

f

g

h

Given is a partial order S (or its diagram).

Searching in partial orders

≤

≤

≤

≤

≤

≤

≤

≤

a

b

c

d

e

f

g

h

x = e

Given is a partial order S (or its diagram).

Waldo secretly chooses x ∈ S.

Searching in partial orders

≤

≤

≤

≤

≤

≤

≤

≤

a

b

c

d

e

f

g

h

x = e

x ≤ f?

Given is a partial order S (or its diagram).

Waldo secretly chooses x ∈ S.

Goal: Find out x by asking Waldo questions: “Is x ≤ y?”

Searching in partial orders

≤

≤

≤

≤

≤

≤

≤

≤

a

b

c

d

e

f

g

h

x = e

x ≤ f?

NO

Given is a partial order S (or its diagram).

Waldo secretly chooses x ∈ S.

Goal: Find out x by asking Waldo questions: “Is x ≤ y?”

Searching in partial orders

≤

≤

≤
≤

≤
≤
≤

≤

Given is a partial order S (or its diagram).

Waldo secretly chooses x ∈ S.

Goal: Find out x by asking Waldo questions: “Is x ≤ y?”

For some posets the problem is identical to searching in
trees in the edge-query model.

Optimal strategies

By a strategy for a given problem we mean a decision
tree for solving this problem.

Optimal strategies

By a strategy for a given problem we mean a decision
tree for solving this problem.

By an optimal strategy for this problem we mean the
shallowest decision tree for solving this problem.

Optimal strategies

A

B C D

EF

G H

I

E?

C? G?E H I

A B C D GF

E D H F I

A B C D F G

By a strategy for a given problem we mean a decision
tree for solving this problem.

By an optimal strategy for this problem we mean the
shallowest decision tree for solving this problem.

A sample optimal strategy in the vertex-query model:

Previous work

Hyafil, Rivest [IPL 1976]:
computing optimal decision trees is NP-hard for
general structures

Previous work

Hyafil, Rivest [IPL 1976]:
computing optimal decision trees is NP-hard for
general structures

Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:

edge-query model: optimal strategy in O(n4 log3 n)

Previous work

Hyafil, Rivest [IPL 1976]:
computing optimal decision trees is NP-hard for
general structures

Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:

edge-query model: optimal strategy in O(n4 log3 n)

Laber, Nogueira [ENDM 2001]:
edge-query model: 2-approximation in O(n log n)

Previous work

Hyafil, Rivest [IPL 1976]:
computing optimal decision trees is NP-hard for
general structures

Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:

edge-query model: optimal strategy in O(n4 log3 n)

Laber, Nogueira [ENDM 2001]:
edge-query model: 2-approximation in O(n log n)

Carmo, Donadelli, Kohayakawa, Laber [TCS 2004]:
finding optimal poset searching strategy is NP-hard
approximate strategies for random posets

Previous work

Hyafil, Rivest [IPL 1976]:
computing optimal decision trees is NP-hard for
general structures

Ben-Asher, Farchi, Newman [SIAM J. on Comp. 1997]:

edge-query model: optimal strategy in O(n4 log3 n)

Laber, Nogueira [ENDM 2001]:
edge-query model: 2-approximation in O(n log n)

Carmo, Donadelli, Kohayakawa, Laber [TCS 2004]:
finding optimal poset searching strategy is NP-hard
approximate strategies for random posets

Onak, Parys [FOCS 2006]:
edge-query model: optimal strategy in O(n3)

vertex-query model: optimal strategy in O(n)

Our Results

O(n) in the edge-query model [SODA 2008]
novel bottom-up construction algorithm
a method for reusing parts of already computed
subproblems
from a solution in the form of an edge-weighed tree
to a decision tree solution in O(n)

Our Results

O(n) in the edge-query model [SODA 2008]
novel bottom-up construction algorithm
a method for reusing parts of already computed
subproblems
from a solution in the form of an edge-weighed tree
to a decision tree solution in O(n)

Applications
file system synchronization
bug detection

General technique [OP 2006]

Short overview:

General technique [OP 2006]

Short overview:

Reduce the problem to optimizing a strategy function.

General technique [OP 2006]

Short overview:

Reduce the problem to optimizing a strategy function.

Recursively construct an optimum strategy function.

General technique [OP 2006]

Short overview:

Reduce the problem to optimizing a strategy function.

Recursively construct an optimum strategy function.

We start with the vertex-query model.

Strategy functions

Strategy function:

Strategy functions

Strategy function:
A function on objects that we can ask about. In our case
it goes from the set of vertices to nonnegative integers,

f : V → {0, 1, 2, . . .}.

Strategy functions

Strategy function:
A function on objects that we can ask about. In our case
it goes from the set of vertices to nonnegative integers,

f : V → {0, 1, 2, . . .}.

For any two different v and w such that f(v) = f(w),
there is u on the path from v to w such that

f(u) > f(v) = f(w).

Strategy functions

0

1

2052

6

1

Strategy function:
A function on objects that we can ask about. In our case
it goes from the set of vertices to nonnegative integers,

f : V → {0, 1, 2, . . .}.

For any two different v and w such that f(v) = f(w),
there is u on the path from v to w such that

f(u) > f(v) = f(w).

Mutual correspondence

A strategy function bounded by k

⇒ a strategy of at most k queries in the worst case

Mutual correspondence

A strategy function bounded by k

⇒ a strategy of at most k queries in the worst case

Idea: Ask about the vertex of the greatest value in the
subtree induced by the potential solutions

Mutual correspondence

A strategy function bounded by k

⇒ a strategy of at most k queries in the worst case

Idea: Ask about the vertex of the greatest value in the
subtree induced by the potential solutions

A:0

B:0 C:1 D:2

E:0F:3

G:1 H:4

I:1
⇒

H?

F?

D?

C? I?

H

F G

D

A B C IE

H E

E F G

HHH

C D E

A B C E I

Mutual correspondence

A strategy of k queries in the worst case
⇒ a strategy function bounded by k

Mutual correspondence

A strategy of k queries in the worst case
⇒ a strategy function bounded by k

Idea: If we ask about a vertex v, let f(v) be the number of
further questions we need to ask before we find the
target.

Mutual correspondence

A strategy of k queries in the worst case
⇒ a strategy function bounded by k

Idea: If we ask about a vertex v, let f(v) be the number of
further questions we need to ask before we find the
target.

D?

B? E?

A? F? H

F G

D

A

B

C

IE

C E E

C B F E H I

A C F G

f(v) = 3:

f(v) = 2:

f(v) = 1:

⇒

A:1

B:2 C:0 D:3

E:2F:1

G:0 H:0

I:0

Conclusion

It suffices to construct a strategy
function of the least maximum!

Visibility

The value at a vertex w is visible from a vertex v if on the
simple path from v to w there is no greater value.

Visibility

The value at a vertex w is visible from a vertex v if on the
simple path from v to w there is no greater value.

0

3 1 2

05

4 6

1

←− vertex v

Values visible from v: 3, 2, 5, 6

Visibility sequences

The visibility sequence from a vertex v is the sequence of
all values visible from v, enumerated from the greatest to
the least.

Visibility sequences

The visibility sequence from a vertex v is the sequence of
all values visible from v, enumerated from the greatest to
the least. 0

3 1 2

05

4 6

1

←− vertex v

The visibility sequence from v: (6, 5, 3, 2)

Visibility sequences

The visibility sequence from a vertex v is the sequence of
all values visible from v, enumerated from the greatest to
the least. 0

3 1 2

05

4 6

1

←− vertex v

The visibility sequence from v: (6, 5, 3, 2)

The visibility sequences are ordered lexicographically.
For instance, (8, 4, 3, 2) > (7, 6, 4, 2, 1).

Extension operator

1. Root the input tree arbitrarily.

Extension operator

1. Root the input tree arbitrarily.

2. At each vertex v:

Extension operator

1. Root the input tree arbitrarily.

2. At each vertex v:
(a) Take recursively computed strategy functions on

subtrees rooted at children of v.

Extension operator

1. Root the input tree arbitrarily.

2. At each vertex v:
(a) Take recursively computed strategy functions on

subtrees rooted at children of v.
(b) Extend them to the subtree rooted at v. In

vertex-query model we only need to fix f(v).

Extension operator

1. Root the input tree arbitrarily.

2. At each vertex v:
(a) Take recursively computed strategy functions on

subtrees rooted at children of v.
(b) Extend them to the subtree rooted at v. In

vertex-query model we only need to fix f(v).

To get a correct strategy function, it suffices to know the
visibility sequences from children of v in their subtrees.

Extension operator

1. Root the input tree arbitrarily.

2. At each vertex v:
(a) Take recursively computed strategy functions on

subtrees rooted at children of v.
(b) Extend them to the subtree rooted at v. In

vertex-query model we only need to fix f(v).

To get a correct strategy function, it suffices to know the
visibility sequences from children of v in their subtrees.

An extension operator is a procedure that takes those
visibility sequences, extends the function, and returns
the visibility sequence from v in the subtree rooted at v.

An Optimal Extension

A minimizing extension is one that gives the
lexicographically smallest visibility sequence at v.

minimizing extensions accumulate to an optimal
solution [OP 2006].

Vertex-query model

0

1

5

1

2

0

2

3

s1 s2 s3

An extension operator V for a vertex v:

Vertex-query model

0

1

5

1

2

0

2

3

s1 s2 s3

q = 2

An extension operator V for a vertex v:
1. Find the greatest value q that occurs in more than

one sequence.

Vertex-query model

0

1

5

1

2

0

2

3

s1 s2 s3

q = 2

f(v) = 4

An extension operator V for a vertex v:
1. Find the greatest value q that occurs in more than

one sequence.
2. Let f(v) be the least value greater than q that does

not occur in any visibility sequence.

Vertex-query model

0

1

5

1

2

0

2

3

s1 s2 s3

q = 2

f(v) = 4 4

5

V[s1, s2, s3]

An extension operator V for a vertex v:
1. Find the greatest value q that occurs in more than

one sequence.
2. Let f(v) be the least value greater than q that does

not occur in any visibility sequence.

Vertex-query model

One can show that V is minimizing.

Vertex-query model

One can show that V is minimizing.

The whole computation takes O(n log n) time, as in the
vertex-query model the required vertex can always be
located in at most blog2 nc queries.

Vertex-query model

One can show that V is minimizing.

The whole computation takes O(n log n) time, as in the
vertex-query model the required vertex can always be
located in at most blog2 nc queries.

The running time can be improved to O(n) fairly simple.

Edge-query model

Edge-query model

Questions about edges.

Edge-query model

Questions about edges.
Ask about an edge e.

Edge-query model

Questions about edges.
Ask about an edge e.
Learn which endpoint of e is closer to Waldo.

Edge-query model

An extension assigns all f(ei)’s

s1 s2 sk

. . .

v

4

1

0

4

1

0

1

0

f(e1)? f(ek)?f(e2)?

Edge-query model

An extension assigns all f(ei)’s

f(ei)= f(ej)

s1 s2 sk

. . .

v

4

1

0

4

1

0

1

0

3 f(ek)?3

Edge-query model

An extension assigns all f(ei)’s

f(ei)= f(ej)

f(ei) is not in si

s1 s2 sk

. . .

v

4

1

0

4

1

0

1

0

4 f(ek)?f(e2)?

Edge-query model

An extension assigns all f(ei)’s

f(ei)= f(ej)

f(ei) is not in si

f(ei) is in sj f(ej) > f(ei)

s1 s2 sk

. . .

v

4

1

0

4

1

0

1

0

3 4f(e2)?

Edge-query model

An extension assigns all f(ei)’s

f(ei)= f(ej)

f(ei) is not in si

f(ei) is in sj f(ej) > f(ei)

u is in si and sj max{f(ei), f(ei)} > u

s1 s2 sk

. . .

v

4

1

0

4

1

0

1

0

2 3 f(ek)?

Algorithm Outline

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

f(e1)? f(ek)?f(e2)?

0 1 2 3 4 5 6free values

Algorithm Outline

set u = max{si}

s1 s2

. . .

v

4

1

0

1

0

1

0

f(e1)? f(e2)?

0 1 2 3 4 5 6free values

u

sk

f(ek)?

Algorithm Outline

set u = max{si}

while not all edges assigned

s1 s2

. . .

v

4

1

0

1

0

1

0

f(e1)? f(e2)?

0 1 2 3 4 5 6free values

u

sk

f(ek)?

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

s1 s2

. . .

v

4

1

0

1

0

1

0

f(e1)? f(e2)?

0 1 2 3 4 5 6free values

u

sk

f(ek)?

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

f(e1)? f(ek)?f(e2)?

0 1 2 3 5 6free values

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

f(e1)? f(ek)?f(e2)?

0 1 2 3 5 6free values

u

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

f(e1)? f(ek)?f(e2)?

0 1 2 3 5 6free values

u w

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

f(e1)? f(ek)?f(e2)?

0 1 2 3 5 6free values

u w
w

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

f(e1)? f(ek)?f(e2)?

0 1 2 3 5 6free values

u w
w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free
s1 s2 sk

. . .

v

4

1

0

1

0

1

0

f(e1)? f(ek)?f(e2)?

0 1 2 3 5 6free values

u w
w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free
s1 s2 sk

. . .

v

4

1

0

1

0

1

0

f(e1)? f(ek)?f(e2)?

0 1 3 5 6free values

u w
w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w
s1 s2 sk

. . .

v

4

1

0

1

0

1

0

f(ek)?f(e2)?

0 1 3 5 6free values

u w
w

Sj

f(e1)?

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w
s1 s2 sk

. . .

v

4

1

0

1

0

1

0

2 f(ek)?f(e2)?

0 1 3 5 6free values

u w
w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

2 f(ek)?f(e2)?

0 1 3 5 6free values

u w
w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

2 f(ek)?f(e2)?

0 1 3 5 6free values

u w
w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

2

1

0

1

0

2 f(ek)?f(e2)?

0 1 3 5 6free values

u w
w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

2

1

0

1

0

2 f(ek)?f(e2)?

0 1 3 5 6free values

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

2

1

0

1

0

2 f(ek)?f(e2)?

0 1 3 5 6free values

u

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

2

1

0

1

0

2 f(ek)?f(e2)?

0 1 3 5 6free values

u w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

2

1

0

1

0

2 f(ek)?f(e2)?

0 1 5 6free values

u w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

2

1

0

1

0

3 f(ek)?f(e2)?

0 1 5 6free values

u w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

2

1

0

1

0

3 f(ek)?f(e2)?

0 1 2 5 6free values

u w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

1

0

1

0

3 f(ek)?f(e2)?

0 1 2 5 6free values

u w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

1

0

1

0

3 f(ek)?f(e2)?

0 1 2 5 6free values

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

1

0

1

0

3 f(ek)?f(e2)?

0 1 2 5 6free values

u

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

1

0

1

0

3 f(ek)?f(e2)?

0 1 2 5 6free values

u
w

w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

1

0

1

0

3 f(ek)?f(e2)?

0 1 5 6free values

u
w

w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

1

0

1

0

3 f(ek)?2

0 1 5 6free values

u
w

w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

2

1

0

3 f(ek)?2

0 1 5 6free values

u
w

w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

2

1

0

3 f(ek)?2

0 1 5 6free values

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

2

1

0

3 f(ek)?2

0 1 5 6free values

u

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

2

1

0

3 f(ek)?2

0 5 6free values

u

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

2

1

0

3 f(ek)?2

0 5 6free values

u

and u = 0

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

2

1

0

3 f(ek)?2

0 5 6free values

u

and u = 0

w

w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

2

1

0

3 f(ek)?2

0 6free values

u

and u = 0

w

w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

2

1

0

5 2

0 6free values

u

and u = 0

w

w

Sj

f(ek)?

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

4

3

2

1

0

5 2

0 3 4 6free values

u

and u = 0

w

w

Sj

f(ek)?

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

. . .

v

2

1

0

5 2

0 3 4 6free values

u

and u = 0

w

w

Sj

f(ek)?

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj
. . .

v

5

5 2

0 3 4 6free values

and u = 0

f(ek)?

2

1

0

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

v

5 2

0 3 4 6free values

and u = 0

f(ek)?

u w

Sj

. . .

5

2

1

0

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

v

5 2

0 4 6free values

and u = 0

f(ek)?

u w

s1 s2 sk

Sj

. . .

5

2

1

0

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

v

5 3

0 4 6free values

and u = 0

f(ek)?

u w

s1 s2 sk

Sj

. . .

5

2

1

0

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2 sk

v

5 3

0 2 4 6free values

and u = 0

f(ek)?

u w

s1 s2 sk

Sj

. . .

5

2

1

0

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2

v

5 3

0 2 4 6free values

and u = 0

f(ek)?

u w

s1 s2 sk

Sj

. . .

5

3

1

0

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2

v

5 3

0 2 4 6free values

and u = 0

f(ek)?

s1 s2 sk

. . .

5

3

1

0

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2

v

5 3

0 2 4 6free values

and u = 0

f(ek)?

s1 s2 sk

. . .

5

3

1

0

u

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2

v

5 3

0 2 4 6free values

and u = 0

f(ek)?

s1 s2 sk

. . .

5

3

1

0

u w
w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2

v

5 3

0 4 6free values

and u = 0

f(ek)?

s1 s2 sk

. . .

5

3

1

0

u w
w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2

v

5 3

0 4 6free values

and u = 0

2

s1 s2 sk

. . .

5

3

1

0

u w
w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2

v

5 3

0 1 4 6free values

and u = 0

2

s1 s2 sk

. . .

5

3

1

0

u w
w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2

v

5 3

0 1 4 6free values

and u = 0

2

s1 s2 sk

. . .

5

3

2

u w
w

Sj

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1 s2

v

5 3

0 1 4 6free values

and u = 0

2

s1 s2 sk

. . .

5

3

2

That’s it!

Algorithm Outline

set u = max{si}

while not all edges assigned

if u appears once mark u as not free, move to next largest u

otherwise:

w = smallest free value > u

Sj = any maximal sequence w.r.t w

mark w as not free

set current f(ej) = w

mark all Sj values between u and w as free

remove all values < w from Sj

s1

v

0 1 4 6free values

and u = 0

s15

3

2

That’s it!

Running Time

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

Running Time

|S1| + |S2| +…+ |Sk| is not a lower bound !

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

Running Time

|S1| + |S2| +…+ |Sk| is not a lower bound !

in many cases, the largest values of the largest

visibility sequence are unchanged at v itself

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

Running Time

|S1| + |S2| +…+ |Sk| is not a lower bound !

in many cases, the largest values of the largest

visibility sequence are unchanged at v itself

k(v) = #v’s children

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

Running Time

|S1| + |S2| +…+ |Sk| is not a lower bound !

in many cases, the largest values of the largest

visibility sequence are unchanged at v itself

k(v) = #v’s children

q(v) = |S2| +…+ |Sk|

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

Running Time

|S1| + |S2| +…+ |Sk| is not a lower bound !

in many cases, the largest values of the largest

visibility sequence are unchanged at v itself

k(v) = #v’s children

q(v) = |S2| +…+ |Sk|

t(v) = largest value that appears

in Sv but not in S1

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

Running Time

|S1| + |S2| +…+ |Sk| is not a lower bound !

in many cases, the largest values of the largest

visibility sequence are unchanged at v itself

k(v) = #v’s children

q(v) = |S2| +…+ |Sk|

t(v) = largest value that appears

in Sv but not in S1

an extension can be computed

in O(k(v)+q(v)+t(v))

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

Running Time

|S1| + |S2| +…+ |Sk| is not a lower bound !

in many cases, the largest values of the largest

visibility sequence are unchanged at v itself

k(v) = #v’s children

q(v) = |S2| +…+ |Sk|

t(v) = largest value that appears

in Sv but not in S1

an extension can be computed

in O(k(v)+q(v)+t(v))

k(v)+q(v)+t(v) = O(n)

s1 s2 sk

. . .

v

4

1

0

1

0

1

0

v
Σ

From Strategy Function to

Decision Tree in O(n) Time

From Strategy Function to

Decision Tree in O(n) Time

c

a
3

d

fe

g

2 1

2 1

1

(a,c)?

(a,b)? (c,e)?

a c

(a,d)?

a b

b

b

d

d
a

a

(c,f)? (e,g)?

c e

f

f
c

c
g

g
e

e

From Strategy Function to

Decision Tree in O(n) Time

For all edges e

let s = visibility sequence at bottom(e)

if s contains no values smaller than f(e)
set bottom(e) as the solution when the query on e returns bottom(e)

else, let v1 <...< vk < f(e) in s, let ei be the edge vi is assigned to
set ek as the solution when the query on e returns bottom(e)

for every 1≤ i <k set ei as the solution when the query on ei+1 returns top(ei+1)

set top(e1) as the solution when the query on e1 returns top(e1)

c

a
3

d

fe

g

2 1

2 1

1

(a,c)?

(a,b)? (c,e)?

a c

(a,d)?

a b

b

b

d

d
a

a

(c,f)? (e,g)?

c e

f

f
c

c
g

g
e

e

Thank you !!

	How old is Waldo?
	How old is Waldo?
	How old is Waldo?
	How old is Waldo?
	How old is Waldo?
	How old is Waldo?
	How old is Waldo?
	How old is Waldo?
	How old is Waldo?
	How old is Waldo?

	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search
	Binary search

	Searching in untilSlide *{2}{caves}�romSlide *{3}{strikethrough {	extcolor {blue}{caves}}vbox {�reeput {-30}{15}{	extcolor {red}{trees}}}}
	Searching in untilSlide *{2}{caves}�romSlide *{3}{strikethrough {	extcolor {blue}{caves}}vbox {�reeput {-30}{15}{	extcolor {red}{trees}}}}
	Searching in untilSlide *{2}{caves}�romSlide *{3}{strikethrough {	extcolor {blue}{caves}}vbox {�reeput {-30}{15}{	extcolor {red}{trees}}}}
	Searching in untilSlide *{2}{caves}�romSlide *{3}{strikethrough {	extcolor {blue}{caves}}vbox {�reeput {-30}{15}{	extcolor {red}{trees}}}}

	Two query models
	Two query models
	Two query models
	Two query models
	Two query models
	Two query models
	Two query models
	Two query models

	Searching in partial orders
	Searching in partial orders
	Searching in partial orders
	Searching in partial orders
	Searching in partial orders

	Optimal strategies
	Optimal strategies
	Optimal strategies

	Previous work
	Previous work
	Previous work
	Previous work
	Previous work

	Our Results
	Our Results

	General technique [OP 2006]
	General technique [OP 2006]
	General technique [OP 2006]
	General technique [OP 2006]

	Strategy functions
	Strategy functions
	Strategy functions
	Strategy functions

	Mutual correspondence
	Mutual correspondence
	Mutual correspondence

	Mutual correspondence
	Mutual correspondence
	Mutual correspondence

	Conclusion
	Visibility
	Visibility

	Visibility sequences
	Visibility sequences
	Visibility sequences

	Extension operator
	Extension operator
	Extension operator
	Extension operator
	Extension operator
	Extension operator

	An Optimal Extension
	Vertex-query model
	Vertex-query model
	Vertex-query model
	Vertex-query model

	Vertex-query model
	Vertex-query model
	Vertex-query model

	Edge-query model
	Edge-query model
	Edge-query model
	Edge-query model

