
Indexing a Dictionary for Subset Matching Queries

Gad M. Landau1,2, Dekel Tsur3, and Oren Weimann4

1 Department of Computer Science, University of Haifa, Haifa - Israel.
2 Department of Computer and Information Science, Polytechnic University, New York - USA.

landau@cs.haifa.ac.il
3 Department of Computer Science, Ben-Gurion University, Beer-Sheva - Israel.

dekelts@cs.bgu.ac.il
4 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge MA - USA.

oweimann@mit.edu

Abstract. We consider a subset matching variant of the Dictionary Query paradigm. Con-
sider a dictionary D of n strings, where each string location contains a set of characters drawn
from some alphabet Σ. Our goal is to preprocess D so when given a query pattern p, where
each location in p contains a single character from Σ, we answer if p appears in D. p is said
to appear in D if there exists some s ∈ D where |p| = |s| and p[i] ∈ s[i] for every 1 ≤ i ≤ |p|.
Furthermore, for every pattern p that appears in D we would like to know the number of
times p appears in D.
To achieve a query time of O(|p|), we construct a compressed trie of all possible patterns
that appear in D. Assuming that for every s ∈ D there are at most k locations where
|s[i]| > 1, we present two constructions of the trie that yield a preprocessing time of O(nm +
|Σ|kn lg(min{n, m})), where n is the number of strings in D and m is the maximum length
of a string in D. The first construction is based on divide and conquer and the second
construction uses ideas introduced in [2] for text fingerprinting. Furthermore, we show how
to obtain O(nm + |Σ|kn + |Σ|k/2n lg(min{n, m})) preprocessing time and O(|p| lg lg |Σ| +
min{|p|, lg(|Σ|kn)} lg lg(|Σ|kn)) query time by cutting the dictionary strings and constructing
two compressed tries.
Our problem is motivated by haplotype inference from a library of genotypes [14, 17]. There,
D is a known library of genotypes (|Σ| = 2), and p is a haplotype. Indexing all possible
haplotypes that can be inferred from D as well as gathering statistical information about them
can be used to accelerate various haplotype inference algorithms. In particular, algorithms
based on the “pure parsimony criteria” [13, 16], greedy heuristics such as “Clarks rule” [6,
18], EM based algorithms [1, 11, 12, 20, 26, 30], and algorithms for inferring haplotypes from
a set of Trios [4, 27].

1 Introduction

In the Dictionary Query paradigm, one is given a dictionary D of strings s1, . . . , sn and
subsequent queries ask whether a given query pattern p appears in the dictionary. In [7],
this paradigm was broaden to allow a bounded number of mismatches, or allow a bounded
number of “don’t care” characters. We further extend dictionary queries to support a
restricted version of subset matching. In subset matching, the characters are subsets of
some alphabet Σ. A pattern p is said to match a string s of the same length if p[i] ⊆ s[i]
for every 1 ≤ i ≤ |p|. The subset matching problem of finding all occurrences of a pattern

string p in a text string t was solved in O(n lg2 n) deterministic time [8] and (n lg n)
randomized time [22], where n is the sum of sizes of the sets in p and t.

In this paper we consider the problem of indexing a dictionary for subset matching
queries. We focus on a relaxed version of subset matching requiring that the query pattern
is over single characters from Σ rather than subsets of Σ. Formally, the problem we consider
is defined as follows. We are given a dictionary D of strings s1, . . . , sn where each string
character is a subset of some alphabet Σ. A query p is a string over the alphabet Σ, and
we say that p matches to si if |p| = |si| and p[j] ∈ si[j] for every 1 ≤ j ≤ |p|. Our goal is to
preprocess D for queries of the form “does p match to a string in D?” and “to how many
strings in D does p match?”.

Let m denote the length of the longest string in D and let D′ be the set of all patterns
that appear in D. For example, if D contains a single string ab{c, d}g{a, b, c}ad then D′ =
{abcgaad, abcgbad, abcgcad, abdgaad, abdgbad, abdgcad}. Notice that a compressed trie of
D′ can support a query time of O(|p|) for a pattern p. Such a trie can be naively constructed
in O(|Σ|knm) time and O(|Σ||D′|) space, assuming every s ∈ D has at most k locations
in which |s[i]| > 1. The techniques of Cole et al. [7] can be used to solve the problem with
O(nm lg(nm) + n(c1 lg n)k+1/k!) preprocessing time, and O(m + (c2 lg n)k lg lg n) query
time (c1 and c2 are some constants). For small |Σ|, this approach is less efficient than the
trie approach.

In Sections 2 and 3 we present two faster constructions of the trie. The first construction
is based on divide and conquer and requires O(nm + |Σ|kn lg n) preprocessing time. The
second construction uses ideas introduced in [2] for text fingerprinting and requires O(nm+
|Σ|kn lg m) preprocessing time. The space complexity is O(|Σ||D′|), and it can be reduced
to O(|D′|) by using suffix tray [9] ideas. This comes at the cost of O(|p|+ lg lg |Σ|) query
time. In Sections 4 we show that by cutting the dictionary strings and constructing two
tries we can obtain O(nm+|Σ|kn+|Σ|k/2n lg(min{n,m})) preprocessing time at the cost of
O(|p| lg lg |Σ|+min{|p|, lg |D′|} lg lg |D′|) = O(|p| lg lg |Σ|+min{|p|, lg(|Σ|kn)} lg lg(|Σ|kn))
query time.

An important feature of our first two trie constructions is that they can calculate the
number of appearances in D of each pattern in D′ (i.e., which is most common? which is
least common? etc.). This feature is useful in the application of Haplotype Inference that
we next describe according to the presentation of Gusfield [13].

A haplotype trie from a genotype dictionary

In diploid organisms such as humans, there are two non-identical copies of each chromosome
(except for the sex chromosome). A description of the data from a single copy is called a
haplotype while a description of the conflated (mixed) data on the two copies is called a
genotype. The underlying data that forms a haplotype is either the full DNA sequence in
the region, or more commonly the values of only DNA positions that are Single Nucleotide
Polymorphisms (SNP’s). A SNP is a position in the genome at which exactly two (of

four) nucleotides occur in a large percentage of the population. If we consider only the
SNP positions, each position can have one of two nucleotides and a haplotype can thus
be represented as a 0/1 vector. A genotype can be represented as a 0/1/2 vector, where 0
means that both copies contain the first nucleotide, 1 means that both copies contain the
second nucleotide and 2 means that the two copies contain different nucleotides (but we
don’t know which copy contains which nucleotide).

The next high-priority phase of human genomics will involve the development and use of
a full Haplotype Map of the human genome [21]. Unfortunately, it is prohibitively expensive
to directly determine the haplotypes of an individual. As a result, almost all population data
consists of genotypes and the haplotypes are currently inferred from raw genotype data.
The input to the haplotype inference problem consists of n genotypes (0/1/2 vectors), each
of length m. A solution to the problem associates every genotype with a pair of haplotypes
(binary vectors) as follows. For any genotype g, the associated binary vectors v1, v2 must
both have value 0 (respectively 1) at any position where g has value 0 (respectively 1); but
for any position where g has value 2, exactly one of v1, v2 must have value 0, while the
other has value 1.

In our settings, the dictionary D corresponds to the library of genotypes, where every
genotype location that has the value 2 is replaced by the set {0, 1}. This way, |Σ| = 2
and D′ consists of all the possible haplotypes that can be part of a pair inferred from
D. Our trie stores all haplotypes in D′ and we can calculate the number of appearances
in D of each such haplotype while constructing the trie. The trie can then be used to
accelerate haplotype inference algorithms based on the “pure parsimony criteria” [13, 16],
greedy heuristics such as “Clarks rule” [6, 18], EM based algorithms [1, 11, 12, 20, 26, 30],
and algorithms for inferring haplotypes from a set of Trios [4, 27].

2 An O(nm + |Σ|kn lg n) time construction

In this section we present an O(nm+ |Σ|kn lg n) time construction for the compressed trie
of D′. To simplify the presentation, for the rest of the paper we assume w.l.o.g. that all
strings in D have the same length m.

We first describe an algorithm for merging two compressed tries T1 and T2.

1. If one of the tries T1 or T2 has a single vertex, then return a copy of the other trie.
2. If both the roots of T1 and T2 have degree 1, and the labels of the edges leaving the

roots of T1 and T2 have a common first letter, then find the longest common prefix
(LCP) p of these labels. Remove the string p from T1, that is, if the label of the edge
e that leaves the root of T1 is equal to p, remove the edge e and the root from T1, and
otherwise remove p from the label of e. Additionally, remove p from T2.
Next, recursively merge the two modified tries T1 and T2, and let T be the result of the
merge. Add a new root r to T and connect it by an edge to the old root of T , where
the label of the edge is p.

3. If the two cases above do not occur, then split the trie T1 as follows. For every edge
e = (r, v) that leaves the root r of T1, create a new trie that contains r and all the
descendents of v in T1. This trie will be denoted T a

1 , where a is the first letter in the
label of e. Similarly, split the trie T2 and create tries {T a

2 }a∈Σ .
For each letter a ∈ Σ, recursively merge the tries T a

1 and T a
2 if these two tries exist.

Finally, merge the roots of all remaining tries.

If the LCP of two edge labels can be obtained in O(1) time, then the time complexity of
this algorithm is O(|T1|+ |T2|), where |T | denotes the number of vertices in the compressed
trie T . Next, we present the algorithm for building a compressed trie of D′.

1. For every string in D, replace every character that is a set of size greater than one with
a new symbol φ.

2. Build a generalized suffix tree T̂ containing all suffixes of strings in D.
3. Build compressed tries T1, . . . , Tn, where Ti is a compressed trie containing all the

patterns that match si (recall that D = {s1, . . . , sn}).
4. Repeat dlg ne times:

(a) Partition the compressed tries into pairs, except at most one trie.
(b) Merge each pair of tries into a single trie.

Constructing T̂ requires O(nm) time. Each edge label b in some trie that is built during
the algorithm, matches a substring si[j..j+ |b|−1] of some string si in D. It is important to
notice that |si[l]| = 1 for every j+1 ≤ l ≤ j+ |b|−1. Using the suffix tree T̂ , computing the
longest prefix of two edge labels takes O(1) time. Therefore, the merging of two compressed
tries in the algorithm is performed in linear time. In each iteration of line 4, the total work
is linear in the total sizes of the current tries, which is O(|Σ|kn). Thus, the overall time
complexity of the algorithm is O(nm + |Σ|kn lg n).

3 An O(nm + |Σ|kn lg m) time construction

In this section we present an O(nm+ |Σ|kn lg m) time construction for the compressed trie
of D′. Consider a lexicographical ordering of all the strings in D′. Notice that if we knew
this ordering and the length of the LCP of every adjacent strings in this ordering, then we
could construct the trie in O(|D′|) = O(|Σ|kn) time by adding the strings in order. We next
describe how to obtain the required ordering and LCP information in O(nm + |Σ|kn lg m)
time.

We assign a unique name to every string in D′ using fingerprinting techniques [2, 10,
25]. A naming table of some p ∈ D′ is a labeled complete binary tree whose leaves are the
characters of p (without loss of generality |p| is a power of two1). The naming table has

1 Otherwise, we can extend p until |p| is a power of two by concatenating to p a string of a repeated new
character.

therefore 1 + lg |p| rows and the cells in the last row are named by the characters of p.
For example, if “ab{a, c}b{b, c}cab”∈ D then p=“abcbbcab” ∈ D′ and the naming table of
p might look like this:

25
9 17

1 2 3 1
a b c b b c a b

We assign integer names to the rest of the table using the naming technique [3, 24],
which is a modified version of the Karp, Miller and Rosenberg algorithm [23]. The names
are assigned bottom-up, such that when we assign a name to a cell we look at the pair
of cells below it. If this pair appeared before then we give the same name that was given
before, otherwise we give a new name. Finally, the unique name assigned to p is in the root
of the naming table.

The following property is what makes the naming technique appealing in our settings.
Consider two strings (over the alphabet Σ) p and q that both match the same string in
D. If p and q differ in one location then the naming table of p differs from the naming
table of q only in 1 + lg |p| cells (these cells are in bold in the following example where
p=“ababbcab” and q=“abcbbcab”).

37
13 17

1 1 3 1
a b a b b c a b

Consider all the strings that match a specific string s ∈ D. It is possible to enumerate
these strings in an order s(1), s(2), . . . in which two consecutive strings differ in exactly one
location. This means that we can compute names for these strings in O(m+ |Σ|k lg m) time
as follows. We first build the naming table of s(1) from bottom to top. During the building
of the naming table, we use an two-dimensional table B that stores the names given so far.
More precisely, B[a, b] is the name given for the pair of names (a, b), if the pair (a, b) was
named. Since checking whether a pair of names has appeared before takes constant time,
the time for building the naming table is linear in the number of cells of the table, which
is m + m/2 + m/4 + · · ·+ 1 = 2m− 1. Next, we build the naming table of s(2) by updating
1 + log m cells in the table of s(1), which takes O(log m) time. Then, we build the naming
table of s(3) using the naming table of s(2), and so on.

Applying the naming procedure to all strings in D takes O(nm+ |Σ|kn lg m) time. The
space complexity is O((nm + |Σ|kn lg m)2) due to the table B. The space complexity can
be reduced to O(nm + |Σ|kn lg m) as shown in [10]. The algorithm of [10] uses a different
order of filling the naming tables. In the first step, the algorithm computes the names in
the second row from the bottom of the naming tables of all strings in D′. This is done by

taking all pairs of names encountered in the first row of each naming table, lexicographically
sorting these pairs, and then naming the pairs. In the second step, the algorithm computes
the names in the third row from the bottom of the naming tables of all strings in D′, and
so on.

In addition to the reduction in space, the algorithm of [10] has the following property.
For every two strings s, s′ ∈ D′ with names a and a′ respectively, a < a′ if and only if s is
lexicographically smaller than s′.

After naming all strings in D′, we sort these strings using the names as keys. As noted
above, this gives the lexicographical ordering of D′. Furthermore, the LCP of any two
strings in D′ can be computed in O(lg m) time by comparing their naming tables top-down
as noticed in [25]. Therefore, we can compute the length of the LCP of every two consecutive
strings in the lexicographic ordering of D′ in O(|Σ|kn lg m) time, and then construct the
trie in O(|D′|) = O(|Σ|kn) time by adding the strings in lexicographical order.

4 An O(nm + |Σ|kn + |Σ|k/2n lg(min{n, m})) time construction

In this section we present a different approach for solving the dictionary query problem.
Instead of building one trie, we build two tries. This reduces the construction time, but
given a penalty in the query time.

Let S be a set of elements with keys from some set U . For every x ∈ U , the successor
of x in S is the element y ∈ S such that key(y) ≥ x and key(y) is minimal. A successor
data-structure stores a set S of elements with keys, and supports answering queries of the
form “Given a value x ∈ U , what is the successor of x in S?”. For the universe {1, . . . , U},
a successor data-structure for a set S can be built in O(|S|) time and space such that
successor queries are answered in O(lg lg U) time (such a construction is obtained, for
example, by combining the van Emde Boas data-structure [29] with the static dictionary
of Hagerup et al. [15]).

In order to build a dictionary query data-structure, we split every string in D into two
parts. For each si ∈ D define s′i to be the longest prefix of si that contains at most dk/2e
sets of size greater than 1. Also, define s′′i to be the prefix of sR

i (i.e. the string si reversed)
of length |si| − |s′i| = m − |s′i|. For example, if k = 2 and s1 = ab{c, d}g{a, b, c}ad then
s′1 = ab{c, d}g and s′′1 = da{a, b, c}.

Let T1 be a compressed trie for {s′1, . . . , s′n} and let T2 be a compressed trie T2 for
{s′′1, . . . , s′′n}. For each vertex of T2 assign a distinct integer from the set {1, . . . , |T2|}. The
integer assigned to a vertex v is denoted id(v). The string that corresponds to a vertex in
a trie is the concatenation of the edge labels in the path from the root to the vertex. The
depth of a vertex v in a trie is the length of the strings that corresponds to v. We say that
the vertices v ∈ T1 and w ∈ T2 are paired if the sum of their depths is m. For a vertex v in
T1 (respectively T2) whose corresponding string is s, let Lv be the set of all indices i such
that s matches s′i (respectively s′′i). For a vertex v ∈ T1, let Sv be the set containing every
vertex w ∈ T2 that is paired with v and for which Lv ∩ Lw 6= ∅.

Each vertex v ∈ T1 has a successor data-structure, that stores the set Sv. The key of
an element w in the set is id(w).

Answering a query is done as follows. First find the longest path P1 in T1 that corre-
sponds to a prefix of the query pattern p, and the longest path P2 in T2 that corresponds
to prefix of pR. For a vertex v ∈ P1, if a vertex w ∈ is paired with v then by definition the
depth of w is equal to m minus the depth of v. Since there is at most one vertex on P2 with
a given depth, we conclude that there is at most one vertex w ∈ P2 that is paired with v.
Moreover, it is possible to find all paired vertices v ∈ P1, w ∈ P2 in O(|P1|+ |P2|) = O(m)
time by traversing P1 from top to bottom, while concurrently traversing P2 from bottom to
top. To answer the query p, we just need to check whether w ∈ Sv for some paired vertices
v ∈ P1 and w ∈ P2. Checking whether w ∈ Sv for some fixed v and w is done by performing
a successor query on the successor data-structure of v. Answering a query requires at most
|P1| ≤ m searches in the successor structures, where each search takes O(lg lg |D′|) time.
Therefore, the time to answer a query is O(m lg lg |D′|).

We now discuss the time complexity of building the tries. The tries T1 and T2 are built
using the algorithms in Sections 2 and 3 in O(nm+|Σ|k/2n lg(min(n,m))) time. Computing
the intersections Lv ∩ Lw for all v and w is done as follows. For each i from 1 to n, go
over all vertices v ∈ T1 such that i ∈ Lv. For each such v, go over all w ∈ T2 such that
i ∈ Lw, and add the pair (id(w), i) to a list Iv that is stored at v. Then, for each v ∈ T1,
lexicographically sort the list Iv and obtain all the intersections involving v. Therefore,
computing all the intersections and building the successor data-structures takes O(|Σ|kn)
time. The total preprocessing time is O(nm + |Σ|kn + |Σ|k/2n lg(min{n,m})).

In order to speed up the query time, we use the technique of fractional cascading [5].
Using a variant of this technique that is described in the next section, we can preprocess
T1 such that searching for a key x in all the successor data-structures of the vertices of
some path P in T1 is done in O(|P | lg lg |Σ|+lg lg |D′|) time. Recall that in order to answer
a query, we need to locate id(w) in the successor data-structures of v for every paired
vertices v ∈ P1 and w ∈ P2. In order to use the fractional cascading speedup, we need to
decrease the number of different keys in the vertices of P2. Note that we can give the same
key to several vertices of T2 if their corresponding strings have different lengths. Thus, we
partition the vertices of T2 into paths Q1, . . . , Qr using heavy path decomposition [19].
This decomposition has the property that a path from some vertex of T2 to the root passes
through at most lg |T2| different paths in the decomposition. We now define id(w) to be
index i of the path Qi that contains w.

Now, locating id(w) in the successor data-structures of v for every paired vertices
v ∈ P1, w ∈ P2 is done by grouping all vertices w ∈ P2 with the same key i, and per-
forming a search for i in all the successor data-structures of the vertices of some sub-path
of P1 (the subpath that contains all the vertices in P1 between the highest and lowest
vertices of P1 that are paired to vertices in P2 with key i). We have that there are at most
min{m, lg |T2|} = O(min{m, lg |D′|}) different keys in the vertices of P2, and the different

subpaths of P1 that correspond to the different keys in P2 are disjoint. Therefore, the time
to answer a query is O(m lg lg |Σ|+ min{m, lg |D′|} lg lg |D′|)

4.1 Fractional cascading

Let T be a rooted tree of maximum degree d. Each vertex v of T has a set Cv ⊆ {1, . . . , U}.
The goal is to preprocess T in order to answer the following queries “given a connected
subtree T ′ of T and an integer x, find the successor of x in Cv for every v ∈ T ′”. The
fractional cascading technique of [5] gives search time of O(|T ′| lg d + lg lg U), with linear
time preprocessing. We now present a variant of fractional cascading that gives better
search time (our construction is similar to the one in [28]).

The preprocessing of T is as follows. For each vertex v of T construct a list Av whose
elements are kept in a non-decreasing order (the order of constructing the Av lists is from
the leaves up). For a leaf v, Av contains exactly the elements of Cv. For an internal vertex
v, Av contains all the elements of Cv. Additionally, for every child w of v, Av contains
every second element of Aw Each element of Av stores a pointer to its successor in the set
Cv. An element of Av which came from a set Aw keeps a pointer to its copy in Aw. This
pointer is called a w-bridge.

Handling a query T ′, x is done by finding the successor of x in each set Av for v ∈ T ′.
Then, using the successor pointers, the successor of x in each set Cv is obtained. Suppose
we have found the successor y of x in Av and we now wish to find the successor y′ of x in
Aw, where w is a child of v. If we know the first element that appears after y in Av and
has a w-bridge, then we can follow the bridge to Aw and y′ is either the element at the end
of the bridge or the element preceding it in Aw.

In order to efficiently find the first w-bridge after some element of Av, perform additional
preprocessing: Partition the elements of each list Av into blocks B1

v , B2
v , . . . , B

d|Av |/de
v of d

consecutive elements each (except perhaps the last block). Let w1, . . . , wd′ be the children
of v. For each block Bi

v build an array Li
v, where Li

v[j] is the location of the first wj-bridge
that appear in the blocks Bi+1

v , Bi+2
v , . . . , B

d|Av |/de
v . Moreover, for all j, build a successor

data-structures Si,j
v that contains all the elements of the block Bi

v that have a wj-bridge.
The key of an element in Si,j

v is its rank in the block Bi
v.

Given an element y of Av, finding the first element of Av starting from y that has a wj-
bridge is done in O(lg lg d) time. Therefore, the overall search time is O(|T ′| lg lg d+lg lg U)

5 Conclusion and Open Problems

We have shown two solutions for the subset dictionary query problem: one based on building
a trie for D′ and one based on building two tries. We conjecture that the trie of D′ can be
built in O(nm + |Σ|kn) time.

References

1. G.R. Abecasis, R. Martin, and S. Lewitzky. Estimation of haplotype frequencies from diploid data.
American Journal of Human Genetics, 69(4 Suppl. 1):114, 2001.

2. A. Amir, A. Apostolico, G.M. Landau, and G. Satta. Efficient text fingerprinting via parikh mapping.
Journal of Discrete Algorithms, 1(5-6):409–421, 2003.

3. A. Apostolico, C.S. Iliopoulos, G.M. Landau, B. Schieber, and U. Vishkin. Parallel construction of a
suffix tree with applications. Algorithmica, 3:347–365, 1988.

4. Dumitru Brinza, Jingwu He, Weidong Mao, and Alexander Zelikovsky. Phasing and missing data
recovery in family trios. In Proceedings of the 5th International Conference on Computational Science
(ICCS), pages 1011–1019, 2005.

5. B. Chazelle and L. J. Guibas. Fractional cascading: I. a data structuring technique. Algorithmica,
1(2):133–162, 1986.

6. A.G. Clark. Inference of haplotypes from pcr-amplified samples of diploid population. Molecular Biology
and Evolution, 7(2):111–122, 1990.

7. R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with errors and don’t
cares. In Proceedings of the 36th annual ACM Symposium on Theory Of Computing (STOC), pages
91–100, 2004.

8. R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard matching. In Proceedings
of the 34th annual ACM Symposium on Theory Of Computing (STOC), pages 592–601, 2002.

9. R. Cole, T. Kopelowitz, and M. Lewenstein. Suffix trays and suffix trists: structures for faster text in-
dexing. In Proceedings of the 33rd International Colloquium on Automata, Languages and Programming
(ICALP), pages 358–369, 2006.

10. G. Didier, T. Schmidt, J. Stoye, and D. Tsur. Character sets of strings. Journal of Discrete Algorithms,
to appear.

11. L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molecular haplotype frequencies in a
diploid population. Molecular Biology and Evolution, 12(5):921–927, 1995.

12. D. Fallin and N.J. Schork. Accuracy of haplotype frequency estimation for biallelic loci, via the
expectation-maximization algorithm for unphased diploid genotype data. American Journal of Hu-
man Genetics, 67(4):947–959, 2000.

13. D. Gusfield. Haplotype inference by pure parsimony. In CPM, pages 144–155, 2003.
14. D. Gusfield and S.H. Orzack. Haplotype inference. In CRC handbook on bioinformatics (S. Aluru

Editor), 2005.
15. T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. J. of Algorithms, 41(1):69–85,

2001.
16. M.T. Hajiaghayi, K. Jain, K. Konwar, L.C. Lau, I.I. Mandoiu, and V.V. Vazirani. Minimum multicol-

ored subgraph problem in multiplex pcr primer set selection and population haplotyping. In Proceedings
of the 6th International Conference on Computational Science (ICCS 2006), Part II, pages 758–766,
2006.

17. B.V. Halldórsson, V. Bafna, N. Edwards, R. Lippert, S. Yooseph, and S. Istrail. A survey of com-
putational methods for determining haplotypes. In Proceedings of the DIMACS/RECOMB Satellite
Workshop on Computational methods for SNPs and haplotype inference, pages 26–47, 2002.

18. E. Halperin and R.M. Karp. The minimum-entropy set cover problem. In Proceedings of the 31st
annual International Colloquium on Automata, Languages and Programming (ICALP), pages 733–744,
2004.

19. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM Journal of
Computing, 13(2):338–355, 1984.

20. M.E. Hawley and K.K. Kidd. Haplo: A program using the em algorithm to estimate the frequencies of
multi-site haplotypes. Journal of Heredity, 86:409–411, 1995.

21. L. Helmuth. Genome research: Map of human genome 3.0. Science, 5530(293):583–585, 2001.

22. P. Indyk. Faster algorithms for string matching problems: Matching the convolution bound. In Pro-
ceedings of the 39th annual Symposium on Foundations of Computer Science (FOCS), pages 166–173,
1998.

23. R.M. Karp, R.E. Miller, and A.L. Rosenberg. Rapid identification of repeated patterns in strings, trees
and arrays. In Proceedings of the 4th annual ACM Symposium on Theory Of Computing (STOC), pages
125–136, 1972.

24. Z.M. Kedem, G.M. Landau, and K.V. Palem. Parallel suffix-prefix-matching algorithm and applications.
SIAM Journal of Computing, 25(5):998–1023, 1996.

25. R. Kolpakov and M. Raffinot. New algorithms for text fingerprinting. In Proceedings of the 17th annual
symposium on Combinatorial Pattern Matching (CPM), pages 342–353, 2006.

26. J.C. Long, R.C. Williams, and M. Urbanek. An E-M algorithm and testing strategy for multiple-locus
haplotypes. American Journal of Human Genetics, 56(2):799–810, 1995.

27. J. Marchini, D. Cutler, N. Patterson, M. Stephens, E. Eskin, E. Halperin, S. Lin, Z.S. Qin, H.M. Munro,
G. Abecasis, and P. Donnelly for the International HapMap Consortium. A comparison of phasing
algorithms for trios and unrelated individuals. American Journal of Human Genetics, 78:437450, 2006.

28. Q. Shi and J. JáJá. Novel transformation techniques using q-heaps with applications to computational
geometry. SIAM Journal of Computing, 34(6):1471–1492, 2005.

29. P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space. Infor-
mation Processing Letters, 6(3):80–82, 1977.

30. P. Zhang, H. Sheng, A. Morabia, and T. C. Gilliam. Optimal step length em algorithm (oslem)
for the estimation of haplotype frequency and its application in lipoprotein lipase genotyping. BMC
Bioinformatics, 4(3), 2003.

