
Sparse Normalized Lo
al AlignmentNadav Efraty� Gad M. LandauyApril 18, 2005Abstra
tGiven two strings, X and Y both of length O(n) over alphabet �, a basi
 problem (lo
alalignment) is to �nd pairs of similar substrings, one from X and one from Y . For substringsX 0 and Y 0 from X and Y , respe
tively, the metri
 we use to measure their similarity is normal-ized alignment value: LCS(X 0; Y 0)=(jX 0j + jY 0j). Given an integer M we 
onsider only thosesubstrings whose LCS length is at least M . We present an algorithm that reports the pairsof substrings with the highest normalized alignment value in O(n log j�j + rM log logn) time(r� the number of mat
hes between X and Y ). We also present an O(n log j�j + rL log logn)algorithm (L = LCS(X;Y )) that reports all substring pairs with a normalized alignment valueabove a given threshold.1 Introdu
tionSequen
e 
omparison is an extensively studied topi
. Many textbooks are devoted to the subje
t [5,9, 10, 12, 19, 20℄. Its appli
ations are numerous and in
lude areas su
h as �le 
omparison, sear
h forsimilarity between bio-sequen
es, information retrieval and XML querying, musi
 retrieval, image
omparison and an almost in�nite number of other sequen
e 
omparison appli
ations.While for appli
ations su
h as the 
omparison of protein sequen
es the methods of s
oring 
aninvolve arbitrary s
ores for symbol pairs and for gaps among unaligned symbols, for uses in other
ontexts su
h as text 
omparison or s
reening sequen
es, simple unit s
ore s
hemes suÆ
e. Two ofthese, the Longest Common Subsequen
e (LCS) and the edit distan
e measures, have been studiedextensively, for the unit 
ost nature of their s
oring provides 
ombinatorial leverage not found inthe more general framework [6, 13, 14, 16℄.The Longest Common Subsequen
e measures the length of the longest identi
al subsequen
e ofthe two strings. Edit distan
e measures the minimal number of operations that are required totransform one string into the other one, when the permitted operations are substitution, deletion,and insertion. The goal is to �nd su
h a sequen
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value when ea
h edit operation has an assigned value. These two algorithms basi
ally rely ondynami
 programming te
hniques.As the LCS and edit distan
e algorithms evolved, the notion of the sparsity of the essential datain the dynami
 programming table be
ame the key to the a

eleration of the algorithms.The evolution of the LCS algorithms 
an be tra
ked by examining [4, 6, 11, 18℄, whi
h 
an beregarded as the su

essors of the 
lassi
 LCS algorithms of Hirs
hberg [13℄ and Hunt and Szyman-ski [14℄. For example, Eppstein et. al. [11℄ presented an O(n log j�j + d log log (min fd; nm=dg))algorithm, where n and m are the sizes of the input strings, j�j is the size of the alphabet and d isthe number of dominant mat
hes.While the LCS and edit distan
e algorithms are measures of the global similarity between twostrings, in many appli
ations, two strings may not be very similar in their entirety, but may 
ontainregions that are very similar. The task is to �nd and extra
t a pair of regions, one from ea
h ofthe two given strings, that exhibit a strong degree of similarity. This is 
alled the lo
al similarityor the lo
al alignment problem, as de�ned in [12℄:De�nition 1 Given two strings, X and Y , �nd substrings X 0 and Y 0 of X and Y , respe
tively,whose similarity (optimal global alignment value) is maximum over all pairs of substrings from Xand Y .This de�nition 
an be extended to �nding not only the most similar substrings, but also, all pairsof substrings whose similarity value ex
eeds a 
ertain similarity level (e.g. 80%).The lo
al similarity problem is, in many senses, more 
hallenging than that of the global similarity.There are no 
lear starting and ending points, so any entry has the potential of being the �rst orthe last of an optimal alignment. In addition, one single mat
h is always a perfe
t lo
al alignment.Thus, a lo
al alignment algorithm might report all the mat
hes as optimal alignments, while longerand more meaningful alignments that are imperfe
t will not be reported.One of the most important and 
ommonly used lo
al 
omparison te
hniques was introdu
ed bySmith and Waterman [21℄. Their algorithm is broadly used in mole
ular biology, as well as in other�elds where lo
al sequen
e 
omparison is pra
ti
ed.A

ording to a re
ent paper by Arslan, E�ge
io�glu and Pevzner [7℄, the Smith Waterman algorithmhas two weaknesses that make it non optimal as a similarity measure. The �rst weakness is
alled the mosai
 e�e
t. This term des
ribes the algorithm's inability to dis
ard poorly 
onservedintermediate segments, although it 
an dis
ard poor pre�xes or suÆxes of a segment. The se
ondweakness is known as the shadow e�e
t. This term des
ribes the tenden
y of the algorithm tolengthen long alignments with a high s
ore rather than shorter alignments with a lower s
ore anda higher degree of similarity.Some of the extensive work on the Smith Waterman algorithm as a measure of similarity is detailedin [1, 2, 3, 7, 23℄. A

ording to these studies, the normalization of the values of the alignments bytheir length will yield a better measure of the similarity level of the lo
al alignments.De�nition 2 The normalized alignment value of two substrings, X 0 and Y 0, is S(X 0; Y 0)= (jX 0j+jY 0j), where S is the global alignment value (of X 0 and Y 0) a

ording to one of the s
oring s
hemes.Arslan et al. [7℄ suggested a measure designed for the purpose of �nding the most similar pair of2



substrings whose length is signi�
ant. The measure is based on the reformulation of the abovede�nition of the normalized alignment's value. Their de�nition is as follows:De�nition 3 The normalized alignment value of two substrings is S(X 0; Y 0)=(jX 0j + jY 0j + L),where X 0 and Y 0 are substrings of X and Y , S(X 0; Y 0) is the global maximal s
ore of the alignmentof X 0 and Y 0, and L is a positive number that 
ontrols the amount of normalization.The ratio between L and (jX 0j+ jY 0j) determines the in
uen
e of L on the value of the normalizedsequen
e alignment under that metri
. For short alignments it might lower the normalized sequen
evalue dramati
ally, while for long alignments the e�e
t on the value should be minor. Using thismeasure, it is less likely that short alignments will re
eive high normalized sequen
e alignmentvalues.The weakness in this, otherwise e�e
tive, approa
h for dis
arding alignments whose length is in-suÆ
ient is the reformulation of the original de�nition of the normalized value (de�nition 2). Byaltering the de�nition, the out
omes will a

ordingly be di�erent than the expe
ted out
omes ofthe original problem under the original de�nition.The time 
omplexity of the measure, suggested by Arslan et al., is O(n2 logn), where n is the size ofthe input strings. The spa
e 
omplexity of this measure, whi
h is O(n2), is derived from the spa
e
omplexity of the Smith Waterman algorithm, whi
h is utilized repeatedly in order to 
ompute thevalues of S(X 0; Y 0).In this paper, we present an algorithm designed for the 
omputation of the lo
al similarity nor-malized values of substrings of the two input strings whose lengths are not too short to be of sig-ni�
an
e. The presented algorithm utilizes the LCS metri
 for the 
omputation of the normalizedlo
al alignment value and exploits the sparsity of the essential data in the dynami
 programmingtables.De�nition 4 An entry (i; j) in the dynami
 programming table of two sequen
es, jXj = n andjY j = m, is 
alled a mat
h if and only if Xi = Yj. The number of su
h entries in the table isdenoted by r where obviously, r � nm [4℄.The LCS, whi
h is a global measure rather than a lo
al measure, is made into a lo
al measure ofsimilarity by dividing the LCS value of the two substrings by the sum of their lengths. Substringsthat maximize that value are the most similar. Note that the alignment with the highest similaritylevel must begin and end in a mat
h. Otherwise, there is a better alignment with the same LCSand a lower value of jXj+ jY j.Though the LCS appears, at �rst glan
e, to be a less powerful metri
 if 
ompared with other s
orings
hemes, it 
an be used to 
apture alignments whose mat
hes density ratio is high, indi
ating thattheir similarity level is high. Clearly, the LCS metri
 with its simple s
oring s
heme is suÆ
ient tosolve numerous problems from a variety of domains. Indeed, even appli
ations and problems thatutilize more 
ompli
ated s
oring s
hemes, su
h as 
omparisons of protein sequen
es, may bene�tfrom this algorithm.LetX 0 and Y 0 be substrings of the input stringsX and Y , respe
tively. A minimal length 
onstraint,denoted herein byM , may be either a minimal length 
onstraint on the sum of the lengths jX 0j+jY 0j,or a minimal length 
onstraint on the length of the longest 
ommon subsequen
e (LCS) of X 0 and3



Y 0. We 
hose to refer to the 
onstraint on the LCS of X 0 and Y 0 be
ause it better suits an algorithmthat exploits the sparsity of the mat
hes in the dynami
 programming tables.The minimal length 
onstraint (M) is enfor
ed in a straightforward fashion, without the need toreformulate the original problem that in the 
ase of normalized LCS is LCS(X 0; Y 0)=(jX 0j+ jY 0j).The value of that minimal 
onstraint is expe
ted to be problem related rather than input related,and it is expe
ted to be of a mu
h smaller s
ale than the lengths of the input strings.De�nition 5 Best(M)XY - the highest normalized alignment value of any of the substrings pairs,of strings X and Y , with LCS value higher than M .Results:Given two strings X and Y ea
h of length n, and a length 
onstraintM , we will introdu
e two algo-rithms that 
ompute the value of Best(M)XY . The �rst algorithm is dis
ussed thoroughly in se
tion2. This normalized lo
al LCS algorithm reports substring pairs that a
hieve the value Best(M)XYand whose 
ommon subsequen
e is longer than M . Alternatively, it may output substring pairswhose similarity is higher than a predetermined value and whose 
ommon sequen
e is longer thanM . The time 
omplexity of that algorithm is O(n log j�j+ rL log log n) and its spa
e 
omplexity isO(rL+ nL) where L = LCS(X;Y ).The se
ond algorithm, dis
ussed in se
tion 3, is similar to the �rst in its ability to 
ompute thenormalized value of Best(M)XY , as well as the substring pairs that a
hieve that value. The time andspa
e 
omplexity of that algorithm are O(n log j�j+ rM log log n) and O(rM + nM), respe
tively.Sin
e we expe
t M to be mu
h smaller than L, the se
ond algorithm is more eÆ
ient than the �rstone. But, it does not report long substring pairs whose similarity ex
eeds a predetermined value,if this value is lower than the normalized value of Best(M)XY .Note that for 100% similarity, we demand that LCS(X;Y ) = jXj ^ LCS(X;Y ) = jY j ; thus, thenormalized value is 12 . Similarly, any normalized value v represents a similarity level that is 200�v.Our algorithms avoid the shadow and mosai
 e�e
ts. The shadow e�e
t is avoided sin
e for anynumber of mat
hes, the shortest alignment is 
onstru
ted. Longer alignments would be preferableover shorter alignments only if the longer ones 
ontain more mat
hes, and their normalized value ishigher. The mosai
 e�e
t is avoided sin
e the normalized value of a suÆ
iently long alignment witha poor intermediate segments would be lower than the normalized values of its pre�x and suÆx,whi
h are 
omputed separately.2 The O(rL log logn) normalized lo
al LCS algorithmIn this se
tion we dis
uss our basi
 algorithm for the 
omputation of Best(M)XY and for the 
ompu-tation of the alignments that ex
eed a 
ertain similarity level, using the LCS metri
. The dis
ussionbegins with the de�nitions and lemmas that are needed for the understanding of the algorithm.Ea
h of the major stages of the algorithm, as well as the 
omplexity analysis, will be dis
ussed ina separate subse
tion. Finally, an alternative algorithm would be dis
ussed.The input is two strings, jXj = n and jY j = m (m = O(n)). As in [4℄, our algorithm 
onstru
tsa data stru
ture that substitutes the dynami
 programming tables that are used by other lo
al4



similarity algorithms. Impli
itly, many of the properties of the dynami
 programming tables aremaintained in our sparse representation of it. A mat
h (i; j) is a mat
h that will be in entry (i; j)in the analogous dynami
 programming table.A 
hain was de�ned in [8℄ as a sequen
e of mat
hes that is stri
tly in
reasing in both 
omponents,i.e., two mat
hes (i; j) and (i0; j0) may be part of the same 
hain if and only if (i < i0 ^ j < j0) _(i > i0^ j > j0). Let us present the extended de�nition of a 
hain that will be used throughout thiswork.De�nition 6 A k-Chain(i;j)(i0;j0) denotes a sequen
e of k mat
hes that is stri
tly in
reasing in both
omponents, whose head is the mat
h (i; j) and whose tail is the mat
h (i0; j0).� k = LCS(Xj:::j0; Yi:::i0). Xj:::j0 and Yi:::i0 are substrings of the input strings X and Y , respe
-tively.� Length of k-Chain(i;j)(i0;j0): The length is the sum of the lengths of Xj:::j0 and Yi:::i0 (i.e. j0 �j + i0 � i).� k-Chain(i;j) denotes the best 
hain of k mat
hes starting from (i; j), i.e., the 
hain of theshortest possible length that has k mat
hes.� Normalize value of k-Chain(i;j)(i0;j0): The normalized value is kj0�j+i0�i .For ea
h mat
h (i; j), the algorithm 
onstru
ts k-Chain(i;j) for every possible value of k (1 � k �LCS(X;Y )). The algorithm starts by marking the positions of the mat
hes between the inputstrings. Later, the mat
hes are pro
essed in de
reasing row number order (bottom to top). Thepro
essing of ea
h row has two stages.1. First stage: The algorithm 
onstru
ts the best k-Chains of any possible value of k, startingfrom ea
h of the mat
hes in the row. This is done using data stru
tures that were preparedduring the pro
essing of previous rows.2. Se
ond stage: The mat
hes of the pro
essed row and additional information regarding theirk-Chains are inserted into the data stru
tures, in order to prepare them for future use duringthe pro
essing of the su

eeding rows.A major obsta
le in the pro
ess of 
onstru
ting k-Chains is that any attempt to 
onstru
t (k+1)-Chain(i;j) simply by tying another mat
h to the tail of k-Chain(i;j) (whi
h is the best 
hain of kmat
hes starting from (i; j)) will not ne
essarily produ
e optimal results, as seen in �gure 1 wherethe 2-Chain, 3-Chain and 4-Chain of the mat
h (2; 2) do not share 
ommon mat
hes. One wayto deal with that diÆ
ulty is to try to add one mat
h to the tail of all the possible 
hains of kmat
hes starting from (i; j). This solution would, indeed, 
onstru
t (k + 1)-Chain(i;j), but it mayprove overly 
omplex. We take the opposite approa
h. From among all of the k-Chains that startlower than and to the right of (i; j), we 
hoose the one that, when 
on
atenated to (i; j) as its head,
reates (k + 1)-Chain(i;j). The following lemma proves the 
orre
tness of this strategy.Lemma 1 For any given value of k, and for a mat
h (i; j), (k+1)-Chain(i;j) is a 
hain that startsfrom (i; j) and 
ontinues with k-Chain(i0;j0), i0 > i ^ j0 > j.5
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Figure 1: The dynami
 programming table of the strings ab
ade
fh
 (X) and gbfhe
gggfdef (Y ). Themat
hes are marked as 
ir
les. 2-Chain(2;2)(6;3), whi
h is 2-Chain(2;2), is marked with a solid line. Its length is6� 2 + 3� 2 = 5 and its normalized value 25 . 3-Chain(2;2), 4-Chain(2;2) and 5-Chain(2;2) are marked withdashed lines, dotted lines, and arrowed lines, respe
tively.Proof: Assume that instead of using k-Chain(i0;j0) we use another 
hain of k mat
hes starting from(i0; j0) whi
h yield a better 
hain of k+1 mat
hes for (i; j). Sin
e the length of the 
hain from (i; j)to (i0; j0) remains identi
al, regardless of the k mat
hes' suÆx starting from (i0; j0), the di�eren
ein the length between two potential 
hains depends only on the length of the 
hain of k mat
hesstarting from (i0; j0). Thus, if (k + 1)-Chain(i;j) passes through (i0; j0), but its suÆx is di�erentthan k-Chain(i0;j0), it implies that we have 
onstru
ted a better 
hain of k mat
hes starting from(i0; j0), thereby 
ontradi
ting the de�nition of k-Chain(i0;j0) (de�nition 6).The above lemma provides a simple O(r2L) time 
omplexity algorithm for the problem. For ea
hmat
h (i; j), this algorithm would 
onstru
t (k + 1)-Chain(i;j), 1 � k < L, by examining all O(r)potential heads of k-Chains and tying (i; j) to the most appropriate k-Chain. The next subse
tionwill demonstrate how to improve that time 
omplexity by narrowing the sear
h performed by (i; j)to a single mat
h whi
h must be the head of the appropriate k-Chain.Let us present the skeleton of the algorithm. The �rst stage, whi
h is the prepro
essing stage, issimilar to the typi
al prepro
essing of the sparse LCS algorithms [4℄. Its output is a list of thedi�erent symbols of �, where ea
h symbol has a list of the indi
es of its appearan
es in the inputstring X. After exe
uting this stage, we 
an view the mat
hes of ea
h row i by examining the listof symbol � = Yi (� 2 �). The two stages of the algorithm and the Report Best(M)XY pro
edurewill be dis
ussed in the following subse
tions. 6



O(rL log logn) normalized lo
al alignment algorithmFor ea
h row, 
orresponding to a symbol Yi, 
reate an ordered list of the mat
hes in the row.i mRepeat until i = 0k  1Stage oneRepeat while 
hains with growing k values are 
onstru
tedConstru
t (k + 1)-Chains(mat
hes of row i; k)k  k + 1Stage twoRepeat while k > 0Insert Mat
hes(mat
hes of row i; k)k  k � 1i i� 1Report Best(M)XY2.1 Stage two - The 
reation and updating of rangesThe purpose of this stage is to insert the 
hains that were 
onstru
ted during the �rst stage into adata stru
ture that will enable us to narrow the sear
h performed by ea
h of the su

eeding mat
hesto a single k-Chain. L data stru
tures are maintained for k-Chains of ea
h number of mat
hes k(1 � k � L). Our dis
ussion 
ommen
es with formal de�nitions of the intuitive 
on
epts of rangeand owner.De�nition 7 Range: A range of a mat
h (i; j) is an area of the dynami
 programming table thatstret
hes from 
olumn j�1 and to the left and from row i�1 and above, i.e., it is (i0:::i�1; j0:::j�1)for ea
h i0 and j0, 0 � i0 < i ^ 0 � j0 < j. Hen
e ea
h mat
h has i� j su
h ranges.De�nition 8 Mutual range: The range of one mat
h may partially or fully 
ontain a range ofanother mat
h. The overlap area that is part of the range of both of the mat
hes is 
alled a mutualrange.De�nition 9 Owner of a range: The mat
h (i; j) is the owner of a range if k-Chain(i;j) is thesuÆx of all (k + 1)-Chains that start inside the range.L separated lists of ranges and their owners are maintained by the algorithm. The following lemmaprovides the key to determining the 
orre
t ranges and their owners in ea
h of these lists.Lemma 2 A mutual range of two mat
hes is owned 
ompletely by one of them.7
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ases from lemma 2. In the �gure representing 
ase 1, the range that is surrounded bythe dashed line is owned by (i; j). In the �gure representing 
ase 2, the mutual point is marked with a starand the mutual range is surrounded by a dashed line.Proof: The k-Chain that is headed by a mat
h (i; j) may be the suÆx of any k + 1 mat
hes 
hainstarting from any of the mat
hes in the ranges of (i; j). Note, however, that these 
hains are notne
essarily the (k + 1)-Chain of these mat
hes. For all mat
hes that are in a range of a singlemat
h (i; j) (i.e., they are not in a mutual range), the only way to 
onstru
t a (k + 1)-Chain is topass through (i; j). Thus, (i; j) will be the owner of that range. Let us deal with the two di�erentsettings of two mat
hes that share a mutual range. These mat
hes will be p (i; j) and q (i0; j0).1. i � i0^j � j0: The mutual range of p and q is (0:::i�1; 0:::j�1). A

ording to their positions,p may use the k� 1 suÆx of k-Chainq as part of a possible k-Chain from it. Hen
e, for ea
hmat
h in the mutual range, a (k + 1)-Chain through p is either equal to or better than the
hain through q. Thus, p owns the mutual range.2. i < i0 ^ j > j0: The mutual range of p and q is (0:::i � 1; 0:::j0 � 1). Let us de�ne theentry (i � 1; j0 � 1) as the mutual point (MP ) of p and q. MP is the bottommost andrightmost entry of the mutual range, and it is not a mat
h. The length of the 
hain fromany mat
h z in the mutual range to either p or q is equal to the length of the 
hain fromz to MP (whi
h is equal for both p and q) plus the length of the 
hain from MP to eitherp or q (for mat
h z in 
oordinates (i00; j00), i00 < i ^ j00 < j0, the length of the 
hain to pis (i � i00) + (j � j00), and the length of the 
hain from z to p that passes through MP is(i � (i � 1) + j � (j0 � 1)) + ((i � 1) � i00 + (j0 � 1) � j00) = (i � i00) + (j � j00)). Sin
e thedistan
es from MP to both p and q are predetermined (they are j� j0+2 and i0� i+2 for pand q, respe
tively), the one whose tail is 
loser to MP also forms a shorter 
hain with anymat
h z in the mutual range. Let the length of k-Chainp be Lp and the length of k-Chainqbe Lq. p will be the owner of the mutual range if Lp + (j � j0) � Lq + (i0 � i) and q will beits owner otherwise.
8



Observations:1. For the given mat
hes p (i; j) and q (i0; j0), su
h that i < i0 ^ j > j0, and for the given lengthsLp and Lq of k-Chainp and k-Chainq, respe
tively, if Lp + (j � j0) > Lq + (i0 � i) then theowner of the mutual range is q and the range owned by p is blo
ked from the left by therange of q. If Lp + (j � j0) < Lq + (i0 � i), then the owner of the mutual range is p and therange owned by q is blo
ked from row i and above by the range of p. Sin
e the algorithmpro
esses the mat
hes in de
reasing row number order, mat
hes whose row 
oordinate valueis higher than i will not be pro
essed later by the algorithm. Thus, the range owned by q(i.e., (i:::i0 � 1; j00:::j0), j00 < j) is no longer relevant, and it would not be
ome relevant later.No range above row i would be owned by q, and therefore, it may be extra
ted from the datastru
ture of the heads of k-Chains. In the 
ase of an equality (Lp + (j � j0) = Lq + (i0 � i)),we prefer p over q as the owner of the mutual range be
ause it gives us the opportunity toextra
t q from the data stru
ture without the loss of important information.2. The range owned by any mat
h (i; j) is (0:::i � 1; j0:::j � 1), 0 � j0 < j. The range alwaysrea
hes row 0 be
ause if the range is 
ompletely blo
ked from above at row i0 < i, then forany mat
h above it this range is no longer relevant. The range is extra
ted, and therefore
eases to exist. If the range is partially blo
ked from above at row i0 < i and 
olumn j00 < j(see the �rst setting in the above lemma), the range (0:::i� 1; j00 :::j� 1) whi
h is equal to theright part of the of the original range, still rea
hes row 0.3. For a given group of mat
hes that are the heads of k-Chains, the mat
hes whose row numberis the lowest (at a given time) must own (at that time) the ranges that stret
h between theirrow and row 0.The data stru
ture: LROk denotes the list of ranges and their owners that are the heads ofk-Chains. Su
h a list is maintained for ea
h value of k, 1 � k � L. Ea
h su
h list of rangeowners is ordered by the 
olumn. The range of an owner in LROk, whose position is (i; j), is(0:::i� 1; j0:::j � 1), where j0 < j is the 
olumn of the left neighbor of (i; j) in LROk. An exampleof an LROk is given in �gure 3. In addition to ea
h owner, we keep the length of the k-Chainstarting from it.The LROks are implemented as Johnson Trees [15℄. Expli
itly, LROk is held in data stru
tures forintegers in the range [0; n℄. These data stru
tures support the operations insert, extra
t and lookfor the range that a given mat
h is in.The algorithm pro
esses the rows in de
reasing row number order. Thus, row i is pro
essed onlyafter rows m to i + 1 were pro
essed and mat
hes that are the heads of k-Chains were insertedinto LROk. When the mat
h p (i; j), whi
h is the head of a k-Chain, is pro
essed, then a

ordingto observation 3 above, it will always be inserted into LROk as the range whose right boundary is
olumn j � 1. Later, the following update operations are performed in LROk:� Right boundary: If LROk has another mat
h q (i0; j0) su
h that i < i0^j = j0, then by lemma2, the range of q that is above row i is owned 
ompletely by p and thus, q is extra
ted fromLROk.� Left boundary: The left neighboring range, whose owner is q (i0; j0) (i0 � i ^ j0 < j), isexamined. If i0 = i, the left boundary of the range of p is j0 (lemma 2, 
ase 1). If i0 > i, we9



Row i

Row 0

Figure 3: The LROk. Mat
hes that are heads of k-Chains are marked by 
ir
les. The white 
ir
lesare the owners of the ranges that are in LROk. Ea
h white 
ir
le is the owner of the range to itsleft. The bla
k 
ir
les are owners that were extra
ted from LROk. The stars represent the mutualpoints, where the boundary of ranges were set a

ording to lemma 2, 
ase 2.use observation 1 to determine the owner of the mutual range of p and q. If q is the owner ofthe mutual range, it sets the left boundary of the range of p. If p is the owner of the mutualrange, q is extra
ted from the data stru
ture (impli
itly, the range of p was extended) andthe left neighbor of q is examined in the same fashion.Insert Mat
hes(mat
hes of row i; k)Repeat until all mat
hes of row i that are the heads of k-Chains are inserted into LROk.Insert the mat
h (i; j) into LROk in the appropriate position for j.If LROk has a previous mat
h with 
olumn 
oordinate j, then extra
t it.Repeat while for (i0; j0), whi
h is the left neighbor of (i; j) in LROk,(the length of k-Chain(i0;j0) + i0 � i) � (the length of k-Chain(i;j) + j � j0)Extra
t (i0; j0) from LROk.2.2 Stage one - The 
onstru
tion of (k + 1)-ChainsIn this stage, we will 
ompute the (k + 1)-Chains of all mat
hes of row i, where 1 � k � L and1 � i � m. The input for this stage is the list of ranges and their owners (LROk) that were
omputed for rows m to i+ 1 and were dis
ussed in the previous subse
tion.For a mat
h p, (k + 1)-Chainp is 
onstru
ted simply by 
on
atenating p to the mat
h q, whi
h isthe owner of the range 
ontaining p. Expli
itly, q is the mat
h in LROk whose 
olumn 
oordinateis the 
losest to that of p from the right.The data stru
ture: All the mat
hes are ordered a

ording to their positions. Every mat
h has10



information regarding all the k-Chain, 1 � k � L, starting from it. For a given mat
h p, the datastru
ture maintains a re
ord where for any given k value, the length of k-Chainp is re
orded, alongwith a pointer to a mat
h q, su
h that (k � 1)-Chainq is the suÆx of k-Chainp. Owners of rangesthat were extra
ted from LROk are not deleted from that data stru
ture.Constru
t (k + 1)-Chains(mat
hes of row i; k)Repeat until all mat
hes of row i are pro
essed.Add the k's element of the list of (i; j).- Its pointer points to the mat
h (i0; j0), the owner of the range of (i; j) in LROk- Its length value = length of k-Chain(i0;j0) + (i0 � i+ j0 � j)2.3 Report Best(M)XYAfter the mat
hes of row 1 have been pro
essed, the data stru
ture wherein every mat
h p hasa re
ord with all of the k-Chainp and their lengths, is 
ompleted. Now, the re
ords of all of themat
hes are examined, the normalized value of any of the k-Chains, k �M , is 
omputed, and thehighest valued k-Chain, Best(M)XY , and its normalized value are 
omputed. Best(M)XY and its
orresponding substrings X 0 and Y 0 of the input strings X and Y , respe
tively, may be reportedby traversing the pointers of the data stru
ture of mat
hes.Alternatively, it is possible to report all of the 
hains and the 
orresponding substrings whosenormalized value is higher than a given normalized value, e.g. 80%. Su
h sequen
es may also bereported on the 
y during the operation of the algorithm.2.4 Complexity AnalysisLet us analyze the 
omplexity of ea
h of the stages of the algorithm.Prepro
essing stage: The 
omplexity of the prepro
essing stage is O(n log j�j), j�j � m, and the
olle
tive spa
e 
onsumed for the lists of all individual symbols is O(n). This stage is similar tothe typi
al prepro
essing of the sparse LCS algorithms [4℄.First stage: During the �rst stage of the pro
essing of ea
h mat
h, attempts are made to 
onstru
tk 
hains, 1 � k � L, where L = LCS(X;Y ) is the highest possible number of mat
hes in anyof the 
hains. Ea
h su
h attempt requires one query for the nearest neighbors on ea
h of the
orresponding LROks. The LROks are implemented as Johnson Trees [15℄. The time 
omplexityof ea
h su
h query is O(log logG), where G is the gap between the integer that was the subje
t ofthe operation (i.e., the 
olumn number of the pro
essed mat
h) and its right and left neighbors inthe list. In su
h lists when a pointer to one of the owners of the ranges is given, its prede
essor andsu

essor are reported in O(1) time 
omplexity be
ause a 
onne
ted list of the owners of rangesis also maintained. The spa
e 
omplexity of su
h a tree is O(n). Sin
e it is diÆ
ult to assess themean value of G be
ause of the 
onstant 
hanges in LROk, we refer to it as n. For all pra
ti
alpurposes, however, the mean value of G is lower than n. Hen
e, the total 
omplexity of all theiterations of all the r mat
hes is O(rL log log n).11



Se
ond stage: Ea
h mat
h is inserted and extra
ted no more than on
e from ea
h of the LROks.The total time 
omplexity of this entire operation is again O(rL log log n).Report Best(M)XY : For the retrieval of the highest normalized value and for the 
onstru
tion of theoptimal sequen
e (or the 
orresponding substrings), the algorithm must examine all the elementsin the re
ord of ea
h mat
h with a total time 
omplexity of O(rL).Hen
eforth, the time 
omplexity of the algorithm is O(n log j�j+ rL log logn)The spa
e 
omplexity is O(rL+nL). It is di
tated by the size of the data stru
ture for the mat
heswhere ea
h mat
h has a re
ord with pointers to no more than L other mat
hes, with one additionallength value re
orded with ea
h su
h pointer, and the spa
e needed for L LROk data stru
turesthat are, in fa
t, Johnson Trees of O(n) spa
e ea
h.2.5 An alternative algorithm for the management of the data stru
tureAn alternative te
hnique for managing the LROks that enables both queries and update operationsand does not defer the time 
omplexity of the above algorithm was presented in M�akinen [17℄. Asin the algorithm presented above, this te
hnique is based on the insertion of mat
hes that are theheads of k-Chains into an array Ak[1:::n℄ wherein the mat
h in ea
h 
olumn (if any) is the onewith the lowest row 
oordinate among the mat
hes of the 
olumn that have already been pro
essed.This is done a

ording to the �rst 
ase of lemma 2.In order to 
onstru
t (k+1)-Chains, queries are made in the array of k-Chains. Ea
h su
h queryis, in fa
t, a range minimum query (RMQ) in the k's array, where the range for the query is [j+1; n℄for a query of a mat
h (i; j).(k + 1)-Chain(i;j) is obtained by �nding a mat
h (i0; j0) that is the head of a k-Chain, su
h thatthe sum of the distan
e between (i; j) and (i0; j0), plus the length of k-Chain(i0;j0), denoted byL(i0;j0), is the minimum possible. Formally, we wish to �nd a mat
h (i0; j0) su
h that the expressioni0 � i+ j0 � j + L(i0;j0) is minimized.Let us rearrange the expression i0 � i + j0 � j + L(i0;j0) to [i0 + j0 + L(i0;j0)℄ � [i + j℄. In the laterexpression, it is 
lear that the right (left) side of the expression depends only on the mat
h (i; j)((i0; j0)). The value of the right (left) side remains the same, regardless of the mat
h (i0; j0) ((i; j)).Thus, to minimize the expression, all that is ne
essary is to �nd a mat
h (i0; j0) from the array ofmat
hes that are the heads of k-Chains whi
h minimizes the expression [i0 + j0 + L(i0;j0)℄. Afterthat minimal value and its 
orresponding mat
h (i0; j0) are found, we need only to sum the valueof the left side of the expression with that of the right side in order to 
ompute the length of(k + 1)-Chain(i;j).Let Ak denote the array of mat
hes that are the heads of k-Chains, Ak[j0℄ = [i0 + j0 + L(i0;j0)℄.Finding the position in the array with the minimum value is analogous to �nding the mat
h (i0; j0)whi
h minimizes the expression i0 � i+ j0 � j + L(i0;j0).Time 
omplexity: A

ording to [17℄, the position with the minimum value is reported through aone dimensional range minimum query. Su
h queries may be performed in O(log log n) time if thedata stru
ture in use is a Johnson Tree. An insertion of a mat
h into the Johnson Tree is alsoperformed in O(log logn) time.To 
on
lude, the 
omplexity of the algorithm presented in this subse
tion is identi
al to that of the12



algorithm presented in the previous subse
tions.3 The O(rM log logn) normalized lo
al LCS algorithmIn this se
tion we present an algorithm for the 
omputation of the normalized value of Best(M)XY .Su
h an algorithm may be ideal for s
reening input strings that do not rea
h a desired similaritylevel. Later, we will show that this algorithm may a
tually do more than just 
ompute the normal-ized value of Best(M)XY . It may also be used to 
onstru
t the longest 
hain that is Best(M)XY .The algorithm that was presented in the previous se
tion is 
apable of 
omputing Best(M)XY andits 
orresponding normalized value by 
onstru
ting the k-Chains, 1 � k � LCS(X;Y ), startingfrom ea
h of the mat
hes. In this se
tion we will prove that 
onstru
ting k-Chains for k � 2M � 1is suÆ
ient for the 
omputation of the value of Best(M)XY .Let us start with the de�nition of a sub-
hain, that will be followed by the 
laim that the normalizedvalue of a 
hain 
annot be higher than the normalized value of its best sub-
hain.De�nition 10 sub-
hain: A sub-
hain of a k-Chain is a path that 
ontains a sequen
e of x � k
onse
utive mat
hes of the k-Chain.Note that unlike a k-Chain, whi
h always starts and ends with a mat
h, any sub-
hain, ex
ept the�rst and the last of a given k-Chain, may start and end at any entry of the 
hain, even if it is nota mat
h. The �rst sub-
hain, whi
h is the pre�x of the k-Chain, always starts at the head of thek-Chain, and the last sub-
hain, whi
h is its suÆx, always ends at the tail of the k-Chain.Note also that a sub-
hain of x mat
hes has a normalized value that is less than or equal to thenormalized value of the x-Chain 
omprised of the same mat
hes, sin
e the sub-
hain may have anadditional length (at its front and rear).A

ording to de�nition 6, the normalized value of a given k-Chain whose length is ` is k̀ . Letus split this k-Chain into any number � k of non overlapping 
onse
utive sub-
hains, su
h thatk =P ki and ` =P `i. Hen
e, k̀ = P kiP `i . The normalized value of ea
h su
h sub-
hain is ki`i .Claim 1 k̀ � max(ki`i ).Proof: Let ki�`i� = max(ki`i ). Thus, for any i, ki`i � ki�`i� . The value of `i that represents the length ofthe i's sub-
hain must be positive, hen
e, ki`i � ki�`i� ! ki � `i� � ki� � `i. Sin
e it holds for any i,we get P(ki � `i�) �P(ki� � `i). Hen
e, k̀ = P kiP `i � ki�`i� = max(ki`i ).Note that if k̀ = max(ki`i ), then for any sub-
hain, ki`i = k̀ .A

ording to 
laim 1, 
onstru
ting all of the short sub-
hains is suÆ
ient to �nd the value ofBest(M)XY . Very short sub-
hains may have normalized values that are extremely high (e.g., ifwe 
onsider 1-Chains, then ea
h su
h 
hain would have a normalized value of 12 whi
h is equal to100% similarity) but do not re
e
t signi�
ant similarity between the input strings. Thus, in orderto 
ompute the value of Best(M)XY , it is ne
essary to 
onstru
t sub-
hains of at least M mat
hes.13



Lemma 3 Constru
ting all (2M � 1)-Chains is suÆ
ient for the 
omputation of the value ofBest(M)XY .Proof: Any k-Chain (k � M) 
an be split into 
onse
utive non overlapping sub-
hains of M to2M � 1 mat
hes. Chains with less than M mat
hes are not suÆ
ient, and (2M � 1)-Chains 
annot be split to sub-
hains of at least M mat
hes. A

ording to 
laim 1, the normalized value of thek-Chain is not better than the normalized value of its best sub-
hain.This 
on
ludes our 
laim that by 
onstru
ting 
hains of no more than 2M�1 mat
hes, the algorithm
an report the value of Best(M)XY . Now, let us turn to the 
laim that the O(rM log log n) algorithmmay also be used to report the longest 
hain that is Best(M)XY .When the normalized value of Best(M)XY equals 12 (100% similarity), the Best(M)XY 
hains andthe 
orresponding substring alignments 
an be found using the suÆx tree of the two input strings.The 
onstru
tion of su
h a suÆx tree is a

omplished in O(n log(�)) time [22℄. In fa
t, it may beworthwhile to 
onstru
t a suÆx tree and 
he
k whether there is a substring of at least M mat
hesthat is 
ommon to both the input strings even before we turn to the O(rM log log n) algorithm forthe 
omputation of the normalized value of Best(M)XY .We will prove that when the normalized value of Best(M)XY is lower than 12 , the longest Best(M)XYwill be a 
hain of no more than 2M � 1 mat
hes. This would imply that the O(rM log logn)algorithm is also suÆ
ient for the 
onstru
tion of the longest Best(M)XY .Lemma 4 If the normalized value of Best(M)XY is lower than 12 , the longest Best(M)XY is a 
hainof no more than 2M � 1 mat
hes.Proof: Consider a 
hain with more than 2M�1 mat
hes with normalized value Best(M)XY , denotedby LB.� A

ording to lemma 3, we may split LB into a number of sub-
hains of M mat
hes, followedby a single sub-
hain of between M and 2M � 1 mat
hes.� A

ording to 
laim 1, the normalized value of ea
h of these sub-
hains must be equal to thenormalized value of LB.� A

ording to the de�nition of a sub-
hain (de�nition 10), if one of the above sub-
hains of LBdoes not start or end with a mat
h, the 
hain 
omprised of the same mat
hes has a normalizedvalue that is higher than that of the sub-
hain, and thus, higher than the normalized valueof LB itself. Hen
e, all of these sub-
hains of LB must start and end with a mat
h.Let M -Chain(i;j)(i0;j0) be one of these M mat
hes sub-
hains of LB. This sub-
hain is, in fa
t, a 
hainbe
ause it starts and ends at a mat
h. Let the length of M -Chain(i;j)(i0;j0) be ` (` = i0� i+j0�j). Thenormalized value of M -Chain(i;j)(i0;j0), whi
h is equal to the normalized value of LB, is M̀ . The sub-
hain next to M -Chain(i;j)(i0;j0) must also start at a mat
h. Thus, (i0+1; j0+1), whi
h is the positionof the head of the next sub-
hain, must be a mat
h, and the length of (M + 1)-Chain(i;j)(i0+1;j0+1),whi
h is 
omprised of the mat
hes of M -Chain(i;j)(i0;j0) and the mat
h (i0 + 1; j0 + 1), is ` + 2. Sin
e14



M̀ < 12 ! M̀ < M+1`+2 , the normalized value of (M + 1)-Chain(i;j)(i0+1;j0+1) is higher than that ofM -Chain(i;j)(i0;j0) alone, and thus, it is also higher than that of LB. Hen
e, if LB has more than2M � 1 mat
hes, and if its normalized value is lower than 12 , LB must have a sub-
hain of at leastM mat
hes whose normalized value is higher than the normalized value of LB. Therefore, su
hLB 
annot be Best(M)XY .This 
on
ludes our 
laim that the O(rM log log n) algorithm may be used for the 
onstru
tion ofthe longest Best(M)XY .The O(rM log log n) algorithm: The algorithm is identi
al to the O(rL log logn) algorithm fromthe previous se
tion in all aspe
ts ex
ept one; it 
onstru
ts k-Chains for 1 � k � 2M � 1. Thus,only 2M�1 LROks are maintained and updated, and the re
ord of ea
h mat
h in the data stru
tureof mat
hes has at most 2M � 1 elements listed.Complexity analysis: In order to 
onstru
t 
hains of at most 2M � 1 mat
hes, ea
h mat
h hasto issue queries at 2M � 1 LROks. Ea
h mat
h is inserted into and extra
ted from ea
h LROk atmost on
e. Thus, the total time 
omplexity of the algorithm is O(n log j�j + rM log log n). Thespa
e 
omplexity is O(rM + nM). O(rM) is also the time 
omplexity of retrieving Best(M)XY .4 Con
lusions and open problemsThe normalized sequen
e alignment approa
h enables us to lo
alize the LCS algorithm, whi
h isglobal by its nature. This te
hnique enabled us not only to design an algorithm that is both lo
aland sparse, but also to eliminate the mosai
 and the shadow e�e
ts from whi
h non normalized lo
alsimilarity algorithms su�er. In addition, the issue of minimal length 
onstraint on the length of theoutput alignments, whi
h is trivial in the non normalized algorithms, but tends to be problemati
 fornormalized algorithms, was handled simply and without the reformulation of the original normalizedalignment problem.As proved in se
tion 3, the O(rM log logn) algorithm is 
apable of 
omputing the normalized valueof Best(M)XY and 
onstru
ting the longest Best(M)XY . Still, for many pra
ti
al appli
ations, su
has lo
al text similarity, the O(rL log logn) algorithm that 
an 
ompute all the substring pairs whosesimilarities are higher than a prede�ned value and whose length has no upper bound (ex
ept bythe length of the input strings) may be the preferred algorithm. Nonetheless, it may be useful touse the O(rM log log n) algorithm �rst to s
reen out input strings that do not a
hieve the desiredlo
al similarity values.The modi�
ation of the s
oring s
heme of these algorithms from the LCS metri
 to other unit 
osts
orings s
hemes su
h as the edit distan
e remains an open problem.A
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