Sparse Normalized Local Alignment

Nadav Efraty* Gad M. Landau'

April 18, 2005

Abstract

Given two strings, X and Y both of length O(n) over alphabet ¥, a basic problem (local
alignment) is to find pairs of similar substrings, one from X and one from Y. For substrings
X" and Y’ from X and Y, respectively, the metric we use to measure their similarity is normal-
ized alignment value: LCS(X',Y')/(|X'| + |Y']). Given an integer M we consider only those
substrings whose LC'S length is at least M. We present an algorithm that reports the pairs
of substrings with the highest normalized alignment value in O(nlog|X| + rM loglogn) time
(r— the number of matches between X and Y). We also present an O(nlog|X| + rLloglogn)
algorithm (L = LC'S(X,Y")) that reports all substring pairs with a normalized alignment value
above a given threshold.

1 Introduction

Sequence comparison is an extensively studied topic. Many textbooks are devoted to the subject [5,
9, 10, 12, 19, 20]. Its applications are numerous and include areas such as file comparison, search for
similarity between bio-sequences, information retrieval and XML querying, music retrieval, image
comparison and an almost infinite number of other sequence comparison applications.

While for applications such as the comparison of protein sequences the methods of scoring can
involve arbitrary scores for symbol pairs and for gaps among unaligned symbols, for uses in other
contexts such as text comparison or screening sequences, simple unit score schemes suffice. Two of
these, the Longest Common Subsequence (LCS) and the edit distance measures, have been studied
extensively, for the unit cost nature of their scoring provides combinatorial leverage not found in
the more general framework [6, 13, 14, 16].

The Longest Common Subsequence measures the length of the longest identical subsequence of
the two strings. FEdit distance measures the minimal number of operations that are required to
transform one string into the other one, when the permitted operations are substitution, deletion,
and insertion. The goal is to find such a sequence of operations of minimal length or of minimal

“Department of Computer Science, University of Haifa, Haifa 31905, Israel, phone: (972-4) 828-8367, FAX: (972-4)
824-9331; email: nadave@cs.haifa.ac.il; partially supported by the Israel Science Foundation grant 282/01, and
by the FIRST Foundation of the Israel Academy of Science and Humanities.

"Department of Computer Science, University of Haifa, Haifa 31905, Israel, phone: (972-4) 824-0103, FAX: (972-
4) 824-9331; Department of Computer and Information Science, Polytechnic University, Six MetroTech Center,
Brooklyn, NY 11201-3840; email: landau@poly.edu; partially supported by NSF grant CCR-0104307, by the Israel
Science Foundation grant 282/01, by the FIRST Foundation of the Israel Academy of Science and Humanities, and
by the IBM Faculty Award.

value when each edit operation has an assigned value. These two algorithms basically rely on
dynamic programming techniques.

As the LCS and edit distance algorithms evolved, the notion of the sparsity of the essential data
in the dynamic programming table became the key to the acceleration of the algorithms.

The evolution of the LC'S algorithms can be tracked by examining [4, 6, 11, 18], which can be
regarded as the successors of the classic LC'S algorithms of Hirschberg [13] and Hunt and Szyman-
ski [14]. For example, Eppstein et. al. [11] presented an O(nlog |Z| + dloglog (min {d,nm/d}))
algorithm, where n and m are the sizes of the input strings, |X| is the size of the alphabet and d is
the number of dominant matches.

While the LC'S and edit distance algorithms are measures of the global similarity between two
strings, in many applications, two strings may not be very similar in their entirety, but may contain
regions that are very similar. The task is to find and extract a pair of regions, one from each of
the two given strings, that exhibit a strong degree of similarity. This is called the local similarity
or the local alignment problem, as defined in [12]:

Definition 1 Given two strings, X and Y, find substrings X' and Y’ of X and Y, respectively,
whose similarity (optimal global alignment value) is mazimum over all pairs of substrings from X
and Y.

This definition can be extended to finding not only the most similar substrings, but also, all pairs
of substrings whose similarity value exceeds a certain similarity level (e.g. 80%).

The local similarity problem is, in many senses, more challenging than that of the global similarity.
There are no clear starting and ending points, so any entry has the potential of being the first or
the last of an optimal alignment. In addition, one single match is always a perfect local alignment.
Thus, a local alignment algorithm might report all the matches as optimal alignments, while longer
and more meaningful alignments that are imperfect will not be reported.

One of the most important and commonly used local comparison techniques was introduced by
Smith and Waterman [21]. Their algorithm is broadly used in molecular biology, as well as in other
fields where local sequence comparison is practiced.

According to a recent paper by Arslan, Egecioglu and Pevzner [7], the Smith Waterman algorithm
has two weaknesses that make it non optimal as a similarity measure. The first weakness is
called the mosaic effect. This term describes the algorithm’s inability to discard poorly conserved
intermediate segments, although it can discard poor prefixes or suffixes of a segment. The second
weakness is known as the shadow effect. This term describes the tendency of the algorithm to
lengthen long alignments with a high score rather than shorter alignments with a lower score and
a higher degree of similarity.

Some of the extensive work on the Smith Waterman algorithm as a measure of similarity is detailed
in [1, 2, 3, 7, 23]. According to these studies, the normalization of the values of the alignments by
their length will yield a better measure of the similarity level of the local alignments.

Definition 2 The normalized alignment value of two substrings, X' and Y', is S(X',Y")/ (I X'| +
|Y'|), where S is the global alignment value (of X' and Y') according to one of the scoring schemes.

Arslan et al. [7] suggested a measure designed for the purpose of finding the most similar pair of

substrings whose length is significant. The measure is based on the reformulation of the above
definition of the normalized alignment’s value. Their definition is as follows:

Definition 3 The normalized alignment value of two substrings is S(X',Y')/(|X'| + [Y'| + L),
where X' and Y' are substrings of X and 'Y, S(X',Y") is the global mazimal score of the alignment
of X" and Y', and L is a positive number that controls the amount of normalization.

The ratio between L and (|X'| + |Y'|) determines the influence of L on the value of the normalized
sequence alignment under that metric. For short alignments it might lower the normalized sequence
value dramatically, while for long alignments the effect on the value should be minor. Using this
measure, it is less likely that short alignments will receive high normalized sequence alignment
values.

The weakness in this, otherwise effective, approach for discarding alignments whose length is in-
sufficient is the reformulation of the original definition of the normalized value (definition 2). By
altering the definition, the outcomes will accordingly be different than the expected outcomes of
the original problem under the original definition.

The time complexity of the measure, suggested by Arslan et al., is O(n? logn), where n is the size of
the input strings. The space complexity of this measure, which is O(n?), is derived from the space
complexity of the Smith Waterman algorithm, which is utilized repeatedly in order to compute the
values of S(X',Y”).

In this paper, we present an algorithm designed for the computation of the local similarity nor-
malized values of substrings of the two input strings whose lengths are not too short to be of sig-
nificance. The presented algorithm utilizes the LC'S metric for the computation of the normalized
local alignment value and exploits the sparsity of the essential data in the dynamic programming
tables.

Definition 4 An entry (i,j) in the dynamic programming table of two sequences, |X| = n and
Y| = m, is called a match if and only if X; = Y;. The number of such entries in the table is
denoted by r where obviously, r < nm [4].

The LC'S, which is a global measure rather than a local measure, is made into a local measure of
similarity by dividing the LC'S value of the two substrings by the sum of their lengths. Substrings
that maximize that value are the most similar. Note that the alignment with the highest similarity
level must begin and end in a match. Otherwise, there is a better alignment with the same LC'S
and a lower value of | X| + |Y].

Though the LC'S appears, at first glance, to be a less powerful metric if compared with other scoring
schemes, it can be used to capture alignments whose matches density ratio is high, indicating that
their similarity level is high. Clearly, the LC'S metric with its simple scoring scheme is sufficient to
solve numerous problems from a variety of domains. Indeed, even applications and problems that
utilize more complicated scoring schemes, such as comparisons of protein sequences, may benefit
from this algorithm.

Let X’ and Y’ be substrings of the input strings X and Y, respectively. A minimal length constraint,
denoted herein by M, may be either a minimal length constraint on the sum of the lengths | X'|+]Y”|,
or a minimal length constraint on the length of the longest common subsequence (LC'S) of X' and

Y'. We chose to refer to the constraint on the LC'S of X’ and Y’ because it better suits an algorithm
that exploits the sparsity of the matches in the dynamic programming tables.

The minimal length constraint (M) is enforced in a straightforward fashion, without the need to
reformulate the original problem that in the case of normalized LCS is LC'S(X',Y")/(|X'| 4+ |Y"]).
The value of that minimal constraint is expected to be problem related rather than input related,
and it is expected to be of a much smaller scale than the lengths of the input strings.

Definition 5 Best(M)i¥ - the highest normalized alignment value of any of the substrings pairs,
of strings X and Y, with LC'S value higher than M.

Results:

Given two strings X and Y each of length n, and a length constraint M, we will introduce two algo-
rithms that compute the value of Best(M){f . The first algorithm is discussed thoroughly in section
2. This normalized local LCS algorithm reports substring pairs that achieve the value Best(M)
and whose common subsequence is longer than M. Alternatively, it may output substring pairs
whose similarity is higher than a predetermined value and whose common sequence is longer than
M. The time complexity of that algorithm is O(nlog|X| + rLloglogn) and its space complexity is
O(rL +nL) where L = LCS(X,Y).

The second algorithm, discussed in section 3, is similar to the first in its ability to compute the
normalized value of Best(M)s, as well as the substring pairs that achieve that value. The time and

space complexity of that algorithm are O(nlog|X| 4+ rM loglogn) and O(rM + nM), respectively.

Since we expect M to be much smaller than L, the second algorithm is more efficient than the first
one. But, it does not report long substring pairs whose similarity exceeds a predetermined value,

if this value is lower than the normalized value of Best(M)ss.

Note that for 100% similarity, we demand that LCS(X,Y) = |X| A LCS(X,Y) = Y| ; thus, the
normalized value is % Similarly, any normalized value v represents a similarity level that is 200 x v.

Our algorithms avoid the shadow and mosaic effects. The shadow effect is avoided since for any
number of matches, the shortest alignment is constructed. Longer alignments would be preferable
over shorter alignments only if the longer ones contain more matches, and their normalized value is
higher. The mosaic effect is avoided since the normalized value of a sufficiently long alignment with
a poor intermediate segments would be lower than the normalized values of its prefix and suffix,
which are computed separately.

2 The O(rLloglogn) normalized local LC'S algorithm

In this section we discuss our basic algorithm for the computation of Best(M) and for the compu-
tation of the alignments that exceed a certain similarity level, using the LC'S metric. The discussion
begins with the definitions and lemmas that are needed for the understanding of the algorithm.
Each of the major stages of the algorithm, as well as the complexity analysis, will be discussed in
a separate subsection. Finally, an alternative algorithm would be discussed.

The input is two strings, |X| = n and |Y| = m (m = O(n)). As in [4], our algorithm constructs
a data structure that substitutes the dynamic programming tables that are used by other local

similarity algorithms. Implicitly, many of the properties of the dynamic programming tables are
maintained in our sparse representation of it. A match (4,7) is a match that will be in entry (3,)
in the analogous dynamic programming table.

A chain was defined in [8] as a sequence of matches that is strictly increasing in both components,
i.e., two matches (7,7) and (¢',5’) may be part of the same chain if and only if (1 < ' Aj < j)V
(i > i Aj > j'). Let us present the extended definition of a chain that will be used throughout this
work.

Definition 6 A k—C’hainEz,’j}) denotes a sequence of k matches that is strictly increasing in both
components, whose head is the match (i,7) and whose tail is the match (i, 5').

o k=LCS(X; j,Yi i). Xj. j andY; ;v are substrings of the input strings X and Y, respec-
tively.

e Length of k-ChainEZ:,’j;,): The length is the sum of the lengths of X _j and Y; y (i.e. j' —
j+i —i).

o k-Chain'™) denotes the best chain of k matches starting from (i,7), i.e., the chain of the
shortest possible length that has k matches.
E?,’j?,): The normalized value is

e Normalize value of k-Chaing, ;

ok
FETESiaE

For each match (4,), the algorithm constructs k-Chain 1) for every possible value of k (1 < k <
LCS(X,Y)). The algorithm starts by marking the positions of the matches between the input
strings. Later, the matches are processed in decreasing row number order (bottom to top). The
processing of each row has two stages.

1. First stage: The algorithm constructs the best k-Chains of any possible value of k, starting
from each of the matches in the row. This is done using data structures that were prepared
during the processing of previous rows.

2. Second stage: The matches of the processed row and additional information regarding their
k-C'hains are inserted into the data structures, in order to prepare them for future use during
the processing of the succeeding rows.

A major obstacle in the process of constructing k-Chains is that any attempt to construct (k4 1)-
Chain(™) simply by tying another match to the tail of k-Chain(*/) (which is the best chain of &
matches starting from (i, 7)) will not necessarily produce optimal results, as seen in figure 1 where
the 2-Chain, 3-Chain and 4-Chain of the match (2,2) do not share common matches. One way
to deal with that difficulty is to try to add one match to the tail of all the possible chains of &
matches starting from (i,). This solution would, indeed, construct (k + 1)-Chain(®?), but it may
prove overly complex. We take the opposite approach. From among all of the k-Chains that start
lower than and to the right of (4,), we choose the one that, when concatenated to (4, j) as its head,
creates (k + 1)-Chain™J). The following lemma proves the correctness of this strategy.

Lemma 1 For any given value of k, and for a match (i,7), (k+1)-Chain'™) is a chain that starts
from (3,7) and continues with k-Chain(1), i > i A5 > j.

abcadecfhoc
01 2 3 456 7 8910

0
g 1
b 2 ..‘ _
f 3 IER e
h 4 | |)
e 5 e 2
C 6 @) ® ®
g 7 \
g 8 \
g 9 \
f 10 \ O
d 11 0)
e 12 NQ\
f 13 e

Figure 1: The dynamic programming table of the strings abcadecfhe (X) and gbfhecgggfdef (Y). The
matches are marked as circles. 2—C’haingz’§;, which is 2-Chain(®>?, is marked with a solid line. Its length is
6 —2+ 3 —2 =25 and its normalized value % 3-Chain>?), 4-Chain®>? and 5-Chain(>?) are marked with

dashed lines, dotted lines, and arrowed lines, respectively.

Proof: Assume that instead of using k-Chain?7") we use another chain of k matches starting from
(', 7') which yield a better chain of k£ + 1 matches for (i, 7). Since the length of the chain from (4, 7)
to (7', 7') remains identical, regardless of the k matches’ suffix starting from (7',5), the difference
in the length between two potential chains depends only on the length of the chain of £ matches
starting from (i’,§'). Thus, if (k + 1)-Chain(®) passes through (i’, '), but its suffix is different
than k—Chain(i"j'), it implies that we have constructed a better chain of £ matches starting from
(i',4"), thereby contradicting the definition of k-Chain("7") (definition 6). m

The above lemma provides a simple O(r2L) time complexity algorithm for the problem. For each
match (4,), this algorithm would construct (k + 1)-Chain(™), 1 < k < L, by examining all O(r)
potential heads of k-Chains and tying (7, j) to the most appropriate k-Chain. The next subsection
will demonstrate how to improve that time complexity by narrowing the search performed by (3, 5)
to a single match which must be the head of the appropriate k-Chain.

Let us present the skeleton of the algorithm. The first stage, which is the preprocessing stage, is
similar to the typical preprocessing of the sparse LCS algorithms [4]. Its output is a list of the
different symbols of 33, where each symbol has a list of the indices of its appearances in the input
string X. After executing this stage, we can view the matches of each row ¢ by examining the list
of symbol 0 =Y; (0 €). The two stages of the algorithm and the Report_Best(M); procedure
will be discussed in the following subsections.

O(rLloglogn) normalized local alignment algorithm

For each row, corresponding to a symbol Y;, create an ordered list of the matches in the row.
14 m

Repeat until 7 =0
k1

Stage one

Repeat while chains with growing & values are constructed
Construct_(k + 1)-Chains(matches of row i,k)
k+—k+1

Stage two

Repeat while £ > 0
Insert_Matches(matches of row i, k)
k< k-1

141 —1

Report_Best(M)3y

2.1 Stage two - The creation and updating of ranges

The purpose of this stage is to insert the chains that were constructed during the first stage into a
data structure that will enable us to narrow the search performed by each of the succeeding matches
to a single k-Chain. L data structures are maintained for k-Chains of each number of matches k
(1 <k < L). Our discussion commences with formal definitions of the intuitive concepts of range
and owner.

Definition 7 Range: A range of a match (i, j) is an area of the dynamic programming table that
stretches from column j—1 and to the left and from row i—1 and above, i.e., it is (i'...i—1,7"...5 —1)
for each i and 7', 0 <i' <i A0 <5 <j. Hence each match has i X j such ranges.

Definition 8 Mutual range: The range of one match may partially or fully contain a range of
another match. The overlap area that is part of the range of both of the matches is called a mutual
range.

Definition 9 Owner of a range: The match (i,j) is the owner of a range if k-Chain'™) is the
suffiz of all (k + 1)-Chains that start inside the range.

L separated lists of ranges and their owners are maintained by the algorithm. The following lemma,
provides the key to determining the correct ranges and their owners in each of these lists.

Lemma 2 A mutual range of two matches is owned completely by one of them.

0 J J n 0 J J n
oOy=====-] of~"""""7
| 1 I I
| [I I
vy | I Y | o
I I < o.. PO .
_' Wy G f @
¥ @p @) ’)
m m
Case 1 Case 2

Figure 2: The two cases from lemma 2. In the figure representing case 1, the range that is surrounded by
the dashed line is owned by (7, 7). In the figure representing case 2, the mutual point is marked with a star
and the mutual range is surrounded by a dashed line.

Proof: The k-Chain that is headed by a match (7, 7) may be the suffix of any k£ + 1 matches chain
starting from any of the matches in the ranges of (i,7). Note, however, that these chains are not
necessarily the (k 4+ 1)-Chain of these matches. For all matches that are in a range of a single
match (7,7) (i.e., they are not in a mutual range), the only way to construct a (k + 1)-Chain is to
pass through (7, 7). Thus, (4,7) will be the owner of that range. Let us deal with the two different
settings of two matches that share a mutual range. These matches will be p (4, 7) and ¢ (7', 7).

1. i <i'Aj <j': The mutual range of p and ¢ is (0...i —1,0...5 —1). According to their positions,
p may use the k — 1 suffix of k-C'hain? as part of a possible k-Chain from it. Hence, for each
match in the mutual range, a (k 4+ 1)-Chain through p is either equal to or better than the
chain through ¢. Thus, p owns the mutual range.

2.1 <4 Aj > 4+ The mutual range of p and ¢ is (0...4 — 1,0...5' — 1). Let us define the
entry (i — 1,7 — 1) as the mutual point (MP) of p and q. MP is the bottommost and
rightmost entry of the mutual range, and it is not a match. The length of the chain from
any match z in the mutual range to either p or ¢ is equal to the length of the chain from
z to M P (which is equal for both p and ¢) plus the length of the chain from M P to either
p or ¢ (for match z in coordinates (i",3"), i" < i A j” < j', the length of the chain to p
is (i —14") + (j — j"), and the length of the chain from z to p that passes through MP is
(= (= 1)+ = (=) + (i — 1) = i + (' = 1) =) = (i = ") + (j — j")). Since the
distances from M P to both p and ¢ are predetermined (they are j — 5’ +2 and ¢’ —i +2 for p
and ¢, respectively), the one whose tail is closer to M P also forms a shorter chain with any
match z in the mutual range. Let the length of k-C'hainP be LP and the length of k-C'hain?
be L7. p will be the owner of the mutual range if L? + (j — j') < LY+ (i’ — 1) and ¢ will be
its owner otherwise. m

Observations:

1. For the given matches p (i,7) and ¢ (i, j'), such that i <4’ Aj > j', and for the given lengths
L? and LY of k-Chain? and k-Chain?, respectively, if LP + (7 — j') > L7 + (i’ — 1) then the
owner of the mutual range is ¢ and the range owned by p is blocked from the left by the
range of q. If LP + (7 — j') < LY+ (i’ — i), then the owner of the mutual range is p and the
range owned by ¢ is blocked from row i and above by the range of p. Since the algorithm
processes the matches in decreasing row number order, matches whose row coordinate value
is higher than ¢ will not be processed later by the algorithm. Thus, the range owned by ¢
(i.e., (i...i" —1,5"...7"), 57" < j) is no longer relevant, and it would not become relevant later.
No range above row ¢ would be owned by ¢, and therefore, it may be extracted from the data
structure of the heads of k-Chains. In the case of an equality (L + (j — j') = L7+ (i’ — 1)),
we prefer p over ¢ as the owner of the mutual range because it gives us the opportunity to
extract ¢ from the data structure without the loss of important information.

2. The range owned by any match (7,7) is (0...i — 1,5"...5 — 1), 0 < j' < j. The range always
reaches row 0 because if the range is completely blocked from above at row ¢’ < 7, then for
any match above it this range is no longer relevant. The range is extracted, and therefore
ceases to exist. If the range is partially blocked from above at row 7' < i and column j” < j
(see the first setting in the above lemma), the range (0...i — 1, 5”... — 1) which is equal to the
right part of the of the original range, still reaches row 0.

3. For a given group of matches that are the heads of k-C'hains, the matches whose row number
is the lowest (at a given time) must own (at that time) the ranges that stretch between their
row and row 0.

The data structure: LRO* denotes the list of ranges and their owners that are the heads of
k-Chains. Such a list is maintained for each value of k, 1 < k < L. Each such list of range
owners is ordered by the column. The range of an owner in LRO¥, whose position is (i,), is
(0...i —1,4'...j — 1), where j' < j is the column of the left neighbor of (4, 5) in LRO*. An example
of an LROF is given in figure 3. In addition to each owner, we keep the length of the k-Chain
starting from it.

The LRO¥s are implemented as Johnson Trees [15]. Explicitly, LRO® is held in data structures for
integers in the range [0,n]. These data structures support the operations insert, extract and look
for the range that a given match is in.

The algorithm processes the rows in decreasing row number order. Thus, row ¢ is processed only
after rows m to 7 + 1 were processed and matches that are the heads of k-Chains were inserted
into LRO*. When the match p (4, j), which is the head of a k-Chain, is processed, then according
to observation 3 above, it will always be inserted into LRO* as the range whose right boundary is
column j — 1. Later, the following update operations are performed in LRO*:

e Right boundary: If LRO* has another match g (#', j/) such that i < i’ Aj = j', then by lemma
2, the range of ¢ that is above row 7 is owned completely by p and thus, ¢ is extracted from
LROF.

e Left boundary: The left neighboring range, whose owner is ¢ (i',5') (i/ > i Aj' < j), is
examined. If i = i, the left boundary of the range of p is j' (lemma 2, case 1). If i/ > i, we

Row 0

Row i

Figure 3: The LRO*. Matches that are heads of k-Chains are marked by circles. The white circles
are the owners of the ranges that are in LRO*. Each white circle is the owner of the range to its
left. The black circles are owners that were extracted from LRO*. The stars represent the mutual
points, where the boundary of ranges were set according to lemma 2, case 2.

use observation 1 to determine the owner of the mutual range of p and ¢. If ¢ is the owner of
the mutual range, it sets the left boundary of the range of p. If p is the owner of the mutual
range, ¢ is extracted from the data structure (implicitly, the range of p was extended) and
the left neighbor of ¢ is examined in the same fashion.

Insert_Matches(matches of row i,k)

Repeat until all matches of row i that are the heads of k-Chains are inserted into LROF.
Insert the match (i, j) into LROF in the appropriate position for j.
If LRO* has a previous match with column coordinate j, then extract it.
Repeat while for (i’,j"), which is the left neighbor of (i,7) in LRO¥,

(the length of k-Chain("+7") 4 i’ —i) > (the length of k-Chain(®) + j — j)
Extract (', 5') from LRO*.

2.2 Stage one - The construction of (k + 1)-Chains

In this stage, we will compute the (k + 1)-Chains of all matches of row i, where 1 < k£ < L and
1 < i < m. The input for this stage is the list of ranges and their owners (LRO*) that were
computed for rows m to ¢ + 1 and were discussed in the previous subsection.

For a match p, (k + 1)-Chain? is constructed simply by concatenating p to the match ¢, which is
the owner of the range containing p. Explicitly, ¢ is the match in LRO* whose column coordinate
is the closest to that of p from the right.

The data structure: All the matches are ordered according to their positions. Every match has

10

information regarding all the k-C'hain, 1 < k < L, starting from it. For a given match p, the data
structure maintains a record where for any given k value, the length of k-C'hain® is recorded, along
with a pointer to a match ¢, such that (k — 1)-Chain? is the suffix of k-Chain?. Owners of ranges
that were extracted from LROF are not deleted from that data structure.

Construct_(k + 1)-Chains(matches of row i,k)
Repeat until all matches of row 7 are processed.
Add the k's element of the list of (i, 7).

- Its pointer points to the match (i’ j'), the owner of the range of (i,7) in LRO*
- Its length value = length of k-Chain"") + (' — i+ j' — j)

2.3 Report_Best(M)y

After the matches of row 1 have been processed, the data structure wherein every match p has
a record with all of the k-C'hain? and their lengths, is completed. Now, the records of all of the
matches are examined, the normalized value of any of the k-Chains, k > M, is computed, and the
highest valued k-Chain, Best(M)sr, and its normalized value are computed. Best(M): and its
corresponding substrings X’ and Y’ of the input strings X and Y, respectively, may be reported
by traversing the pointers of the data structure of matches.

Alternatively, it is possible to report all of the chains and the corresponding substrings whose
normalized value is higher than a given normalized value, e.g. 80%. Such sequences may also be
reported on the fly during the operation of the algorithm.

2.4 Complexity Analysis

Let us analyze the complexity of each of the stages of the algorithm.

Preprocessing stage: The complexity of the preprocessing stage is O(nlog|X|), |X| < m, and the
collective space consumed for the lists of all individual symbols is O(n). This stage is similar to
the typical preprocessing of the sparse LC'S algorithms [4].

First stage: During the first stage of the processing of each match, attempts are made to construct
k chains, 1 < k < L, where L = LCS(X,Y) is the highest possible number of matches in any
of the chains. Each such attempt requires one query for the nearest neighbors on each of the
corresponding LROFs. The LRO®s are implemented as Johnson Trees [15]. The time complexity
of each such query is O(loglog G), where G is the gap between the integer that was the subject of
the operation (i.e., the column number of the processed match) and its right and left neighbors in
the list. In such lists when a pointer to one of the owners of the ranges is given, its predecessor and
successor are reported in O(1) time complexity because a connected list of the owners of ranges
is also maintained. The space complexity of such a tree is O(n). Since it is difficult to assess the
mean value of G because of the constant changes in LRO*, we refer to it as n. For all practical
purposes, however, the mean value of GG is lower than n. Hence, the total complexity of all the
iterations of all the » matches is O(rLloglogn).

11

Second stage: Each match is inserted and extracted no more than once from each of the LROPs.
The total time complexity of this entire operation is again O(rLloglogn).

Report_Best(M)3 : For the retrieval of the highest normalized value and for the construction of the
optimal sequence (or the corresponding substrings), the algorithm must examine all the elements
in the record of each match with a total time complexity of O(rL).

Henceforth, the time complexity of the algorithm is O(nlog|%| + rL loglogn)

The space complexity is O(rL+nL). It is dictated by the size of the data structure for the matches
where each match has a record with pointers to no more than L other matches, with one additional
length value recorded with each such pointer, and the space needed for L LRO* data structures
that are, in fact, Johnson Trees of O(n) space each.

2.5 An alternative algorithm for the management of the data structure

An alternative technique for managing the LROFs that enables both queries and update operations
and does not defer the time complexity of the above algorithm was presented in Makinen [17]. As
in the algorithm presented above, this technique is based on the insertion of matches that are the
heads of k-Chains into an array A*[1...n] wherein the match in each column (if any) is the one
with the lowest row coordinate among the matches of the column that have already been processed.
This is done according to the first case of lemma 2.

In order to construct (k + 1)-Chains, queries are made in the array of k-Chains. Each such query
is, in fact, a range minimum query (RM @) in the k’s array, where the range for the query is [j+1, n]
for a query of a match (i,).

(k 4 1)-Chain(»7) is obtained by finding a match (i’,4") that is the head of a k-Chain, such that
the sum of the distance between (4,7) and (i,3'), plus the length of k-Chain(®J"), denoted by
L) is the minimum possible. Formally, we wish to find a match (¢/, j') such that the expression
i —i+ 4 —j+ L) is minimized.

Let us rearrange the expression i/ — i + j' — j + L) to [i' + j/ + LU — [i + j]. In the later
expression, it is clear that the right (left) side of the expression depends only on the match (i, j)
((4',4")). The value of the right (left) side remains the same, regardless of the match (7', 5") ((i,7)).
Thus, to minimize the expression, all that is necessary is to find a match (7', 5’) from the array of
matches that are the heads of k-Chains which minimizes the expression [i' 4+ j/ + L)), After
that minimal value and its corresponding match (', j') are found, we need only to sum the value
of the left side of the expression with that of the right side in order to compute the length of
(k + 1)-Chain(i7),

Let A* denote the array of matches that are the heads of k-Chains, A*[j'] = [i + j' + L],
Finding the position in the array with the minimum value is analogous to finding the match (7',)
which minimizes the expression i’ — i + j/ — j + L"),

Time complexity: According to [17], the position with the minimum value is reported through a
one dimensional range minimum query. Such queries may be performed in O(loglogn) time if the
data structure in use is a Johnson Tree. An insertion of a match into the Johnson Tree is also
performed in O(loglogn) time.

To conclude, the complexity of the algorithm presented in this subsection is identical to that of the

12

algorithm presented in the previous subsections.

3 The O(rM loglogn) normalized local LCS algorithm

In this section we present an algorithm for the computation of the normalized value of Best(M)sy.

Such an algorithm may be ideal for screening input strings that do not reach a desired similarity
level. Later, we will show that this algorithm may actually do more than just compute the normal-
ized value of Best(M)sr. Tt may also be used to construct the longest chain that is Best(M).

The algorithm that was presented in the previous section is capable of computing Best(M){f and
its corresponding normalized value by constructing the k-Chains, 1 < k < LCS(X,Y), starting
from each of the matches. In this section we will prove that constructing k-Chains for k < 2M —1

is sufficient for the computation of the value of Best(M)sy.

Let us start with the definition of a sub-chain, that will be followed by the claim that the normalized
value of a chain cannot be higher than the normalized value of its best sub-chain.

Definition 10 sub-chain: A sub-chain of a k-Chain is a path that contains a sequence of © < k
consecutive matches of the k-Chain.

Note that unlike a k-C'hain, which always starts and ends with a match, any sub-chain, except the
first and the last of a given k-C'hain, may start and end at any entry of the chain, even if it is not
a match. The first sub-chain, which is the prefix of the k-Chain, always starts at the head of the
k-Chain, and the last sub-chain, which is its suffix, always ends at the tail of the k-C'hain.

Note also that a sub-chain of z matches has a normalized value that is less than or equal to the
normalized value of the z-C'hain comprised of the same matches, since the sub-chain may have an
additional length (at its front and rear).

According to definition 6, the normalized value of a given k-Chain whose length is £ is %. Let

us split this k-Chain into any number < k of non overlapping consecutive sub-chains, such that
k=>k; and £ =Y ¢;. Hence, & = Zki. The normalized value of each such sub-chain is %

77_2&

Claim 1 % < max(%).

7

Proof: Let lg?: = max(]z—:). Thus, for any ¢, % < Iz?: . The value of ¢; that represents the length of
the 4’s sub-chain must be positive, hence, % < %: k; X £+ < k;« x ¢;. Since it holds for any i,

7

we get Y (ki X £i+) < > (k= x £;). Hence, % = %Z <]Z* = max(%).]

Note that if% = max(%i), then for any sub-chain, % = %.

7

According to claim 1, constructing all of the short sub-chains is sufficient to find the value of
Best(M)s. Very short sub-chains may have normalized values that are extremely high (e.g., if
we consider 1-Chains, then each such chain would have a normalized value of % which is equal to
100% similarity) but do not reflect significant similarity between the input strings. Thus, in order
to compute the value of Best(M)sY, it is necessary to construct sub-chains of at least M matches.

13

Lemma 3 Constructing all (2M — 1)-Chains is sufficient for the computation of the value of
Best(M)y.

Proof: Any k-Chain (k > M) can be split into consecutive non overlapping sub-chains of M to
2M — 1 matches. Chains with less than M matches are not sufficient, and (2M — 1)-Chains can
not be split to sub-chains of at least M matches. According to claim 1, the normalized value of the
k-Chain is not better than the normalized value of its best sub-chain. m

This concludes our claim that by constructing chains of no more than 2M —1 matches, the algorithm
can report the value of Best(M). Now, let us turn to the claim that the O(r M loglog n) algorithm

may also be used to report the longest chain that is Best(M).

When the normalized value of Best(M)y equals 3 (100% similarity), the Best(M){ chains and
the corresponding substring alignments can be found using the suffix tree of the two input strings.
The construction of such a suffix tree is accomplished in O(nlog(X)) time [22]. In fact, it may be
worthwhile to construct a suffix tree and check whether there is a substring of at least M matches
that is common to both the input strings even before we turn to the O(rM loglogn) algorithm for

the computation of the normalized value of Best(M)3 .

We will prove that when the normalized value of Best(M)y is lower than 1, the longest Best(M)3
will be a chain of no more than 2M — 1 matches. This would imply that the O(rM loglogn)

algorithm is also sufficient for the construction of the longest Best(M)s:.

Lemma 4 If the normalized value of Best(M)s is lower than %, the longest Best(M)3f is a chain
of mo more than 2M — 1 matches.

Proof: Consider a chain with more than 2 — 1 matches with normalized value Best(M)s, denoted
by LB.

e According to lemma 3, we may split LB into a number of sub-chains of M matches, followed
by a single sub-chain of between M and 2M — 1 matches.

e According to claim 1, the normalized value of each of these sub-chains must be equal to the
normalized value of LB.

e According to the definition of a sub-chain (definition 10), if one of the above sub-chains of LB
does not start or end with a match, the chain comprised of the same matches has a normalized
value that is higher than that of the sub-chain, and thus, higher than the normalized value
of LB itself. Hence, all of these sub-chains of LB must start and end with a match.

Let M —Chaingz:} i be one of these M matches sub-chains of LB. This sub-chain is, in fact, a chain
because it starts and ends at a match. Let the length of M—Chaingjj]).,) bel (L =14 —i+j —j). The
normalized value of M —Chaingjj;,), which is equal to the normalized value of LB, is %. The sub-

)

chain next to M—Chaingz:}j;,) must also start at a match. Thus, (i + 1,5’ + 1), which is the position
of the head of the next sub-chain, must be a match, and the length of (M + 1)—Chaz'n8}i)1 141)7
which is comprised of the matches of M—Chaingz:}j]).,) and the match (i' + 1,5 + 1), is £ + 2. Since

14

M <t = M < 2ME the normalized value of (M + 1)—Chain(i’j) is higher than that of

" 2 (i +1,5"+1)
M —Chaingz}]},) alone, and thus, it is also higher than that of LB. Hence, if LB has more than

2M — 1 matches, and if its normalized value is lower than %, LB must have a sub-chain of at least
M matches whose normalized value is higher than the normalized value of LB. Therefore, such
LB cannot be Best(M):. m

This concludes our claim that the O(rM loglogn) algorithm may be used for the construction of
the longest Best(M)ss.

The O(rM loglogn) algorithm: The algorithm is identical to the O(rL loglogn) algorithm from
the previous section in all aspects except one; it constructs k-Chains for 1 < k < 2M — 1. Thus,
only 2M —1 LRO¥s are maintained and updated, and the record of each match in the data structure
of matches has at most 2M — 1 elements listed.

Complexity analysis: In order to construct chains of at most 2M — 1 matches, each match has
to issue queries at 2M — 1 LRO¥s. Each match is inserted into and extracted from each LRO* at
most once. Thus, the total time complexity of the algorithm is O(nlog|X| 4+ rM loglogn). The

space complexity is O(rM +nM). O(rM) is also the time complexity of retrieving Best(M).

4 Conclusions and open problems

The normalized sequence alignment approach enables us to localize the LCS algorithm, which is
global by its nature. This technique enabled us not only to design an algorithm that is both local
and sparse, but also to eliminate the mosaic and the shadow effects from which non normalized local
similarity algorithms suffer. In addition, the issue of minimal length constraint on the length of the
output alignments, which is trivial in the non normalized algorithms, but tends to be problematic for
normalized algorithms, was handled simply and without the reformulation of the original normalized
alignment problem.

As proved in section 3, the O(rM loglogn) algorithm is capable of computing the normalized value
of Best(M)s and constructing the longest Best(M)sr. Still, for many practical applications, such
as local text similarity, the O(rLloglogn) algorithm that can compute all the substring pairs whose
similarities are higher than a predefined value and whose length has no upper bound (except by
the length of the input strings) may be the preferred algorithm. Nonetheless, it may be useful to
use the O(rM loglog n) algorithm first to screen out input strings that do not achieve the desired
local similarity values.

The modification of the scoring scheme of these algorithms from the LC'S metric to other unit cost
scorings schemes such as the edit distance remains an open problem.

Acknowledgment

The authors would like to thank Kunsoo Park for introducing the problem to us. We are also
grateful to Alberto Apostolico, Klara Kedem, Yuri Rabinovich, Micha Sharir, Alek Vainshtein and
Michal Ziv-Ukelson for fruitful discussions.

15

References

Alexandrov, N.N., V.V. Solovyev. Statistical significance of ungapped alignments . in: Pacific Symposium on
Bioinformatics, 463-472, R. Altman, A. Dunker, L. Hunter, T. Klein, editors, (1998).

Altschul, S.F., B.W. Ericson. Locally optimal subalighments using nonlinear similarity functions. Bull. Math.
Biol., 48, 633-660, (1986).

Altschul, S.F., B.W. Ericson. Significance levels for biological sequence comparison using nonlinear similarity
functions. Bull. Math. Biol., 50, 77-92, (1988).

Apostolico, A. String editing and longest common subsequence. in: Handbook of Formal Languages, Vol. 2,
361-398, G. Rozenberg and A. Salomaa, editors, Springer Verlag, Berlin, (1997).

Apostolico, A., Z. Galil. Pattern matching algorithms. Oxford University Press, 1997.

Apostolico, A., C. Guerra. The Longest Common Subsequence Problem Revisited. Algorithmica, 2, 315-336,
(1987).

Arslan, AN, 0. Egecioglu, P.A. Pevzner. A new approach to sequence comparison: normalized sequence
alignment. Bioinformatics, 17(4), 327-337, (2001).

Claus R. Efficient Computation of All Longest Common Subsequences. SWAT 2000, 407-418, (2000).
Crochemore M., W. Rytter. Text Algorithms. Oxford University Press, 1994.
Crochemore M., W. Rytter. Jewels of Stringology. World Scientific, 2002.

Eppstein, D.; Z. Galil, R. Giancarlo, G.F. Italiano. Sparse Dynamic Programming I: Linear Cost Functions.
JACM, 39, 546-567, (1992).

Gusfield, D., Algorithms on strings, trees, and sequences. Cambridge University Press (1997).
Hirschberg, D.S. Algorithms for the longest common subsequence problem JACM, 24(4), 664-675 (1977).

Hunt, JJW., T.G. Szymanski. A fast algorithm for computing longest common subsequence. Communications
of the ACM, 20, 350-353 (1977).

Johnson, D.B. A priority queue in which initialization and queue operations take O(loglog D) time. Math. Syst.
Theory, 15, 295-309 (1982).

Levenshtein, V.I., Binary codes capable of correcting, deletions, insertions and reversals. Sowviet Phys. Dokl 10,
707-710 (1966)

Makinen, V., Parameterized approximate string matching and local similarity based point pattern matching.
University of Helsinki, Finland, Report A-2003-6, 2003.

Myers, E.-W. Incremental Alignment Algorithms and their Applications. Tech. Rep. 86-22, Dept. of Computer
Science, U. of Arizona (1986).

Navarro G., M. Raffinot. Flexible pattern matching in strings practical on-line search algorithms for text and
biological sequences. Cambridge University Press, 2002.

Sankoff D., J.B. Kruskal, editors. Time warps, string edits, and macromolecules: The theory and practice of
sequence comparison. Addison-Wesly Publishing Company, 1983.

Smith, T.f., M.S. Waterman. The identification of common molecular subsequences. J. Mol. Biol., 147, 195-197
(1981).

Ukkonen E., On-line construction of suffix trees. Technical Report No A-1993- 1, Department of Computer
Science, University of Helsinki, 1993

Zhang, z., P. Berman, T. Wiehe, W. Miller. Post-processing long pairwise alignments Bioinformatics, 16,
1012-1019, (1999).

16

