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Abstract

Filtering is a standard technique for fast approximate string matching in practice.
In filtering, a quick first step is used to rule out almost all positions of a text as possible
starting positions for a pattern. Typically this step consists of finding the exact matches
of small parts of the pattern. In the followup step, a slow method is used to verify or
eliminate each remaining position. The running time of such a method depends largely
on the quality of the filtering step, as measured by its false positives rate. The quality
of such a method depends on the number of true matches that it misses, that is, on its
false negative rate.

A spaced seed is a recently introduced type of filter pattern that allows gaps (i.e.
don’t cares) in the small sub-pattern to be searched for. Spaced seeds promise to
yield a much lower false positives rate, and thus have been extensively studied, though
heretofore only heuristically or statistically.

In this paper, we show how to design almost optimal spaced seeds that yield no
false negatives.
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1 Introduction

Given a pattern string P of length m, a text string T of length ℓ, and an integer k, the
approximate pattern matching problem is to find all substrings of T whose edit distance or
Hamming distance to P is at most k.

The basic idea employed in many approximate pattern matching algorithms [7, 14] and
commonly used software tools such as BLAST [1] is filtering based on the use of the pigeon-
hole principle: Let P and S be two strings with edit distance or Hamming distance at most
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k. Then P and S must have identical substrings (contiguous blocks) whose sizes are at least
⌈(m − k)/(k + 1)⌉. This simple observation can be used to perform efficient approximate
pattern matching through the following approach.
(i) Anchor finding: Choose some b ≤ ⌈(m − k)/(k + 1)⌉. Consider each substring of P of
size b, and find all of its exact occurrences in T .
(ii) Anchor verification: Verify whether each initial exact match extends to a complete ap-
proximate match, through the use of (a localized) dynamic program or any other appropriate
method.

When the text string T is available off-line, the anchor finding step above can be imple-
mented very efficiently:
(i) build a compact trie of all substrings in T of size b;
(ii) search each substring in P of size b on the compact trie.
By the use of suffix links, the compact trie can be built in O(ℓ) time and the anchor finding
step can be completed in O(m) time, both independent of the size of b.

The running time of the anchor verification step depends on the specific method for
extending an initial exact match and the value of b. As b increases, the number of false
positives is expected to decrease, but if b > ⌈(m − k)/(k + 1)⌉ some actual occurrences of
the pattern may be missed, yielding false negatives.

In the remainder of this paper we will focus on filtering processes that yield to no false
negatives, except as noted. Under this constraint, much of the literature on pattern matching
via filtering focuses on improving the specific method for verifying anchors. The fastest
approximate pattern matching algorithms based on filtering have a running time of O(ℓ(1+
poly k·polylog ℓ

m
)) and thus are especially powerful for “small” values of k [2, 7, 14]. In general,

pattern matching under edit distance can be solved in time O(ℓk) [11], whereas pattern
matching under Hamming distance can be solved in time O(ℓ

√
k log k) [2].

1.1 The performance of the filtering approach

Although the filtering approach does not always speed up pattern matching, it is usually
quite efficient on high-entropy texts, such as those in which each character is drawn uniformly
at random from the input alphabet (of size σ). Given a pattern P , suppose that the text
string T is a concatenation of
(1) actual matches of P : substrings of size m whose Hamming distance to P is at most k;
(2) high entropy text: long stretches of characters, determined uniform i.i.d. from the input
alphabet.
On this T and P we can estimate the performance of the anchor verification step and thus
the filtering approach in general as follows. Let the number of actual matches be #occ.
Each such match (i.e. true positive) will be identified as an anchor due to the pigeonhole
principle. There will be other anchors yielding false positives. It is the expected number of
false positives which will determine the performance of the anchor verification step and thus
the overall algorithm. The false positives, i.e. substrings from the high entropy text that
will be identified as anchors, can be calculated as follows. The probability that a substring
T [i : i + m − 1] is identified as an anchor, i.e. has a block of size b which exactly matches
its corresponding block in P , is ≤ mσ−b. The expected number of anchors from the high
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entropy text is thus ≤ ℓmσ−b. This implies that the running time of the filtering approach
is proportional to #occ + ℓmσ−b as well as the time required to verify a given anchor.

The above estimate of the performance of the filtering approach is determined mostly
by problem specific parameters, #occ, ℓ, m or the time for verifying a given anchor, none of
which can be changed. There is only one variable, b, that can be determined by the filter
designer. Unfortunately, in order to avoid false negatives b must be at most ⌈(m−k)/(k+1)⌉.

It is possible to relax the above constraint on b by performing filtering through the use of
non-contiguous blocks, namely substrings with a number of gaps (i.e. don’t care symbols). To
understand why searching with blocks having don’t care symbols can help, consider the case
when k = 1, that is, we allow one mismatch. When contiguous blocks are used, the maximum
value of b is ⌈(m−1)/2⌉. Now consider using a block of size b+1 with one don’t care symbol
in the center position. How large can b be while guaranteeing that each substring of T with a
single mismatching character with P will be found? No matter where the mismatch occurs,
we are guaranteed that such a substring can be found even when b = 2⌈m/3⌉ − 1. This is a
substantial improvement over ungapped search, where b ≤ ⌈(m − 1)/2⌉, reducing the time
spent on false positives by a factor of ≈ σm/6.

1.2 Previous work

The idea of using gapped filters (which are called spaced seeds) was introduced in [6], and the
problem of designing the best possible seed was first posed in [5]. The design of spaced seeds
has been extensively studied for the case when the filter is allowed to have false negatives
(lossy filter), e.g. [3, 4, 9, 13]. In this scenario, the goal is to find a seed that minimizes the
false negatives rate, or in other words, a seed that maximizes the hit probability. In the
above papers, the seed design problem is solved using computational methods, namely, an
optimal seed is found by enumerating all possible seeds and computing the hit probability
of each seed. More recent work study the design of multiple spaced seeds, and also use
computational methods [12, 15, 16]. Unlike the case of one seed, going over all possible sets
of seeds is impractical. Therefore, heuristic methods are used to find a set of seeds which
may be far from optimal.

For some applications, it is desirable to construct seeds that are lossless, i.e., seeds that
find all matches of any pattern P of length m under Hamming distance k. Alternatively,
one can want to find all matches of any pattern P ′ of length m′ ≥ m within error rate k/m.
The lossless seed design problem was studied in [5], and was solved using computational
methods.

Burkhardt and Kärkkäinen posed the question how to find optimal seeds more directly.
This combinatorial seed design problem has remained open both in the lossless and the lossy
case.

1.3 Our contributions

In this paper we study the combinatorial seed design problem in the lossless case. We give
explicit design of seeds that are (almost) optimal for high entropy texts.

Our specific results are as follows. The combinatorial seed design problem has four
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parameters: minimum pattern length m, the number of “solid” symbols in the seed b, the
number of “don’t care” symbols in the seed g, and the maximum number of allowed errors
between the pattern and its match k. We denote by n the seed length, namely n = g + b.
One can optimize any one of the parameters, given the values of the other three parameters.
In this paper we focus on two variants of this optimization problem:

1. We study the following problem: Given m, n, and g, what is the spaced seed (of length
n and with g don’t cares) that maximizes the number of allowed errors k? i.e. we
want to find a seed which guarantees that all matches of a pattern of length m within
Hamming distance k are found, for the largest possible value of k. Our result for this
problem is explicit construction of seeds (for various values of m, n, and g) which we
prove to be almost optimal.

2. More interestingly, given the number of errors k and minimum pattern length m, we
are interested in the seed with largest possible b such that b + g = n ≤ m, which
guarantees no false negatives for matches with at most k errors. Clearly this seed
minimizes the time spent on false positives and thus maximizes the performance of the
filtering approach for any given pattern of size m with k errors. Again, we give explicit
construction of seeds that are almost optimal.

Our final result is on the design of multiple seeds: For any fixed pattern length m and
number of errors k (alternatively minimum pattern length m ≤ m′ and error rate k/m), we
show that by the use of s ≥ m1/k seeds one can guarantee to improve on the maximum size
of b achievable by a single seed.

We note that the problem of maximizing b for the case when k is constant was solved
in [10]. Moreover, [10] considers the problem of maximizing n for fixed k, m, and g, and
solves it for the case g = 1. This problem is analogous to the problem of maximizing k. Our
results are more general: We study the problem of maximizing k for wider range of g, and
the problem of maximizing b for wider range of k.

2 Preliminaries

For the remainder of the paper, the letters A and B will be used to denote strings over the
alphabet {0, 1}. For a string A and an integer l, Al denotes the concatenation of A l times.
Let Zeros(A) be the number zeros in the string A. A[i : j] denotes the substring of A that
starts at the i-th character of A and ends at the j-th character.

For two strings A and B of equal lengths, we write A ≤ B if A[i] ≤ B[i] for all i =
1, . . . , |A|. Note that this differs from lexicographic ordering. We say that a string A covers
a string B if there is a substring B′ of B of length |A| such that A ≤ B′. In words, A covers
B if we can align A against B such that every zero in the aligned region of B, is aligned
against a zero in A. We will say that such an alignment covers B.

The connection between the above definitions and the seed design problem is as follows:
a seed of length n will be represented by a string A of length n such that A[i] = 0 if the i-th
symbol of the seed is a don’t care, and A[i] = 1 otherwise. Given a pattern string P and a
substring T ′ of some text T of length m, let B be a string of length m, such that B[i] = 0
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if P [i] 6= T ′[i], and B[i] = 1 otherwise. Then, the filtering algorithm using seed A will find
a match between P and T ′ if and only if A covers B.

We define k(n, g, m) to be the maximum k such that there is a string A of length n
containing g zeros that covers every string B of length m with at most k zeros. In other
words, for a seed length of n with g don’t cares, k(n, g, m) is the maximum possible number
of errors between any P and any substring T ′ of length m that is guaranteed to be detected
by the best possible seed. Also, b(k, m) is the maximum b such that there is a string A with
b ones that covers every string B of length m with at most k zeros. In other words, given
the maximum number of errors k, b(k, m) is the maximum number of solid symbols one can
have in a seed so that a match between any P and T ′ with k errors could be detected by the
best possible seed.

In the next sections we will give upper and lower bounds on k(n, g, m) and b(k, m) for
various values of parameters, effectively solving the combinatorial seed design problem. Our
lower bounds on k(n, g, m) and are proved by giving explicit constructions of a seeds with
desired value of k. The lower bounds on b(k, m) are proved using explicit constructions and
probabilistic arguments. The respective upper bounds on k(n, g, m) and b(k, m) show that
the seeds we construct are almost to optimal.

3 Spaced seeds that maximize k

We first present our results on how to design a seed that maximizes the number of errors k
when the other parameters n, g and m are fixed. In other words, we describe a seed with
length n and g don’t care symbols that guarantees to find all substrings T ′ of size m whose
Hamming distance to pattern P is as high as possible. Our results also extend to the problem
of maximizing the error rate k′/m′ for any pattern P ′ of length m′ ≥ m with fixed n and g.

3.1 Maximizing k for constant g

Theorem 1. For every fixed g, k(n, g, m) = (2 − 1
g+1

) · m
n
± O(max(1, m

n2 )).

Proof. We first show a lower bound on k(n, g, m), by explicitly constructing the seed A.
The main idea of the proof is that if B contains “few” zeros, then using some form of the
pigeonhole principle, there will be an “isolated” zero in B. Thus, we can align A over B
such that the isolated zero in B is aligned against some zero in A, and there are no more
zeros in the aligned region of B.

Suppose that n is divisible by 2g + 1. Then the seed A is the string of length n that
contains zeros in positions n

2g+1
, 2 · n

2g+1
, . . . , g · n

2g+1
, and ones elsewhere.

Below we show that A covers any string of length m with k = (2 − 1
g+1

) · m
n
− 3 zeros or

less. We will later show that this value of k is (almost) optimal.
We start with a lemma on the distribution of zeros on B which will prove to be quite

useful later. Let L = n
2−1/(g+1)

.

Lemma 2. Let B be a string of length at least n with at most (2− 1
g+1

) · |B|
n
−3 zeros. Then,

either there is a substring of B of length n containing no zeros, or there is a substring B′
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A 1010111111
B′ 101111111111

(a)

A 1010111111
B′ 110111111111

(b)

A 1010111111
B′ 111110111111

(c)

Figure 1: An example for the proof of the lower bound in Theorem 1. Suppose that n = 10
and g = 2. Then, A = 1010111111. If B is a string of length m with at least m

6
− 3 zeros,

then either there is a substring of B of length 10 with no zeros, or there is a substring B′

of B of length 12 that contains one zero, and the position of the zero is at most 6. If B′

contains a zero at position 1 or 2, then we align A[1] with B[3] (figure a). If B′ contains
a zero at position 3 or 4, then we align the first zero in A with the zero of B′ (figure b),
and if B′ contains zero at position 5 or 6, we align the second zero in A with the zero of B′

(figure c).

of B of length 2L containing exactly one zero, and the zero appears in the first L characters
of B′.

Proof. We prove the lemma using induction on |B|. The base of the induction is when
|B| ≤ n + 2L. In this case we have that B contains no zeros (since (2− 1

g+1
) · n+2L

n
− 3 < 1).

Now, suppose that B is a string of length greater than n + 2L. W.l.o.g. B contains at least
two zeros, and let x1 and x2 be the indices of the rightmost zero and second rightmost zero
in B, respectively. If |B|−x1 +1 ≤ L, then the prefix of B of length x1 −1 contains at most

(2− 1
g+1

) · |B|
n

− 4 ≤ (2− 1
g+1

) · x1−1
n

− 3 ones, and by the induction hypothesis we have that

B satisfies the statement of the lemma. If |B| − x2 + 1 ≤ 2L, then the prefix of B of length

x2 − 1 contains at most (2 − 1
g+1

) · |B|
n

− 5 ≤ (2 − 1
g+1

) · x2−1
n

− 3 ones, and again we use the
induction hypothesis. If neither of these two cases above occurs, we take B′ to be the suffix
of B of length 2L.

Now we can complete the proof for the lower bound. Let B be a string of length m with
at most (2 − 1

g+1
) · m

n
− 3 zeros. If B contains a substring of length n with no zeros, then

clearly A ≤ B. Otherwise, let B′ be a substring of B of length 2L that contains exactly one
zero, and this zero appears in the first L characters of B′. There are 2L−n+1 ways to align
A against B′, and at least one of these alignments cover B′ (see Figure 1 for an example).
More precisely, let j be the index such that B′[j] = 0, and let s be the integer for which

s
2g+1

n < j ≤ s+1
2g+1

n. Note that s ≤ g since j ≤ L. For s = 0, the alignment of A and B′

in which A[1] is aligned with B′[j + 1] covers B′. For s ≥ 1, the alignment of A′ and B in
which the s-th zero in A is aligned against B′[j] covers B′

For every n which is not divisible by 2g + 1, let A′ be the string constructed above for
the length n′ = (2g + 1)⌈n/(2g + 1)⌉, and let A be the prefix of length n of A′ (if A contains
less than g zeros, arbitrarily change some ones into zeros). A covers every string that is
covered by A′. Therefore, the seed A described above covers any string B of length m with

k =
(

2 − 1
g+1

)

· m
n′
−3 zeros or less. Thus we get the following bound for the maximum value
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0 0

(a)

0 0 0 0

0

0

0 0 0

0 0 0

(b)

Figure 2: An example for the proof of the upper bound in Theorem 1. Figure (a) shows a
string A with two zeros, and the values of z1 and z2. Figure (b) shows the corresponding
strings B0, B1, and B2.

of k that is achievable by any seed:

k(n, g, m) ≥
(

2 − 1

g + 1

)

· m

n′
− 3 ≥

(

2 − 1

g + 1

)

· m

n + 2g
− 3

=

(

2 − 1

g + 1

)

· m

n
−

(2 − 1
2g+1

)2g · m
n(n + 2g)

− 3.

Upper bound. We now give an upper bound on k(n, g, m), demonstrating that no seed
can achieve a much higher value for k than the seed we described above. Let A be any seed
of length n with g zeros. We will construct strings B0, . . . , Bg that are not covered by A,
such that at least one of these strings has at most (2 − 1

g+1
) · m

n
+ O(max(1, m

n2 )) zeros.

Let y1, . . . , yg be the indices of the zeros in A. Let Y = {yj − yi : 1 ≤ i < j ≤ g}, and
let Z be the multi-set {max(yi − 1, n − yi) : i = 1, . . . , g}. Denote the elements of Z in a
non-decreasing order by z1, . . . , zg, and denote zg+1 = n. Define di = max({0, . . . , zi+1} \ Y )
for i = 0, . . . , g, and d′

i = max({0, . . . , n − 1 − zi} \ Y ) for i = 1, . . . , g.
The strings B0, . . . , Bg are constructed as follows: Let B0 be the prefix of length m of

the string (1d0−10)m. The string Bi is the prefix of length m of (1di−101d′i−10)m. If either
di = 0 or d′

i = 0 for some i, we say that Bi is undefined. See Figure 2 for an example of this
construction.

We now show that A does not cover the defined strings in B0, . . . , Bg. To see that A does
not cover B0 (if it is defined), suppose conversely that there is an alignment of A with B0

that covers B0. Since d0 < n, the aligned region of B0 contains a zero in some position j,
and this zero must be aligned with a zero in A. Suppose that B0[j] is aligned with A[yi]. We
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can break the string A into two parts: the characters to the left of yi, and the characters to
the right of yi, whose lengths are yi − 1 and n − yi, respectively. By the definition of z1, it
follows that the size of the larger part is at least z1. W.l.o.g. assume that the larger part is
the part of the characters to the right of yi. Since d0 ≤ z1, the aligned region of B0 contains
another zero at position j + d0. From the definitions of d0 and Y , this position must be
aligned with a one in A, contradicting the assumption that the alignment covers B0.

Now, suppose that there is an alignment of A with Bl that covers Bl. The aligned region
of Bl must contain a zero in some position j, which is aligned with A[yi] for some i. We
again break the string A into two parts, and we have that either the larger part is of size at
least zl+1, or the smaller part is of size at most n− 1− zl. From the definition of dl, d′

l, and
Y , it follows that there is a zero in the aligned region of Bl that is aligned against a one in
A, a contradiction.

As A doesn’t cover the strings B0, . . . , Bg, we obtain that k(n, g, m) < min{Zeros(Bi) :

i = 0, . . . , g}. If z1 ≥ g+1
2g+1

n, then d0 ≥ g+1
2g+1

n−|Y | ≥ g+1
2g+1

n− g2

2
. For large enough n, d0 > 0,

so B0 is defined and

Zeros(B0) =

⌊

m

d0

⌋

≤ m
g+1
2g+1

n − g2

2

=
2g + 1

g + 1
· m

n
+ O( m

n2 ).

Otherwise zg+1 − z1 > g
2g+1

n, so there is an index i ≥ 1 such that zi+1 − zi > 1
2g+1

n. Thus,

d′
i ≥ n − 1 − zi − |Y | ≥ zi+1 − zi − g2

2
> 1

2g+1
n − g2

2
, so for large n, d′

i > 0 (and also di > 0).

Moreover, di + d′
i ≥ n − 1 + zi+1 − zi − 2|Y | ≥ n + 1

2g+1
n − g2, and

Zeros(Bi) ≤ 2

⌊

m

di + d′
i

⌋

+ 1 ≤ 2m

n + 1
2g+1

n − g2
+ 1 =

2g + 1

g + 1
· m

n
+ O(max(1, m

n2 )).

3.2 Maximizing k for non-constant g

In the above section we showed how to place a constant number of don’t care symbols in a
seed A so that it guarantees to capture all matches of a pattern P within maximum possible
number of (approximately 2m

n
) Hamming errors. In this section we consider the case where

g, the number of don’t care symbols, is not constant but g ≤ n1−1/r for some r ≥ 2. We
show how to construct an (almost) optimal seed for this case, which turns out to be capable
of capturing all matches of any pattern P within ≈ rm

n
Hamming errors.

Theorem 3. For every fixed integers r ≥ 2 and l ≥ r, k(n, (1 + o(1))l · n1−1/r, m) ≥
(r + 1 − r

l−r+2
) · m

n
− O(max(1, m

n1+1/r )).

Proof. Recall that in the construction of Theorem 1, we were able to find an alignment of
A and B such that the aligned region of B contained the character 0 at most once, and this
character was aligned against one of the zeros in A. Here, we will find an alignment that
contains at most r zeros in the aligned region of B, which will be aligned against zeros in A.

We first prove the theorem for the case r = 2. Suppose that
√

n is integer, and that
√

n
is divisible by 3l − 2. A is then constructed as follows.

8



The seed A consists of
√

n blocks of size
√

n. The blocks numbered 2i
3l−2

√
n for i =

1, . . . , l− 1 contain only zeros. The other blocks contain
√

n− 1 ones, and a zero at the end.
We will show that A covers any string B of length m (≥ n) with

Zeros(B) ≤ (3 − 2

l
) · m

n
− m

√
n

n
3−2/l

( n
3−2/l

+
√

n)
− 5.

Let B such a string, and define L = n
3−2/l

, We claim that either there is a substring of B of

length n without zeros, or there is a substring B′ of B of length 3(L +
√

n) that contains at
most two zeros, and these zeros appears in the first 2(L+

√
n) characters of B. We omit the

proof of this claim which is similar to the proof of Lemma 2. If the first case occurs then
clearly A ≤ B, so suppose that the second case occurs. W.l.o.g. assume that B′ contains
exactly two zeros, at positions j and j′, with j′ < j. Suppose that j > 2

3l−2
n + 2

√
n (the

case j ≤ 2
3l−2

n + 2
√

n is similar, and we omit its proof). Let s ≤ l − 1 be the integer such

that 2s
3l−2

n + 2
√

n < j ≤ 2(s+1)
3l−2

n + 2
√

n.

Consider an alignment of A and B′ in which B′[j] is aligned against A[ 2s
3l−2

n]. Note

that A[ 2s
3l−2

n] is the last character of block number 2s
3l−2

√
n in A. If B′[j′] is not in the

aligned region, or it is aligned against a 0 in A then we are done. Otherwise, denote by
i = j′ + 2s

3l−2
n − j the position in A which is aligned against B′[j′]. Let d be the distance

from position i to the nearest occurrence of a zero in A to the left of i, and d = i if there
is no such occurrence. Since d <

√
n, by moving A d positions to the right, we obtain an

alignment that covers B′.
The case when

√
n is not integer, or when

√
n is not divisible by 3l− 2, is handled in the

same way as in Theorem 1: We build a string A′ of length n′ as described above, where n′

is the minimal integer greater than n such that
√

n′ is an integer divisible by 3l − 2, and we
take A to be the prefix of length n of A′.

We now deal with the case of r > 2. If n1/r is an integer divisible by (r+1)(l−r+1)+1,
then we build the string A as follows: We begin by taking A = 1n. We then partition A into
blocks of different levels. Level i (i = 0, . . . , r − 1) consists of n1−i/r blocks of size ni/r each.
For every i = 0, . . . , r − 2, and every j which is divisible by n1/r, we change block number
j in level i to consists of all zeros. Furthermore, for j = 1, . . . , l − r + 1, we change block
number j · l−r+2

(r+1)(l−r+1)+1
· n1/r in level r − 1 to consists of all zeros. The blocks that were

changed are called the zeros blocks.
For every string B of length m with

Zeros(B) ≤
(

r + 1 − r

l − r + 2

)

· m

n
− O(max(1, m

n1+1/r )),

we have that either there is a substring of B of length n without zeros, or there is a substring
B′ of B of length (r + 1)/(r + 1 − r

l−r+2
) + O(n1−1/r) that contains at most r zeros, and

the zeros appear in the first r/(r + 1 − r
l−r+2

) + O(n1−1/r) characters of B′. Assume that
the second case occurs. Suppose w.l.o.g. that B′ contains exactly r zeros. We create an
alignment of A and B that covers B as follows: First, we align the rightmost zero in B′ with
the rightmost character of the appropriate zeros block of level r − 1. Then, for i = 2, . . . , r,
we move A to the right, until the i-th zero from the right in B′ is either aligned against the
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rightmost character of some zeros block of level r − i, or it is outside the aligned region. By
our construction, the movement of A is no more than n1−(i−1)/r − 1 positions. Moreover,
during the movements of A the following invariant is kept: For every j ≤ i−1, after the i-th
movement, the j-th zero from the right in B′ is aligned against a character of some zeros
block of level j′, where r − i − 1 ≤ j′ ≤ r − j. In particular, at the end, all the zeros in B′

are aligned against zeros in A, and therefore A covers B.
The case when n1/r is not an integer, or when n1/r is not divisible by (r+1)(l−r+1)+1,

is handled the same as before.

The following theorem gives an upper bound that matches the lower bound in Theorem 3,
demonstrating that the seed it describes is (almost) optimal.

Theorem 4. For every integer r ≥ 2, if g ≤ n1−1/r then k(n, g, m) ≤ r · m
n

+ O(1).

Proof. An indices vector is a vector (i1, . . . , ir−1) such that 1 ≤ i1 < · · · < ir−1 ≤ n−1. The
shift of an indices vector v = (i1, . . . , ir−1) is the vector (i2 − i1, i3 − i1, . . . , ir−1 − i1, n− i1),
and the s-shift of v is obtained by performing s shift operations on v. Note that the r-shift
of v is v. The number of distinct indices vectors is

(

n−1
r−1

)

.
Let A be some string of length n with g zeros. Define Y to be the set of all the indices

vectors (i1, . . . , ir−1) such that A[x] = A[x + i1] = · · · = A[x + ir−1] = 0 for some integer x.
As |Y | ≤

(

g
r

)

<
(

n−1
r−1

)

/r, we have that there is an indices vector v = (i1, . . . , ir−1) such that
no s-shift of v is in Y , for every s ≥ 0.

Let C be a string of length n such that C[1] = C[i1 + 1] = · · · = C[ir−1 + 1] = 0, and
the other characters of C are ones, and let B be the prefix of length m of Cm. For every
substring B′ of B of length n, there is an s-shift v′ = (i′1, . . . , i

′
r−1) of v and an integer x,

such that B′[x] = B′[x + i′1] = · · · = B′[x + i′r−1] = 0, and thus A 6≤ B′. Therefore, A does
not cover B, and it follows that

k(n, g, m) ≤ Zeros(B) − 1 ≤ r⌈m/n⌉ ≤ r · m

n
+ r.

4 Maximizing b

We now show how to maximize b, the number of solid symbols in a seed, given the number
of errors k and the pattern length m. As the number of false positives depends heavily on
b, the resulting seed simply optimizes the performance of the filtering method. Our result
also provides the maximum b for the problem of finding all matches of any pattern P ′ of size
m′ ≥ m within error rate k′/m′ = k/m.

Theorem 5. For every k < 1
8
log2 m,

b(k, m) ≥
{

m − O(km1−1/(k+1)) if k < log log m

m − O(m1−1/(k+1)) if k ≥ log log m

and b(k, m) ≤ m − Ω(m1−1/(k+1)).

10



Proof. We begin with showing the lower bound on b(k, m). Let s = ⌊m1/(k+1)⌋.
We construct a seed A of length n = m− 2

∑k
i=1 si by dividing it into blocks in k levels,

similarly to Theorem 3: The i-th level of blocks (i = 0, . . . , k−1) consists of blocks of size si

each (the last m mod si characters of A do not belong to a level i block). For every i ≤ k−1
and every j which is divisible by s, we make block number j in level i a zeros block.

We need to show that A covers every string B of length m with k zeros. Let B be
such string, and let y1, . . . , yk be the indices in which the character 0 appears in B. Let
yk+1 = m+1. If yi+1−yi ≤ 2si for all i ≤ k then we have that y1 ≥ m+1−∑k

i=1 2si = n+1.
Therefore B[1 : n] = 1n, and A covers B. Otherwise, let j be the maximum index such that
yj+1 − yj > 2sj . Note that from the maximality of j, yj+1 = m + 1 −

∑k
i=j+1(yi+1 − yi) ≥

m + 1 −
∑k

i=j+1 2si, so yj+1 − n > 2sj.
We align A over B such that A[n] is aligned with B[max(n, yj)]. Then, for i = j, j −

1, . . . , 1, we move A to the right until B[yi] is against the rightmost character of some level
i−1 zeros block in A. The total movement of A is at most

∑j
i=1 sj ≤ 2sj < yj+1−max(n, yj),

and therefore at the end of this process the alignment covers B.
We therefore have that b(k, m) ≥ n − g, where g is the number of zeros in B. The lower

bound for k < log log m follows from the fact that g = O(km1−1/(k+1)).
Now, suppose that k ≥ log log m. We randomly construct a string A of length n =

m−⌊m1−1/(k+1)⌋: Each character of A is 0 with probability p = 100/m1/(k+1), and 1 otherwise,
where all the choices are are independent. By Markov’s inequality, with probability at least
1/2, the number of zeros in A is at most 2pn = O(m1−1/(k+1)). We will show that with
probability at least 2/3, A covers every string of length m with k zeros. Therefore, there
is a string of length n with O(m1−1/(k+1)) zeros that covers every string of length m with k
zeros, and the lower bound follows.

Let B be some string of length m with k zeros at positions y1, . . . , yk. There is a set
X ⊆ {0, . . . , m − n} of size at least (m − n)/k2 such that for every x, x′ ∈ X, there are no
indices i and j such that yi + x = yj + x′ (Such a set X can be built by starting with X = φ
and X ′ = {0, . . . , m− n}, and then moving elements from X ′ to X. Each element added to
X rules out at most k(k−1) elements in X ′, and therefore |X| ≥ (m−n+1)/(k(k−1)+1) >
(m − n)/k2).

For every x ∈ X, the probability that the alignment that aligns A[1] with B[1 + x] does
not cover B is at most 1 − pk (the probability is less than 1 − pk if some of the zeros of B
are outside the aligned region). From the definition of X, the events above are independent,
so the probability that A does not cover B is at most (1− pk)|X|. Using the union bound we
obtain that the probability that there is a string B that is not covered by A is at most

(

m

k

)

(1 − pk)(m−n)/k2 ≤ mke−pkm1−1/(k+1)/k2

<
1

3
.

Upper bound. Denote M = ⌈1
2
m1−1/(k+1)⌉. Let A be a string with b ones and g zeros,

and suppose that b ≥ m−M + 1. We will show that there is a string B of length m with k
zeros that is not covered by A. Clearly, g ≤ m − b ≤ M − 1.

Define Ii = {(i − 1)M + 1, . . . , iM} for i = 1, . . . , 2m1/(k+1) − 1. Let Y be the set of all
k-tuples (j, i1, . . . , ik−1) such that (1) j ≤ 2m1/(k+1) − 1 and M + 1 ≤ i1 < · · · < ik−1 ≤ jM ,
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and (2) there is an index x ∈ Ij such that A[x] = A[x− i1] = · · · = A[x− ik−1] = 0. We have
that

|Y | ≤
(

g

k

)

<

(

M

k

)

<

(

m−2M
k

)

M
.

Since the number of k-tuples that satisfy (1) above is at least
(

m−2M
k

)

/M , we have that there
is a k-tuple (j, i1, . . . , ik−1) that satisfies (1) but does not satisfy (2). We now construct a
string B of length m that contains zeros in positions jM, jM − i1, . . . , jM − ik−1 and ones
elsewhere. If A covers B, then consider some alignment of A and B that covers B, and
suppose that A[1] is aligned with B[y]. Since the length of A is at least b ≥ m − M + 1, we
have that y ≤ M . Therefore, B[jM ] is aligned with A[x] for some x ∈ Ij. It follows that
(j, i1, . . . , ik−1) ∈ Y , a contradiction. Therefore, A does not cover B, and the upper bound
follows.

Theorem 6. For every k ≥ 1
8
log2 m, b(k, m) = Ω(m

k
log m

k
) and b(k, m) = O(m

k
log m).

Proof. The lower bound is trivial if k = Ω(m), so assume that k < m
10

. By Theorem 5, there
is a string A of length n = 1

8
· m

k
log m

k
that contains b = Θ(n) ones and covers every string

of length 8n with at most log n zeros. If B is a string of length m with at most k zeros,
then by the pigeon-hole principle, there is a substring B′ of B of length 8n that has at most
k · 8n

m
= log m

k
≤ log n zeros, and therefore A covers B′. Thus, A covers B.

Upper bound. Suppose that A is a string of length n with b ≥ m
k

log m ones. Let z1, . . . , zb

be the positions of the ones in A. Construct a collection of sets S1, . . . , Sm, where Sx =
{y ∈ {0, . . . , m − n} : ∃j s.t. zj + y = x}. For every y = 0, . . . , m − n, there are b sets
among S1, . . . , Sm that contain y. Therefore, there is a set cover of {0, . . . , m − n} using
l ≤ log(m − n + 1)/ log(1/(1 − b/m)) sets from S1, . . . , Sm [8], namely, there are indices
x1, . . . , xl such that ∪l

i=1Sxi
= {0, . . . , m − n}. Now, let B be a string of length m that

contains zeros in positions x1, . . . , xl and ones elsewhere. If we align A and B, where A[1] is
aligned with B[1 + y] for some 0 ≤ y ≤ m − n, then there is an index xi such that y ∈ Sxi

,
that is, there is an index j such that zj + y = xi. This implies that the character A[zj ] = 1
is aligned against B[xi] = 0. Therefore, A doesn’t cover B. The number of zeros in B is at
most

log(m − n + 1)

log 1
1−b/m

≤ m

b
· log m ≤ k,

and the upper bound follows.

4.1 Multiple seeds

To model multiple seeds, we define that a set of strings {A1, . . . , As} covers a string B if
at least one string Ai from the set covers B. Let b(k, m, s) be the maximum b such that
there is a set of strings {A1, . . . , As} that covers every string B of length m with at most k
zeros, and each string Ai contains at least b ones. The following theorem shows that using
multiple seeds can give better results than one seed, namely, b(k, m, m1/k) is slightly larger
than b(k, m) (see Theorem 5).
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Theorem 7. For every k < log log m, b(k, m, m1/k) ≥ m − O(km1−1/k).

Proof. We take s = ⌊m1/k⌋, and build a string A of length n = m−
∑k−1

l=0 sl, that has k− 1
levels of blocks as in the proof of Theorem 5. Then, we build strings A1, . . . , As−1, where Ai

is obtained by taking the string A and adding zeros at positions js − i for j ≥ s. It is easy
to verify that {A1, . . . , As−1} covers every string of length m with at most k zeros.
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