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1. Introduction

Mathematics and music theory have a long history of collaboration dating back

to at least Pythagorasa [Godwin (1993)]. More recently the emphasis has been

mainly on analysing string pattern matching problems that arise in music theory

[Cambouropoulos et al. (2002); Clifford et al. (2004); Clifford and Iliopoulos (2004);

Clifford et al. (2005); Crawford et al. (1998); Crochemore et al. (2003)].

A fundamental problem of both theoretical and practical importance in music

information retrieval is that of comparing arbitrary pieces of music. Here we restrict

our attention to rhythm similarity, i.e. to what extent is rhythm A similar to rhythm

B? Long term goals of this research include content-based retrieval methods for large

musical databases using such techniques as query-by-humming (QBH) [Ghias et al.

(1995); Mo et al. (1999)] and finding music copyright infringements [Cronin (1998)].

In geometry and other branches of mathematics, we often measure the similarity

of two objects that are in the same class but not identical. For example, the relative

similarity of two real numbers can be computed as the difference, or the square

of their differences. The similarity of two functions over some period might be

computed as the unsigned integral between them over this period. Thus, we can say

that two pieces of music are similar if their melody or rhythm are similar.

In [Toussaint (2002)], several rhythm representations were discussed as follows:

Rhythms are usually notated for musicians using the standard western music nota-

tion (see Figure 1(a–f)(i)). A more popular way of representation is called the Box

Notation Method b intended for percussionists that do not read music (see Figure

1(a–f)(ii)). The box notation method is convenient for simple-to-notate rhythms

like bell and clave patterns, where a common variant of this method is simply to

use one symbol for the note (e.g. �) and another for the rest (e.g. ♦). A rhythm

may also be represented as a cyclic binary sequence where a zero denotes a rest (si-

lence) and a one represents a beat or note onset, for example, the clave son would

be written as the 16-bit binary sequencec: [1001001000101000]. An even better

representation for such cyclic rhythms is obtained by imagining a clock with 16

hours marked on its face instead of the usual 12. Let us think that the hour and

the minute hands have been broken off so that only the second-hand remains. Now

set the clock ticking starting at noon (16 O’clock) and let it strike a bell at the 3,

6, 10 and 12 positions for a total of five strikes per clock cycle. These times are

marked with a bell in Figure 2. Thereof, a common geometric representation of

rhythms is obtained by connecting consecutive note locations with edges to form a

convex polygon inscribed in our imaginary clock (see Figure 1(a–f)(iv)). A cyclic

rhythm may be represented succinctly as a sequence of note positions; for example,

(0, 3, 6, 10, 12) is the compressed representation of [1001001000101000].

aIn the 5th century BC, Pythagoreas was quoted to have said,“There is geometry in the humming

of strings. There is music in the spacing of the spheres”.
bAlso known as TUBS (Time Unit Box System).
cThis rhythm can also be thought as a point in a 16-dimensional space (the hypercube).
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Fig. 1: Six fundamental 4/4 time clave rhythms. Each rhythm is depicted using (i) a

standard western notation system, (ii) a box notation, (iii) a binary representation

and (iv) a common geometric representation using convex polygons. The dotted

lines indicate the base of an isoceles triangle or an axis of mirror symmetry. This

figure is from [Toussaint (2002)].

A natural measure of the difference between two rhythms represented as binary

sequences is the well known Hamming distance, which counts the number of posi-

tions in which the two rhythms disagree. Although the Hamming distance measures

the existence of a mismatch, it does not measure how far the mismatch occurs, that

is why, Toussaint proposed a distance measure termed the swap distance [Toussaint

(2002); Toussaint (2004A); Toussaint (2004B)]. A swap is an interchange of a one

and a zero (note duration and rest interval) that are adjacent in the sequence. The

swap distance between two rhythms is the minimum number of swaps required to

convert one rhythm to the other. For non circular binary strings, [Jiang (2008A)]

proposed a linear-time algorithm for Hamming distance with shifts, which gener-

alises both Hamming distance and swap distance.

In [Toussaint (2002)], the swap distance measure of dissimilarity was shown to

be more appropriate than several other measures of rhythm similarity including the
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Fig. 2: 16-hours cycle clock representation of the clave son rhythm. The end of one

cycle is the same spatial position as the beginning of the next.

Hamming distance, the Euclidean interval-vector distance, the interval-difference

distance measure of Coyle and Shmulevich, and the chronotonic distance measures

of Gustafson and Hofmann-Engl.

Toussaint stated that the swap distance between two rhythms represented as

cyclic binary sequences may be computed in O(n2) time [Toussaint (2004A)]. He

left as an open problem the possibility of improving this computation time. In this

paper we aim to find an efficient algorithm to measure the swap distance between

two cyclic binary sequences. More formally, given two n-bit (cyclic) binary strings,

A and B, represented on a circle (necklace instances). Let each sequence have the

same number k of 1’s. We are interested in computing the cyclic swap distance

between A and B, i.e., the minimum number of swaps needed to convert A to B,

minimized over all rotations of B. We show that this distance may be efficiently and

elegantly computed in O(k2) time, assuming that the two necklaces are given using

their compressed representations. Note that an additional O(n) time is needed to

compute the compressed representations if such representations are not given. Our

algorithm is considered to be more efficient than Toussaint’s when k is o(n).

A closely related problems have been studied in [Bremner et al. (2006)]

where several necklace alignment problems were defined and several o(n2)-time

convolution-based algorithm were proposed. Very recently, Jiang studied a different

rhythmic similarity measure based on the sum of the distances along a circle [Jiang

(2008B)].

The outline of the paper is as follows: Some preliminaries are described in

Section 2. An O(k3)-time algorithm is presented in Section 3 followed by a more

efficient O(k2)-time algorithm in Section 4. Conclusion and further discussion are

drawn in Section 5.

2. Preliminaries

Let X [0..n − 1] be a necklace (circular string) of length n over Σ = {0, 1}. By

X [i] we denote the bit in X at position i, 0 ≤ i < n. We also denote by k, the
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number of 1’s in X . Let x = (x0, x1, . . . , xk−1) be the compressed representation of

X , such that X [xi] = 1 for 0 ≤ i < k. For some integer r, let x〈r〉 be the r-inverted-

rotation of x such that x
〈r〉
i = xi �− r for 0 ≤ i < k and i �− r = mod(i + r, k). If

X = [10000100010001001], for example, x = (0, 5, 9, 13, 16), x〈1〉 = (5, 9, 13, 16, 0),

and x〈3〉 = (13, 16, 0, 5, 9).

We define a mapping π:{1, . . . , k} → {1, . . . , k} such that π is a bijective (both

onto and 1-1) function. We define the non-crossing mappings π0, . . . , πk−1 as follows

πh(i) = (i + h) mod k, for 0 ≤ i, h < k. (1)

For n = 5, Figure 3 graphically illustrates the πh mappings for 0 ≤ h < 5. All

of these mappings are non-crossing , i.e. they have the property that their arrows

never cross. We will show in Lemma 4.4 that only non-crossing mappings should be

considered.
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Fig. 3: πh-mappings for 0 ≤ h < 5.

We define the median of a sorted sequence x = (x0, . . . , xk−1) as follows:

xmed =

{

x(k−1)/2 , k odd,

x⌊(k−1)/2⌋, k even.
(2)

Note that, when k is even, there are actually two medians, occurring at ⌊(k +

1)/2⌋ (lower median) and ⌈(k+1)/2⌉ (upper median). For simplicity, Eq. 2 considers

the lower median as “the median” when k is even.

Let x = (x0, x1, ..., xk−1) and y = (y0, y1, ..., yk−1) be two compressed represen-

tations of X and Y , respectively. Then the Manhattan distance L1(x, y) is defined

as follows:

L1(x, y) =

k−1
∑

i=0

|yi − xi|. (3)

Definition 2.1. Given X and Y , two necklaces both of length n and same number

of 1’s, the minimum necklace swap problem is to find the cyclic swap distance



April 2, 2008 14:46 WSPC/INSTRUCTION FILE paper-journal

6 Ardila et al.

between X and Y , i.e., the minimum number of swaps needed to convert X to Y ,

minimized over all rotations of Y . A swap is an interchange of a one and a zero

that are adjacent in the binary string.

Throughout the paper we assume that the two necklaces are given using their

compressed representations together with the length n. If this is not the case then

an additional O(n) time is needed to compute the compressed representations.

3. An O(k3)-Time Algorithm

The naive approach is to examine each mapping and calculate for each possible

rotation the sum of the swap operations needed for each pair of mapped 1’s. This

approach costs O(nk2) time. This is because k non-crossing mappings should be

considered (cf. Lemma 4.4) and for each mapping, there are n rotations (circular

shift) need to be examined. The question is: Do we really need to examine all possible

n circular shifts for each mapping? Lemma 4.3 suggests that only k circular shifts

need to be checked for each mapping. This gives a total cost of O(k3) time. The

algorithm works as follows:

Let u and v be the rest-interval sequences for x and y, resp., defined as follows

ui =

{

xi+1 − xi , if 0 ≤ i < k − 1

n − xk−1 + x0, if i = k − 1
(4)

and

vi =

{

yi+1 − yi , if 0 ≤ i < k − 1

n − yk−1 + y0, if i = k − 1
(5)

Using this representation we can now compute the following sequences

x
[h]
i =

{

u
〈h〉
i , if i = 0

(x
[h]
i−1 + u

〈h〉
i ) mod n, if 0 < i < k

(6)

and

y
[h]
i =

{

v
〈h〉
i , if i = 0

(y
[h]
i−1 + v

〈h〉
i ) mod n, if 0 < i < k

(7)

with the characteristic that for x[i] and y[j], 0 ≤ i, j < k, the 1-bit in X at position

i coincides with the 1-bit in Y at position j.

Example 3.1. Let x = (1, 6, 9, 12, 13) and y = (0, 3, 4, 10, 16). To understand the

meaning of u and v we first show the representations of x and y as bit strings X

and Y in Table 1. Note that the 1’s are numbered from 0 to k − 1, for example the

1st and 2nd bit in X are located at positions 1 and 6. So, the rest-interval sequence
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u = (5, 3, 3, 1, 5) corresponds to the intervals between consecutive strokes (1’s). In

other words u stores the gaps between the 1’s in X. In the same way, we compute

v = (3, 1, 6, 6, 1).

Table 1: Illustration of x[3] and y[1] computation for x = (1, 6, 9, 12, 13) and y =

(0, 3, 4, 10, 16), u = (5, 3, 3, 1, 5) and v = (3, 1, 6, 6, 1).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X 0 1
0

0 0 0 0 1
1

0 0 1
2

0 0 1
3

1
4

0 0 0

Y 1
0

0 0 1
1

1
2

0 0 0 0 0 1
3

0 0 0 0 0 1
4

X[3]
1
3

1
4

0 0 0 0 1
0

0 0 0 0 1
1

0 0 1
2

0 0

Y [1]
1
1

1
2

0 0 0 0 0 1
3

0 0 0 0 0 1
4

1
0

0 0

Now let’s understand the meaning of, lets say, x[3]. To compute x[3], accord-

ing to Eq. 6, we need to calculate u〈3〉, thus the 3rd-inverted-rotation of u. Since

u = (5, 3, 3, 1, 5), then u〈3〉 = (1, 5, 5, 3, 3) (i.e. u was rotated to the left by 3 po-

sitions). Using u〈3〉 and Eq. 6 we get the accumulated rotated intervals sequence

x[3] = (1, 6, 11, 14, 0). Notice that sequence x[3] corresponds to a rotation of X such

that its 4th 1-bit is set to position 0; this is equivalent to shifting X to the left by

12 positions. Table 1 also shows the representation of Y [1] which has the property of

having the 2nd 1-bit in Y is set to position 0. Note that if we compute L1(x
[3], y[1])

we compute the swap distance for π3 (cf. Figure 3).

The minimum necklace swap problem is equivalent to calculating

s∗ = min
0≤i,j<k

L1(x
[i], y[j]). (8)

Example 3.2. For x = (1, 6, 9, 12, 13) and y = (0, 3, 4, 10, 16) Table 2 shows the

computation of L1(x
[i], y[j]) for 0 ≤ i, j < 5. The value 3 was the minimum swap

distance given by, for example, (3,4,9,14,0) and (3,4,10,16,0). This is also the num-

ber of swaps needed to match [10011000010000100] and [10011000001000001].

Table 2: Computation of L1(x
[i], y[j]) for 0 ≤ i, j < 5. x = (1, 6, 9, 12, 13),

y = (0, 3, 4, 10, 16), u = (5, 3, 3, 1, 5) and v = (3, 1, 6, 6, 1).

u〈i〉 → x[i] 5,3,3,1,5 → 3,3,1,5,5 → 3,1,5,5,3 → 1,5,5,3,3 → 5,5,3,3,1 →

v〈j〉 → y[j] 5,8,11,12,0 3,6,7,12,0 3,4,9,14,0 1,6,11,14,0 5,10,13,16,0

3,1,6,6,1 → 3,4,10,16,0 11 9 3 7 11

1,6,6,1,3 → 1,7,13,14,0 9 11 9 3 9

6,6,1,3,1 → 6,12,13,16,0 11 19 17 15 3

6,1,3,1,6 → 6,7,10,11,0 4 8 10 10 12

1,3,1,6,6 → 1,4,5,11,0 15 7 9 11 23

X
X

X
X

X
X

X
X

XX
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Algorithm 1

Input: x, y, k
Output: s∗

1. ⊲ compute u and v using Eq. 4 and Eq. 5, resp.
2. s∗ = ∞
3. for i = 0 to k − 1 do
4. for j = 0 to k − 1 do
5. ⊲ compute x[i] and y[j] using Eq. 6 and Eq. 7, resp.
6. if s∗ > L1(x

[i], y[j]) then s∗ = L1(x
[i], y[j])

7. return s∗

Fig. 4: Algorithm 1.

Figure 4 shows the main steps of the algorithm. Line 5 can be computed in O(k)

time. Hence, Algorithm 1 runs in O(k3) time. By using the “high/low- frequency”

technique [Abrahamson (1987)], Indyk et. al. proposed an algorithm to calculate

all values L1(x
[i], y[j]), 0 ≤ i, j < k in O(k(ω+3)/2) time, where O(kω) is the running

time required to multiply two matrices of size k×k (see [Indyk et al. (2004)]). In

the following section, we will show that we do not need to calculate all values

L1(x
[i], y[j]) in order to find s∗.

4. An O(k2)-Time Algorithm

In this section we present the main algorithm for solving the minimum necklace swap

problem. We show that only one column in Table 2 needs to be considered in order

to compute the minimum swap distance, hence giving an overall time complexity of

O(k2). Our strategy is to consider each non-crossing mapping πh, for 0 ≤ h < k, in

turn and to find for each mapping the rotation that minimises the swap distance.

The algorithm works as follows:

If we define the residual sequence c[h] as

c
[h]
i = y

[h]
i − x

[0]
i , for 0 ≤ i, h < k, (9)

then the minimum necklace swap problem is equivalent to calculating

s∗ = min
0≤h<k

k−1
∑

i=0

|δ
[h]
i |, (10)

where

δ
[h]
i = c

[h]
i − c

[h]
med, for 0 ≤ i, h < k, (11)

and c
[h]
med is the median of c[h] as defined in Eq. 2.
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Algorithm 2

Input: x, y, k
Output: s∗

1. ⊲ compute u and v using Eq. 4 and Eq. 5, resp.
2. ⊲ compute x[0] using Eq. 6.
3. s∗ = ∞
4. for h = 0 to k − 1 do
5. ⊲ compute y[h] using Eq. 7
6. ⊲ compute c[h] using y[h], x[0] and Eq. 9.

7. c
[h]
med = median(c[h])

8. ⊲ compute δ[h] using c[h], c
[h]
med and Eq. 11.

9. d = 0
10. for i = 0 to k − 1 do

11. d = d + |δ
[h]
i |

12. if s∗ > d then s∗ = d
13. return s∗

Fig. 5: Algorithm 2.

Figure 5 shows the main steps of the algorithm. Lines 1,2,5-6,8 can be computed

in O(k). Line 7 can be computed in O(k) using [Reiser (1978)], therefore Algorithm

2 runs in O(k2).

Before proving the correctness of Algorithm 2, we give an example.

Example 4.1. For x = (0, 5, 8, 11, 12) and y = (0, 3, 4, 10, 16), Table 3 shows

the computation of c[h], c
[h]
med

, δ[h], and
∑k−1

i=0 |δ
[h]
i | for 0 ≤ h < k. The value

3 was the minimum swap distance between (5,8,11,12,0) and (6,7,10,11,0)〈−1〉 .

This is also the number of swaps needed to match [10000100100110000] and

[01000001100110000]. This example is also fully illustrated in Figure 6.
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Table 3: Computation of c[h], c
[h]
med, δ

[h], and
∑k−1

i=0 |δ
[h]
i | for 0 ≤ h < k.

x = (0, 5, 8, 11, 12), y = (0, 3, 4, 10, 16), u = (5, 3, 3, 1, 5), v =

(3, 1, 6, 6, 1).

h v〈h〉 → y[h] x[0] c[h] c
[h]
med δ[h]

∑k−1
i=0 |δ

[h]
i |

0 3,1,6,6,1 → 3,4,10,16,0 5,8,11,12,0 -2,-4,-1,4,0 -1 -1,-3,0,5,1 10

1 1,6,6,1,3 → 1,7,13,14,0 5,8,11,12,0 -4,-1,2,2,0 0 -4,-1,2,2,0 9

2 6,6,1,3,1 → 6,12,13,16,0 5,8,11,12,0 1,4,2,4,0 2 -1,2,0,2,-2 7

3 6,1,3,1,6 → 6,7,10,11,0 5,8,11,12,0 1,-1,-1,-1,0 -1 2,0,0,0,1 3

4 1,3,1,6,6 → 1,4,5,11,0 5,8,11,12,0 -4,-4,-6,-1,0 -4 0,0,-2,3,4 9

Lemma 4.2. For a given mapping π and two cyclic bit-strings X and Y , the ro-

tation θ that minimises the swap distance between X and Y can be found in O(k)

time using Algorithm 2.

Proof. Let’s consider the mapping π0, then we are trying to find the rotation θ

that minimises the swap distance between X and Y under π0. According to Eq. 1,

π0 pairs the 1’s in X with the 1’s in Y as follows:

(0 → 0), (1 → 1), . . . , (k → k).

Since the positions of the 1’s in X and Y are stored in x[0] and y[0], resp., vector

c[0] stores the number of swaps needed to make each of the 1-bit in Y coincides with

its corresponding 1-bit in X , but at the same time, since the signs are kept, it also

“stores” the direction in which the swaps are to be done. Figure 7 illustrates this

fact.

Now we seek to find the value θ such that

k−1
∑

i=0

|c
[0]
i − θ| (12)

is minimum. To minimise (12), θ needs to be chosen as the median of c[0] which can

be calculated in O(k) time using a linear time selection algorithm [Reiser (1978)].

Once θ has been computed, Eq. 12 can be calculated in linear time. Hence, Eq. 10

produces the minimum swap distance.

Lemma 4.3. In order to find the global minimum, the only rotations θ that need

to be consider are those where two 1’s coincide.
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Fig. 6: Computation of the minimum cyclic swap distance for X =

[10000100100110000] and Y = [10011000001000001]. x = (0, 5, 8, 11, 12), y =

(0, 3, 4, 10, 16), u = (5, 3, 3, 1, 5), v = (3, 1, 6, 6, 1).
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Fig. 7: Illustration of c[0] computation.

Proof. This follows from Lemma 4.2. For a given mapping h and residual sequence

c[h]; c
[h]
med is a value in c[h] therefore, there must be at least one δ

[h]
i = 0, for

0 ≤ i < k.

Lemma 4.4. Consider cyclic string x and a linearised string y′. A minimum map-

ping for any shift is non-crossings.

Proof. Consider any linearisation of string y and let y′ be the concatenation of

y to itself to make a string of length 2n. Define π′:{1, . . . , n} → {1, . . . , 2n} to

be a mapping between the positions of the 1’s in x and the 1’s in y′s such that

π′(1) ≤ π′(i), for all i, and maxi,j π′(j) − π′(i) ≤ n. It is clear that there is an 1-1

correspondence between mappings of this type and those defined in Section 2. We

further extend the definition so that π′h(1) is equal to the position of the hth 1 in

y′.

We say that a mapping, π′, is non-crossing if for every i, j such that i < j

then π′(i) < π′(j). Given a mapping π′h (and a particular rotation of x), the swap

distance with respect to π′h is simply Σ|π′h(i)− i|. We define a minimum mapping

for a particular value h to be any mapping that minimises the swap distance.

The proof is by contradiction. Consider a mapping π′ that both minimises the

swap distance for the alignment and also is not a non-crossing. It follows that there

exist i, j such that j > i and π′(i) > π′(j). Now consider a new mapping π′∗,

identical to π′ except that π′∗(i) = π′(j) and π′∗(j) = π′(i). Now |π′∗(i) − i| <

|π′(i) − i| and |π′∗(j) − j| < |π′(j) − j| so the swap distance of π′∗ is less than the

swap distance of π′. This completes the proof.

We can now prove the main theorem.

Theorem 4.5. Algorithm 2 solves problem 1 in O(k2) time.

Proof. Every set of swaps has a corresponding mapping from which its swap dis-

tance can be calculated. By Lemma 4.4, we need only to consider non-crossing

mappings. By Lemma 4.2, Algorithm 2 finds the minimum swap distance for every
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mapping and as so by simply iterating over all non-crossing mappings the necklace

problem is solved.

The running time of each iteration is determined by the time taken by Algorithm

2 which Lemma 4.2 shows to be O(k). There are k iterations, giving an overall time

complexity of O(k2).

5. Conclusion and Further Discussion

We have presented a new algorithm that solves the cyclic swap distance problem for

two n-bit (cyclic) binary strings in O(k2) where k is the number of 1’s (same) in both

strings. We have also shown that the swap distance calculated by our algorithm is

optimal. It should be mentioned here that the ℓ1 necklace alignment problem that

has been recently studied by [Bremner et al. (2006)] are not exactly the same as the

cyclic swap distance problem. Hence, the proposed convolution-based o(k2)-time

algorithm does not improve our result. In [Bremner et al. (2006)], the goal of the

ℓ1 necklace alignment problem is defined as finding the mapping s and the shift

c that minimises
∑k−1

i=0 |xi − yi+s mod k − c|, where x and y are the compressed

representations of two necklaces. Similar to our result c is chosen to be the median

over all xi − yi+s mod n’s, for all possible non-crossing mapping s ∈ {0, 1, ..., k}.

Thus, for two necklaces X = 11100000, Y = 01100001 represented as x = 0, 1, 2

and y = 1, 2, 7, the ℓ1 distance is 4 (s = 0 and c = 1) while the cyclic swap distance

calculated by our algorithm is 1.

Natural extensions to the cyclic swap distance problem could be:

(1) To consider unequal number of 1’s among the input strings; this is known as the

necklace Hamming distance with shift problem; proposed also in [Jiang (2008A)].

(2) To allow scaling i.e. a possible increase/decrease in the rest intervals of one of

the input strings by a given constant.
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