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ABSTRACT

Locality is an important and well-studied notion in comparative analysis of biological se-
quences. Similarly, taking into account affine gap penalties when calculating biological
sequence alignments is a well-accepted technique for obtaining better alignments. When
dealing with RNA, one has to take into consideration not only sequential features, but also
structural features of the inspected molecule. This makes the computation more challenging,
and usually prohibits the comparison only to small RNAs. In this paper we introduce two
local metrics for comparing RNAs that extend the Smith-Waterman metric and its normal-
ized version used for string comparison. We also present a global RNA alignment algorithm
which handles affine gap penalties. Our global algorithm runs in O(m2n(1 + Ig o)) time,
while our local algorithms run in O(m?n(1 +Ig -)) and O(n?m) time, respectively, where
m =< n are the lengths of the two given RNAs. These time complexities are comparable to
the time complexity of any known RNA alignment algorithm. Furthermore, both our global
and local algorithms are robust to selections of arbitrary scoring schemes.
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1. INTRODUCTION

RIBONUCLEIC ACIDS (RNAs) are polymers consisting of the four nucleotides adenine, cytosine, gua-
nine, and uracil, which are linked together by their phosphodiester bonds. Bases that are part of the
nucleotides form hydrogen bonds within the same molecule leading to structure formation. The role of
RNA in biological systems was largely underestimated for a long time. Today, RNA enjoys increasing
attention due to recent developments such as the discovery of ribozymes (RNA-molecules with enzymatic
properties), and the observation that non-coding RNA molecules play an enormous role in the cell control.
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As an example, research on non-coding RNAs has been elected as the scientific breakthrough of 2002 by
the readers of Science (Couzin, 2002).

One major challenge of research on RNAs is to find common patterns since these suggest functional
similarities in the inspected molecules. For this purpose, one has to investigate not only sequential features,
but also structural features for the following reasons. First, a major fraction of the function of an RNA is
determined by its secondary structure (i.e., the set of all nucleotide pairings) (Moore, 1999). Second, it is
known that the structure of an RNA is often more conserved than its sequence during evolution (Chartrand
et al., 1999). Thus, two RNA sequences with their corresponding secondary structure are aligned using
both sequential and structural information for scoring the alignment.

There have been quite a few approaches for defining alignments in terms of RNAs. The first one is due to
the seminal paper of Zhang and Shasha (1989) which represented RNA sequences as rooted ordered trees
(Fig. 1), and defined editing operations on trees which correspond to editing operations on RNA sequences.
In this way, an alignment of two RNA sequences corresponds to a sequence of editing operations on two
corresponding trees, and any tree editing algorithm can be used to compute the optimal alignment of two
RNAs. Furthermore, this approach allows base pairs to be considered as whole entities, meaning that one
can require any base pair to either be deleted (resulting in a removal of two nucleotides) or be aligned
against another base pair in the opposite RNA. Since Zhang and Shasha (1989), there have been attempts
at extending either the set of edit operations on trees (Alliali and Sagot, 2005; Guignon et al., 2005), or
the set of allowed RNA alignments (Jiang et al., 2002), in order to model certain biological mutations that
weaken and ultimately break bonds between base pairs. Usually, these extensions introduce an increase in
the time complexities of the algorithms required to compute them.

In RNA sequences, as in many other biological applications, searching for local similarities is at least as
important as determining global similarity. In contrast, most RNA sequence-structure alignment methods
are global. To our knowledge, there are only a few exceptions for this (Backofen and Will, 2004; Chen
et al., 2002; Currey et al., 1998; Giegerich et al., 2003; Wang and Zhang, 2000). These can be divided
roughly into two main categories, depending on the exact notion of locality under consideration. The first
category (Backofen and Will, 2004; Currey et al., 1998; Wang and Zhang, 2000) defines locality in the
structural sense, thus allowing large gaps in the sequences not to be considered as relevant in the alignment
score. The second category (Chen et al., 2002; Giegerich et al., 2003) defines locality in the sequential
sense, thus extending the well understood notion of locality in strings to RNA sequences.

Most of the biological justifications given for the importance of local similarity also apply for justifying
the introduction of affine gap penalties to similarity calculation (Gotoh, 1982). This is enhanced by the
fact that the deletion of a bounded number of consecutive nucleotides in an RNA sequence often occurs
in a single mutation. Hence, one single long gap is more probable to occur than a multitude of separated
short gaps at the same site. Affine gap penalties for RNA comparison was proposed and studied by Wang
et al. (2001) and by Chen et al. (2002). Touzet (2003) considered structural gaps rather than sequential
ones.

In this paper we introduce two sequentially-local similarity metrics for comparing RNA sequences
that extend the Smith-Waterman metric and its normalized version used in strings. We generalize the
familiar alignment graph used in string comparison to apply also for RNA sequences, and then utilize
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FIG. 1. Three different ways of viewing an RNA sequence. (a) A schematic 2-dimensional description of an RNA
folding. (b) A linear representation of the RNA. (¢) The RNA as a rooted ordered tree.
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this generalization to devise two algorithms for computing local similarity according to our two suggested
metrics. Following this, we extend the global RNA alignment metric of Zhang and Shasha (1989) to handle
sequential affine gap penalties. We do so by modifying the standard recursions used for tree editing in a
way inspired by Gotoh (1982) for string editing with affine gap penalties. Our global algorithm runs in
Om?n(1+1g --)) time while our local algorithms run in Om?n(1+1g :-)) and O(n*m) time respectively,
where m < n are the lengths of the two given RNAs. Both our global and local algorithms can work with
any arbitrary scoring schemes, including affine gap penalties.

1.1. Related work

Sequential local alignment of RNA sequences has been previously considered (Chen et al., 2002;
Giegerich et al., 2003). In Chen et al. (2002), the authors considered locally aligning RNA sequences
allowing gaps. When the gap length is set to zero, their definition is equivalent to our extension of
the Smith-Waterman metric. The algorithm given in Chen et al. (2002) has worst-case running time of
O(S152|R1||R2]), where |R;| and |R;| are the lengths of the given RNAs, and S; and S, denote the
number of stems in these RNAs. In Giegerich et al. (2003), the authors considered local alignment with
an extended set of edit operations, following the approach of Jiang et al. (2002). They gave an algorithm
with worst-case running time of O(|T}||Tz|deg(T1)deg(T>)(deg(T1)+ deg(T,)), where Ty and T, are the
two trees representing the given RNAs, and |7;| and deg(7;) denote the number of nodes and maximum
degree of 7; for i = 1,2. Finally, for normalized local alignment, the approach of Arslan et al. (2001)
for string comparison can also be extended to RNA sequences. This is done by running a global RNA
alignment algorithm O(lg A) times, where A is the difference between the highest and lowest scoring
alignments of the two RNAs.

1.2. Roadmap

The rest of this paper is organized as follows. We next introduce notations and terminology that will be
used throughout the paper. Following this, in Section 2, we discuss the notion of global and local align-
ments of RNA sequences. In Section 3, we describe an adaptation of the familiar alignment graph used in
string comparison to an alignment graph for RNA sequences. This adapted graph is then used in Section 4
to design two algorithms that compute the local alignment score between a pair RNA sequences according
to the Smith-Waterman metric and its normalized version. In Section 5, we present our algorithm for com-
puting global alignment scores with affine gap penalties. Finally, we discuss some conclusions in Section 6.

1.3. Notations

An RNA sequence R is an ordered pair (S, R), where § = s1---5)5| is a string over the alphabet
¥»={A4,C,G,U},and R C {1,...,|S|} x{1,...,|S]} is the set of hydrogen bonds between bases of R
(i.e., the secondary structure). Any base in R can bond with at most one other base, therefore we have
Y (i{,i1), (i5.i2) € A, i{ = i} & i} = i,. Furthermore, following Zuker (1989) and Zuker and Stiegler
(1981), we assume a model where the bonds in A are non crossing, i.e., for any (i{,i1), (i5,i2) € A, we
cannot have i < i} < i <ip nor i) <i{ <i, <i;. We refer to a bond (i’,i) € 4, i’ < i, as an arc, and
i’ and i are referred to as the left and right endpoints of this arc. Also, we let |R| denote the number of
nucleotides in R, i.e., |R| = |S].

We will require a notion similar to that of a substring for RNA sequences. Therefore, for any 1 <
i" <i < |R|, welet R[i’,i] = (S[i’,i], A[i’, i]), the consecutive subsequence of R, be the RNA with
S[i’,i] = 8i---8S; and A[i’,i] = AN/, ...,i}yx{i’,...,i}. If (i’,i) € A, then we say that arc (i’,i)
wraps R[i’,i]. Also, for convenience purposes, we slightly abuse notation and let R[i + 1,i] = (@, 0)
denote the empty RNA for any 1 <i <|R|. Note that arcs of R with one endpoint in R[i’, ] are absent
in R[i’,i]. These arcs are said to be broken in R[i’,i]. A position [ € {i’,...,i} is considered an arc
endpoint in R[i’, ], even if it is an arc endpoint of an arc which is broken in R[i’, i].

This paper deals with comparing two RNA sequences. We denote these two RNAs by R; = (51, P1)
and R, = (S, P») throughout the paper, and we set |R;| = |Si| = n and |R»| = |S2| = m. Furthermore,
we assume m < n.
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2. RNA ALIGNMENT

As in the case of strings, RNA alignment is analogous to the edit distance of two RNAs, i.e., the
minimum number of edit operations necessary in order to transform one RNA into the other (Zhang and
Shasha, 1989). The edit operations defined for RNA molecules are similar to those defined for strings,
except that here we can perform editing operations on arcs as well as on unpaired nucleotides. The allowed
edit operations are therefore insertion, deletion, and relabeling of arcs and nucleotides on either one of
the given RNAs. Defining separate operations on arcs and unpaired nucleotides captures the notion of arcs
and unpaired bases being different entities.

An alignment of R; and R, is another way of viewing a sequence of edit operations on these two
RNAs. Formally, it is defined as follows:

Definition 1 (Alignment). An alignment A of Ry and R, is an ordered subset of {1,...,n} U{—} x
{1,...,m} U {—} satisfying the following conditions:

® (_v _) ¢ A

® V(i,j)e{l,....,n}x{1,...,m} :i and j appear exactly once in A.

e V@i, jN, G, j)e An{l,...,n}x{l,....m}:i' <i <= j' < j. Thatis, any two pairs in A are
NON-Crossing.

® V(i,j)e AN{l,....n} x{1,....,m} : i is a left (resp. right) arc endpoint in R\ <= j is a left
(resp. right) arc endpoint in R,.

* V(i',i)e P,(j,j)eP:(i',j)) e A < (i, j) € A That is, the left endpoints of any pair of arcs
are aligned against each other in A iff their right endpoints are also aligned against each other in A.

The ordering of the pairs in A is required to be a linear extension of the natural ordering between pairs
of integers. That is, (i’, j') is before (i, j) iff i’ <i or j' < j.

In terms of editing operations, a pair (i, j) € AN{l,...,n} x{1,...,m} corresponds to relabeling the
ith nucleotide (unpaired or not) of R so it would match the jth nucleotide of R, while pairs (i, —) and
(—, j) corresponds to deleting the ith and jth nucleotides in R; and R,. The ordering between the pairs
corresponds to the order of edit operations. The first three conditions in the above definition require any
position in R and R, to be aligned, and that (—, —) ¢ A, since (—, —) does not correspond to any valid
edit operation. The next condition enforces the order of the subsequences to be preserved in A, and the
last two conditions restrict any arc to be either deleted or aligned against another arc in the opposite RNA.
Figure 2 gives two example alignments for a pair of RNA sequences.

Let ¥ = X U{—}. A scoring scheme § = (81, 8,) for alignments of R and R, is an ordered pair of two
separate scoring functions §; : ¥’ x ¥’ — Z and §, : £? x £’ —> 7Z, one which measures the quality of
aligning a single unpaired nucleotide of R against another unpaired nucleotide of R,, and the other for
measuring the quality of aligning pairs of arcs of the two RNA sequences. Hence 8,((S1[i'], Si[i]), (—, —))
denotes, for example, the deletion of the arc (i’,i) € P;. We assume the scoring scheme is a similarity
metric, and so a high score is given for aligning similar arcs or similar unpaired nucleotides, while different
penalties are given in all other possible cases.

NN Y

AAG-CCCUG-U AAGCCCU----G-U

A-GACCC-GUU A-G-——-——-—ACCCGUU
S~ S~ 7

FIG. 2. Two example alignments for a pair of RNA sequences.
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For brevity of notation, let us write §;(i, j) to denote the value §,(Si[i], S2[j]) if i,j # —, and
81(S1[i], —) (resp. &1(—, S2[j])) if j (resp. i) is the blank symbol “—” Also, we write §,(i’,i, j’, j)
instead of 8,((i’, i), (j', j)). The score of an alignment 4 of Ry and R, with respect to § is given by:

8(A) = > 8§, J) + > &@" 1, j', )
(i,j)€A,i,j are not @i’,j").(,j)EA st
arc endpoints (i’ i)eP1U{(—,—)} and

(7. )EPU{(—)}

2.1. RNA global alignment via ordered tree editing

The non-crossing formation formed by the arcs in both R; and R, conveniently allows representing
these RNAs as rooted ordered trees (Zhang and Shasha, 1989). Each arc (i, i’) is identified with a set of
ordered children which are all unpaired bases i” such that i < i” < i’, and all outermost arcs (/,!’) with
i <l <l < i’ (Fig. 2). Zhang and Shasha (1989) suggested an algorithm for computing the edit distance
between two ordered forests. Their algorithm was later improved by Klein (1998) to an O(m?*nlgn)
algorithm, and recently by Demaine et al. (2007) to an O(m?n(1 +1g :-)) algorithm, where m < n denote
the number of nodes in the two trees. All three algorithms of Demaine et al. (2007), Klein (1998), and
Zhang and Shasha (1989) belong to the family of decomposition strategy algorithms (Dulucq and Touzet,
2003).

The decomposition strategy algorithms are all based on the following recursion: Given two ordered
forests F' and G, denote by v and w the two leftmost or two rightmost roots of F and G respectively,
then §(F, G) can be computed as follows:

* 50,0)=0.
® §(F,0) =8(F —v,0) + cost of deleting v.
® §(3,G) =6(0,G —w) + cost of deleting w.
8(F —v,G) + cost of deleting v,

® §(F,G) =minJ §(F,G —w) + cost of deleting w,
8(F, —v,Gy —w)+8(F — F,, G — Gy) + cost of relabeling v to w.

where F;, is the subtree of F rooted at v, F' — v is the forest obtained by F after deleting the node v, and
F — F, is the forest obtained by F after deleting the whole tree F, (similar definitions for G and w). The
only difference between two decomposition strategy algorithms is in the choice of whether v and w are
the leftmost or the rightmost roots of F and G in each recursive call. Formally, a strategy is a mapping
from pairs (F’, G") of subforests of F and G to {left, right}. A lower bound of Q(m?n(1 + g ) was
shown in Demaine et al. (2007) for any decomposition strategy algorithm.

Not by chance, the edit operations defined for trees are analogous to the ones defined for RNA sequences.
For this reason, any tree editing algorithm can be used to determine the global alignment score of two
RNAs, with the slight modification that a penalty of co is assigned for relabeling a node which corresponds
to an unpaired nucleotide by a label corresponding to a base pair, and vise versa. Furthermore, an important
property of any decomposition strategy algorithm is that it computes the edit distance between every two
root-deleted subtrees of F and G regardless of how we choose v and w.

Lemma 1 (Demaine et al., 2007). Given two ordered forests F and G, any decomposition strategy
algorithm that computes §(F, G) will compute §(F,—v, Gy—w) for all v € F and w € G.

2.2. RNA local alignment

While the metric described in the previous sections is suitable for measuring global similarity of two
RNA sequences, in many applications two RNAs may not be very similar when both considered as a
whole, but may contain many regions of high similarity. The goal is then to extract a pair of regions,
one from each RNA, which admits a strong degree of similarity. This is known as local similarity. In the
following section we introduce two metrics for measuring local similarity between RNA sequences. These
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metrics are extensions of the Smith-Waterman (Smith and Waterman, 1981) and normalization (Arslan
et al., 2001) techniques used for strings.

A local alignment of R; and R, one which corresponds to a pair of contiguous regions in the RNAs,
is an alignment of two consecutive subsequences Ri[i’,i] and R;[;’, j]. Note that the last condition of
Definition 1 implies that any arc endpoint of a broken arc in each subsequence must be aligned with the

blank symbol “— However, we need to distinguish between this situation and a deletion of an unpaired
nucleotide. Therefore, we use 8,(I’, —, —, —) (resp. 8>(—, [, —, —)) to denote the cost of aligning the left
(resp. right) endpoint of a broken arc (I’,7) in R;[i’, i] against ‘—’, and symmetrically, §,(—, —, [/, —) and
82(—, —, —, 1) are used to denote the costs of aligning the endpoints of a broken arc (I’,/) in Ry[i’, ]
against ‘—’. Furthermore, we require that the total cost of aligning the left and right endpoints of an arc
against ‘—’ (in two different alignments) be equal to the cost of deleting this arc. That is, 8,(I’, —, —, —) +
S(—,1,—, =) =8, l,—,—) and §(—, —, ", =) + S2(—, —, —, 1) = 82(—, —, ', [). Our definition of §(A)

naturally extends to the case where A is a local alignment.

Definition 2 (OPTs(R1[i’,i], R2[j’, j1)). Given two RNA consecutive subsequences Ri[i’,i] and
Ralj’, j] and a scoring scheme § = (81,68,), OPTs(R1li’,i], Ralj’, j]) denotes the highest score of any
alignment of R1[i’,i] and R,[j’, j] with respect to é.

Definition 3 (OPT{"™(R1[i’,i], R2[j’, j1))- For a pair of arcs (i’,i) € Py and (j', j) € P, we
set OPTE(Ry[i'.i]. Ralj’ j]) = 62" 1. j". j) + OPTs(Ry[i' + 1.7 — 1], Ralj + 1. j — 1]).

Lemma 1 now means that that OPT{"“(R,[i’,i], R.[j’, j]) is computed between all pairs of arcs
(i’,i) € Py and (j', j) € P, in a single execution of any decomposition strategy algorithm. The importance
of this observation will become apparent later on.

3. AN ALIGNMENT GRAPH FOR RNA SEQUENCES

We next present an adaptation of the alignment graph that is used to describe string alignment (Gusfield,
1997), to an alignment graph that describes alignments of RNA sequences. Later, this adapted graph will
be utilized for computing the local similarity score of R; and R, according to our two suggested metrics.
A different graph (the edit graph) was suggested in Touzet (2005) as a tool for comparing similar ordered
labeled trees. However, the edit graph of Touzet (2005) does not capture local alignments with broken arcs.
We begin with a brief description of the alignment graph used for strings, and then proceed to explain in
further detail the modifications necessary for our case.

Let S; and S, be two strings over any given alphabet, and §; be a given scoring function over this
alphabet. The alignment graph for S, and S, is a weighted directed graph with (]S;| + 1)(|.S2| + 1)
vertices, each indexed by a distinct pair (i, j) € {0,...,[Si|} x {0, ..., |S2]}. For each vertex (i, j), the
alignment graph contains a directed edge from (i, j) to each of the vertices (i, j + 1), (i + 1, j), and
(i +1,j + 1), provided these vertices exist. These edges are called the horizontal, vertical, and diagonal
edges of (i, j) respectively, and their weights are given by §;(—, j), §1(i,—), and §,(i, j). In this way, the
alignment graph captures the standard dynamic programming used in string alignment. Figure 4a illustrates
the alignment graph of two example strings.

The central property of the alignment graph of S| and S, is that any path from say (i, j') to (i, j)
corresponds to an alignment between Si[i’ + 1,i] and S,[j’ + 1, j] with a score which equals the total
sum of weights of the edges in the path. Conversely, any alignment between S;[i’ 4+ 1,i] and S,[j'+ 1, j]
with score w has a corresponding w-weighted path in the alignment graph.

Theorem 1 (Gusfield, 1997). An alignment of S1[i’, i] and S»[j’, j] has optimal score iff it corresponds
to the heaviest path, i.e., the one with maximum total edge weight, from (i’,i) to (j’, j).

Let us now consider alignments of RNA sequences. The main difference when aligning RNA sequences
is that now we must consider arcs and unpaired nucleotides as different entities which must be aligned
separately. There are four different cases that we should each address accordingly:
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® Case 1 corresponds to arc deletions and is depicted in Figure 3a. Note that the path in the figure deletes
the left and right endpoints in both arcs of the RNAs, and therefore it corresponds to deleting the two
arcs. Note that this would also be the case even if the path had passed through the diagonal edge that
corresponds to aligning the right endpoints of the arcs.

® Case 2 corresponds to alignments which break arcs and is depicted in Figure 3b. Such alignments must
be penalized accordingly.

® (Case 3 corresponds to alignments in areas which do not contain arcs. In contrast to the previous case,
these types of alignments do not break any arcs, and therefore they should not be penalized.

® Case 4 corresponds to alignments which align arcs against each other.

Note that there are also alignments which combine the first two cases, by deleting one arc and breaking
the other.

We now turn to describe the necessary modifications for adapting the alignment graph to RNA sequence-
structure alignment. We begin by focusing on the first three cases in the example above. The last case
will be dealt with separately. For a given i € {1,...,n}, we refer to the set of all edges connecting a pair
of vertices in {(i — 1, j), (i, j)|0 < j < m} as the ith row of the alignment graph. Hence, the ith row
corresponds to all edges that represent an edit operation which involves the ith position of R;. The jth
column, j € {1,...,n}, is defined symmetrically to be the set of all edges connecting pairs of vertices in

Consider some position i in R, along with the ith row corresponding to this position in the alignment
graph. If i is not an arc endpoint, then no modifications are necessary on this row, since all editing
operations on i are equivalent to those in strings. Otherwise, when i is an endpoint, we wish to model
the three cases discussed above. For this, we first remove all diagonal edges. This is done to ensure that
i is not aligned against any position in R,, as we are only concerned with arc deletions at the moment.
Following this, we set the weights of all vertical edges to the penalty of breaking the arc of which i is
an endpoint of. If i a left endpoint, we set these weights to §,(i, —, —, —), and otherwise we set them to
82(—,i,—,—). This takes care of the second case described above. All other edges in the row, i.e., the

(a) N (b)

Uu C A C G G U C A C G G

C O OO oo C
C O OO oo C

© @

Uu CcC A C G G Uu CcC A C G G

\

C OO0 o o C
C OO0 o0 C

FIG. 3. Four different situations that occur when aligning RNA sequences.
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(a) (b) R

uc ACCG A G u c A CCG AG

c N\
5 b

O cCc>»Cc OO OO C
/\
®» O

FIG. 4. The alignment graph before and after. (a) The alignment graph of two strings. (b) The alignment graph for
RNA sequences after adding the shortcut edges and removing all diagonal edges from the shaded rows and columns.

horizontal edges, are left untouched. For a position j in R, the modifications are symmetric. Here the
weights of the horizontal edges are modified, while the vertical edges remain unmodified. We mention that
all our modifications could be done on the scoring scheme (by adding additional letters to the alphabet
which represent different types of arc endpoints) rather then on the alignment graph.

After applying the above modifications to each column and row which corresponds to arc endpoints, we
obtain the grid part of our adapted alignment graph.

Lemma 2. Paths in the grid part are in bijective correspondence with alignments of consecutive
subsequences of R1 and R, in which all arcs are deleted.

Proof. First note that the only edges missing from the original alignment graph are diagonal edges
in rows and columns which correspond to arc endpoints. Therefore, any alignment which deletes all arc
endpoints is represented by a path in the grid part, and vice versa. Consider such an alignment A between
say Rq[i’,i] and R»,[j’, j], and let p be its corresponding path in the grid part. For any broken arc in
Rili’,i] and R;[j’, j], there exists exactly one edge in p with weight equal to the penalty of aligning the
endpoint of this arc against “— For every arc in R;[i’,i] and R,[j’, j] which is not broken, there are
two edges in p with total weight which equals the score of deleting this arc. Therefore, since all other
edges in p have original weights, the score of A equals the weight of p. |

What is left now, is to take care of alignments which align arcs against each other, i.e., the last case
in the example above. Consider a path, as in Figure 3d, that corresponds to an alignment which aligns
(i’,i) € P, against (j’, j) € P,. This path must pass through the nodes (i’ — 1, j' — 1) and (i, j) in
the alignment graph (the two intersections of the shaded rows and columns). This means that this path
consists of a prefix which ends at (i’ — 1, j' — 1), a middle part from (i’ — 1, ;' —1) to (i, j), and a
suffix which starts at (i, j). As was explained in Section 2.2, the optimal score of the middle part is given
by OPT{"“(Ryli’,i].Ra[j’, j]), and it is computed in the preprocessing step. Therefore, if this path is
optimal, its weight equals OPT'"“(R[i’, i], R2[j’, j]) plus the combined weights of the suffix and prefix.
We represent the middle part of any optimal path that aligns (i’, i) against (j’, j) by adding a single edge
from (i’ —1, j'—1) to (i, j) in the alignment graph, and setting its weight to OPT"“(R1[i’,i], Ra[j’. j])
accordingly. We refer to this new edge as a shortcut edge, and we add such shortcut edges for each pair
of arcs in Ry and R,. Figure 4b depicts the final alignment graph of % and R,.

Theorem 2. An alignment of R1[i’+1,i] and Ra[j'+ 1, j] is optimal iff it corresponds to the heaviest
path from (i’,i) to (j', J) in the alignment graph of R and R,.
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Proof. Let p be the heaviest path from (i’, j') to (i, j) in the alignment graph of R; and R,. De-
compose p into smaller subpaths such that each subpath is either a single shortcut edge or it contains
no shortcut edges at all. By Lemma 2 and the correctness of our preprocessing step, each one of these
subpaths corresponds to an optimal alignment between two consecutive subsequences of R[i’ + 1,i] and
Ralj’ + 1, j]. We claim that the alignment .4 which is the union of all these alignments is an optimal
alignment of R4[i’, ] and Ra[j’, j].

Assume by contradiction that there exists an alignment A" of R[i’ + 1,i] and R,[j’ + 1, j] such that
8(A’) > 8(A). Call a pair of arcs (i’,i) € P; and (j', j) € P, a maximal pair of arcs in A’, if they are
aligned against each other in A’, and there are no two other arcs (/{,/;) € P; and (I5,1;) € P, aligned
against each other in A" with /{ < i’ <i <y and I} < j' < j < [,. Decompose A" into alignments
of common subsequences of R;[i’ + 1,i] and R,[j’ + 1, j] which are wrapped by pairs of maximal
arcs in A, and into alignments of common subsequences in which all arcs are deleted. The first type of
alignments correspond to shortcut edges, and therefore by the correctness of our preprocessing step, each
has total weight which is at least the score of its corresponding alignment. The second type correspond
to paths in the grid part, and therefore by Lemma 2, each has weight which equals exactly the score of
its corresponding alignment. The concatenation of these paths is therefore a path p’ from (i’,i) to (j', )
with a total weight which is greater or equal to §(.A). But this contradicts p being the heaviest path, since
p has weight §(A) < §(A).

We thus proved that the heaviest path from (i’,i) to (j’, j) in the alignment graph of R; and R,
corresponds to an optimal alignment of R;[i” + 1,i] and R,[;j’ + 1, j]. Proving the converse direction is
symmetric, and the theorem follows. |

4. LOCAL ALIGNMENT ALGORITHMS

In the following section we present algorithms that utilize the alignment graph in order to determine the
local similarity between RNA sequences. We start by defining two local similarity metrics.

4.1. Standard local alignment

The well-known Smith-Waterman technique (Smith and Waterman, 1981) for computing local similarity
between strings has been extensively studied in the literature. It is defined as the highest scoring alignment
between any pair of substrings of the input strings. The simplicity of this definition has gained it wide
applicability in many biological settings (Gusfield, 1997). In RNA terms, it is defined by:

max { OPTs(R4[i’,i]. Ra[j’, j1)

We refer to the Smith-Waterman metric as the standard local alignment score of R and R,. The compu-
tational problem corresponding to this metric is then defined as follows:

Definition 4 (The standard local alignment problem). Given two RNA sequences R, = (S, P1) and
Ry = (82, P), determine the standard local alignment score of R| and R,.

4.2. Normalized local alignment

According to Arslan et al. (2001), the Smith-Waterman technique has two weaknesses that make it non
optimal as a local similarity measure. The first weakness is called the mosaic effect. This term describes
the algorithm’s inability to discard poorly conserved intermediate segments, although it can discard poor
prefixes or suffixes of a segment. The second weakness is known as the shadow effect. This term describes
the tendency of the algorithm to lengthen long alignments with a high score rather than shorter alignments
with a lower score and a higher degree of similarity.

One way to overcome these weaknesses is to normalize the alignment score of two substrings by dividing
it with their total length (Arslan et al., 2001). In our terms, this normalized alignment score of R and R,
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is defined by:

1<i<i <Ry,
OPTs(Ri[i,i'], Ralj. J'D
|Rili, i1 + |Ral), JN

1<j<j <Rl (1)
OPTs(Rili,i'), Ralj, j') = 1

where I € N is an integer regulating the minimum score (before normalization) of solution alignments, pre-
defined according to the application at hand. Note that this additional parameter is necessary for preventing
trivial solutions (e.g., a single match) from being optimal.

When using a similarity metric for alignment score (Ma and Zhang, 2005), it would be desirable to have
a normalized alignment score that is also a similarity metric. However, the above normalized alignment
score may not have this property. To overcome this, we give the following alternative definition of the
normalized alignment score:

max 5(R1[i’,i],R2[]",]‘])
srzisie | SR 1] Rl 1) + 8(Ralj, j1, Ralj”, j1) = 8(RATE", 11, Ralli ", J D)}

1</’ <j<IRal
SRR D=1

@)

Definition 5 (The normalized local alignment problem). Given two RNA sequences Ry = (S, Py)
and Ry = (S,, P2), and an integer I, determine the normalized local alignment score of R and R;.

4.3. Local alignment algorithms

We next describe two algorithms for computing local similarity of /R; and R, according to the above
similarity metrics. For simplicity, we focus only on computing the score of an optimal alignment rather
than computing an actual alignment. One can easily obtain the latter within the same time and space
bounds in both algorithms.

As a consequence of Theorem 2, computing optimal local alignments of R; and R, reduces to computing
locally optimal paths in the alignment graph of R and R,. Therefore, both our algorithms initially construct
the alignment graph of R; and R,, and then perform all computations on this graph. For any edge in the
alignment graph, from say (i’, j’) to (i, j), we let w((i’, j'), (i, j)) denote the weight of the edge. For
any vertex (i, j) in the graph, we let N;, (i, j) denote the set of vertices with an edge to (i, j), that is, the
set of in-neighbors of (i, j).

For computing the standard local alignment score of R; and R,, we define s(i, j) to be the weight
of the heaviest path, including the empty one, that ends at vertex (i, j). Note that by Theorem 2, this
value equals the highest scoring alignment achievable by any pair of consecutive substrings R;[i’, i] and
Ralj’, jl with i’ € {1,...,i} and j' € {1,..., j}. Therefore, the standard local alignment score of R
and R, is the maximum s(i, j) over all (i, j) € {1,...,n} x{1,...,m}.

Lemma 3. The recursion below correctly computes s(i, j):

S(i/’ ]/) + U)((i/, j/)v (lv ])) where (ilv ]/) € Nl'ﬂ(iv ])
0

s(i, j) = max

Proof. Assume that all values s(i’, j’) have been correctly computed for 0 <i’ <i, 0 < j’ < j, and
@i’, j) # (i, j). Then the heaviest path ending with an edge from say (i’, j') to (i, j), has weight which
is equal to s(i’, j") +w((i’, j'), (i, j)). The recursion above follows from the correctness of s(i’, j’), and
since the empty path has weight zero.

Time complexity. Using standard dynamic programming, once the alignment graph of R; and R,
is constructed, we can compute s(i, j) for every i € {l,...,n} and j € {1,...,m} in O(nm) time,
since the in-degree of every vertex is at most three. The preprocessing step takes O(m?n(1 + Ig --)) time
(Demaine et al., 2007), and therefore our suggested algorithm solves the standard local alignment problem
in O(m?n(1 + g ) +nm) = Om?n(1 +1g 1)) time.
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We next present an algorithm for computing the normalized local alignment score of R; and R,. Our
algorithm is written in terms of the first normalized metric (Equation (1)) but easily extends to the second
one (Equation (2)). It works by computing all optimal (in terms of length) local alignments of any possible
score, and which end at any possible pair of positions in R and R,. For this purpose, it is convenient to
slightly abuse the graph-theoretic notion of path lengths, and define the lengrh of any path from (i, j')
to (i, j) in the alignment graph as the value A((i’, j’), (i, j)) = j' — j + i’ — i rather than the number
of edges in this path. In other words, the length of any path from (i’, j') to (i, j) is defined to be the
combined lengths of the two consecutive subsequences Ry[i” + 1,i] and R,[j’ + 1, j].

For computing the normalized local alignment score of R; and R,, we define s*(i, j) to be the length
of the shortest path that ends at vertex (i, j) and has weight equal to k, or oo if no such path exists. Note
that the normalized score of such a path is given by k/s¥(i, j).

Lemma 4. The recursion below correctly computes s*(i, j):

(ilv ]/) € Nfﬂ(iv ])v

koo o . K a1 e N Lo
s, j) = min gy s* (@0, j°) + A ). G ))) :
k' =k — w((i/v j/)v (lv ]))
Proof. The shortest k weighting path that ends at vertex (i, j) can be decomposed into the last edge of
the path outgoing from some (i’, j') € N;,(i, j), and the shortest path with weight k — w((i’, j'), (i, j))
that ends at (i’, j’). The correctness of the recursion follows. |

Notice that if our scoring scheme contains values which are not constant, we could use a similar recursion
in which the roles of lengths and scores are reversed. This is done by defining s¥(i, j) to be the weight of
the heaviest length k path that ends at vertex (i, j). The advantage of defining s (i, j) as in the presentation
above is that one can stop the computation once a satisfying solution is found.

Time complexity. Let §,,;, and §,,,, be the minimum and maximum score of a single edit operation in
our given scoring scheme § = (81, §2). Notice that |(m + 1)8,4x| and —|(m + n)8nin | are upper and lower
bounds on the global alignment score of R and R,. Set k= |(m+n)8uax| and k= —|(m+n)dmin|. Using
standard dynamic programming, once the alignment graph of /% and R, is constructed, we can compute
sk, j) forevery i € {1,...,n}, j € {l,...,m}, and k € {Ié,...,lg}, in (’)(nm(lg —l;)) time, which is
(’)(nzm) assuming 8,4, and §,,;, are both constants. Also, The bounds on k follow from the integrality
of the scoring scheme. Note that if either §,,,, or §,,;, are not constants, or if the scoring scheme is not
integral, we can use the alternative definition of s¥ (i, j) given above to obtain the same complexity bounds.
With a preprocessing stage of O(m?n(1 + g -+)) time (Demaine et al., 2007), our suggested algorithm
therefore solves the normalized local alignment problem in O(m?n(1 + g o)+ n’m) = O(n’m) time.

5. GLOBAL ALIGNMENT WITH AFFINE GAP PENALTIES

In this section we introduce a method for extending any decomposition strategy algorithm to handle
affine gap penalties in the same time and space bounds. Given an alignment A of R; and R,, a gap is a
consecutive sequence of pairs (i,“—") € A or a consecutive sequence of pairs (“—”,j) € A. For example,
in the left alignment of Figure 2 the gaps are (A, —), (—, A), (U,—) and (—, U); whereas in the right
alignment the gaps are (A, —), (CCCU, — — ——), (— — ——, ACCC) and (—, U). If we view an alignment
as a path in the alignment graph, then a gap corresponds to a subpath that consists only of vertical edges
or only horizontal edges.

In biological context, one single long gap is more probable to occur than a multitude of separated short
gaps at the same site. This situation can be modeled by using an affine gap penalty function f(k) = g+ka,
where f(k) is the score of a gap of length k, g is an initiation penalty to a gap, and « is the cost of
extending a gap by one. This was first introduced by Gotoh (1982) in the context of string editing, and
we extend the technique to ordered tree editing as proposed by Wang et al. (2001) and by Chen et al.
(2002).

[T3RE)
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As we focus on sequential-gaps, notice that deleting an arc means deleting its two endpoints, each of
which might be a part of a different gap. To account for this, we slightly modify the familiar construction
of a tree from an RNA sequence and the recursion presented in Section 2.1. To each node in the tree
that corresponds to some arc (i, j) we add a leftmost child i* and a rightmost child j*. Both i* and
J* are leaves, and relabeling them to anything costs co. In the recursion, when we delete the rightmost
(respectively leftmost) root we also delete its rightmost (respectively leftmost) child, and when we match
a node we remove both its leftmost and rightmost children.

In what follows, we modify the recursion of Section 2.1 to handle sequential affine gap penalties. This
recursion can also be viewed as if it constructs the optimal path in the alignment graph. It does so by
adding edges one at a time to the heads or tails of existing paths (depending on the strategy). In order
to modify the recursion, we take a closer look at how a path is extended. We note that extending a path
vertically or horizontally may either continue an existing gap or may start a new gap. Also, we need to
consider extending a path diagonally by a diagonal edge or a shortcut edge (depending which of them is
present). We keep track of these three options in both the head and the tail of the path.

For forests F' and G, we define nine different “problems.” Denoting by £ and rr the leftmost and
rightmost roots of a forest F, these problems are:

® [F,G] is the edit distance with affine gap penalties between F and G.

o [F, G] (respectively: ([F, G], [F, Gl [F,G]) is the edit distance with affine gap penalties between
F and G subject to the condition that £g (respectively: £g, rg, rg) is deleted.

o [F,G]), (respectively: .[F, Gl,, ¢[F, Gli. ¢[F.G]) is the edit distance with affine gap penalties be-
tween F and G subject to the condition that both £ and rg (respectively: £r and rg, {g and rpg, £g
and rg) are deleted.

The following recursion computes the values of all the nine problems. Our recursion can follow any given
decomposition strategy that determines the direction of the recursion in every recursive call. We present
the recursion for a recursive call in which the strategy says left, the case in which the strategy says right
is symmetric (simply replace the left and right subscripts of the “[’s and “]”’s). For every X € {F, G, ¢}
(where ¢ is used to denote the empty string):

¢[F. Glx.
® [F,G], = min{ ,[F, Gly,
[Fop—LF, Gog—Lg] + [F—Fer, G—Gy;li + cost of relabeling £5 to £¢.
F[F —LF, G]x + o,

® [F,G]y = min
[F—Lr, G\ +g+0.

lF, G —{glk +a,

® .[F,G]y = min
¢ X [F.G — ]y + g + .

The halting conditions of this recursion are:

[2,0]=0

¢[90,9] = ;19,0] = [0,0], = [0,9]; = ¢[0,9], = ¢[9.9]; = ¢
(0.9, = ¢19.9], =2¢g

9,G] = [va](; = G[va] = G[va](; =g+ |G|
[F,@]Z[F,@]F=F[F,@]=F[F,@]F=g+0[|F|

[F. 0] = G[F.0] = [F.0lg = ([F., 0] = ¢[F.0], =2g + | F|
[9.Gly = ¢[9.G] = ([0, Gl = ([0, Gl = ¢[9. Gly = 2g + |G|

Time and space complexity. For every subproblem encountered by the decomposition strategy, our
recursion encounters nine subproblems. Therefore, since the number of subproblems corresponds to the
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time complexity, our recursion requires O(m’n(1 + g --)) time by using the strategy of Demaine et al.
(2007). Computing these subproblems can be done via dynamic programming in O(mn) space as shown
in Demaine et al. (2007).

6. CONCLUSION

In this paper we considered alternatives to the RNA global alignment metric. The first alternative
is a sequentially-local metric. We introduce two sequentially-local similarity metrics for comparing RNA
sequences—the Smith-Waterman metric, and its normalized version. The second alternative is an extension
of the global RNA alignment metric of Zhang and Shasha (1989) that can handle sequential affine gap
penalties.

We defined the RNA equivalent of the well-known alignment graph used for strings, and described an
efficient computation of it. Using this graph, we were able to devise two algorithms for computing local
similarity according to our two sequentially-local metrics. These algorithms run in O(m?n(1 + g --)) and
O(n*m) time respectively, where m < n are the lengths of the two given RNAs. In order to handle sequential
affine gap penalties, we modified the standard recursions used for tree editing in a way inspired by Gotoh
(1982) for string editing with affine gap penalties. This modification does not change the asymptotic of
the tree editing algorithms.

Both our global and local algorithms can work with any arbitrary scoring schemes. Furthermore, our
local algorithms can easily be adapted to also handle sequential affine gap penalties. This is done by
running our new global algorithm once in the preprocessing step, and then computing the local score in a
manner similar to Gotoh (1982).
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