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Abstract. We address the problem of approximating the 2-INTERVAL PATTERN problem over its var-
ious models and restrictions. This problem, motivated by RNA secondary structure prediction, asks
to find a maximum cardinality subset of a 2-interval set with respect to some prespecified geometric
constraints. We present several constant factor approximation algorithms whose performance guarantee
depends on the different possible restrictions imposed on the input 2-interval set. In addition, we show
that our results extend to the weighted variant of the problem.
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1 Introduction

The Ribonucleic acid (RNA) is a family of molecules which have several important functions in
the cell. An RNA molecule is a single stranded molecule which can be viewed as a linear sequence
consisting of four nucleotides: Adenine (A), Cytosine (C), Guanine (G), and Uracil (U). The pairs
of nucleotides A-U and C-G are known as complementary nucleotide pairs which often link together
by their phosphodiester bonds to form a three dimensional folding structure. This folding structure
is captured in many ways, in what is called the secondary structure, the set of all hydrogen bonds
formed by the nucleotides of the molecule. It is widely believed that for many interesting families of
RNA molecules, the functionality of the molecule depends mostly on its secondary structure [18].
Since current biological methods for extracting sequential data exceed by far methods for extracting
structural data, there is a need to predict the secondary structure of an RNA given its sequence of
nucleotides. This is known as secondary structure prediction [21].

RNA secondary structure prediction usually focuses on predicting the structure with minimum
free energy [21], i.e. the stablest structure possible, where each nucleotide is assumed to bond
with at most one other nucleotide. There are many approaches to determine the free energy of a
given structure. One simplified approach, chosen also in [15], is to consider only the helices of the
structure, as they are believed to contribute to the stability of the structure in the most significant
way. A heliz in an RNA molecule consists of two disjoint consecutive sequences of nucleotides, where
almost every nucleotide in one sequence is paired with another nucleotide in the second sequence.

In [20], a geometric representation of a helix in an RNA molecule is proposed by means of a
natural generalization of an interval, namely a 2-interval. There, intervals and 2-intervals represent,
respectively, sequences of contiguous nucleotides and possible pairings between such sequences in
the RNA molecule (see Figure 1). The prediction of a secondary structure under this approach
consists of two stages. In the first stage, the sequence of molecules is scanned in order to build a
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set of 2-intervals which correspond to all helixes that could be involved in the molecule’s secondary
structure. In the second stage, a pairwise disjoint subset of 2-intervals is sought for, possibly under
some additional constraints, so as to serve as an estimate of the actual secondary structure of the
molecule. The problem we study in this paper, i.e. 2-INTERVAL PATTERN, is concerned with the
second stage of this process.

Fig. 1. Two segments of RNA molecules and the set of corresponding 2-intervals. In (a), the secondary structure is
pseudoknot-free. In (b), any pair of bonds C — G and A — U is a pseudoknot.

A 2-interval [14,19] is the union of two disjoint intervals defined over a single line. Throughout
the paper, a 2-interval is denoted by D = (I, J) where I and J are two (closed) intervals defined over
a single line such that I is completely to the left of J. Two 2-intervals Dy = (I1, J1) and Dy = (I3, J2)
are disjoint, if both 2-intervals share no common point, that is, if (I; U.Jy) N (I; U J3) = (). For such
disjoint pairs of 2-intervals, three natural binary relations are of special interest.

Definition 1 (Relations between 2-intervals). Let Dy = (I1,J1) and Dy = (I, J2) be two
disjoint 2-intervals. Then

— Dy < D> (Dl precedes DQ), if [ < J1 < Iy < Js.
— Dy C D (Dl 1s nested in DQ), if Ihb < < J1 < Js.
— D1 () Dy (Dq crosses Dsy), if 1 < Iy < J; < Jo.

A pair of 2-intervals Dy and Dy is R-comparable for some R € {<,, (}, if either (D1,D3) € R
or (Dg,D1) € R. A set of 2-intervals D is R-comparable for some R C {<,,(}, R # 0, if any
pair of distinct 2-intervals in D is R-comparable for some R € R. The non-empty subset R is
called a model. Note that any two disjoint 2-intervals are R-comparable for some R € {<,, (}.
Equivalently, any pairwise disjoint subset of D is {<, C, () }-comparable.

Definition 2 (The 2-Interval Pattern problem [6,20]). Let D be a set of 2-intervals and
let R C {<,,0}, R # 0, be a given model. The 2-INTERVAL PATTERN problem asks to find a
maximum cardinality R-comparable subset of D.

By the above definition, any solution for the 2-INTERVAL PATTERN problem over a model R
corresponds to a secondary structure constrained by R. For example, a solution for the 2-INTERVAL
PATTERN problem over the {<, C} model corresponds to a pseudoknot-free structure. A pseudoknot



in an RNA sequence S = s1,59,...,5, is composed of two interleaving nucleotide pairings (s;, s;)
and (s, sjr) such that ¢ < i’ < j < j' (see Figure 1).

Definition 3 (Restrictions for 2-interval sets). Let D be a set of 2-intervals and let S(D) be
the set of intervals involved in D.

— D is a point 2-interval set if all intervals in S(D) are pairwise disjoint (note that in this case,
all intervals in S(D) may be considered as points).

— D is a unitary 2-interval set if all intervals in S(D) are of equal length.

D is a balanced 2-interval set if any 2-interval in D is a pair of two intervals of equal length.

— D is an unlimited 2-interval set if none of the above restrictions are imposed.
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Fig. 2. The different possible restrictions considered for 2-interval sets. Intervals are represented by dark thick lines
and points, and 2-intervals are represented by a thin line connecting two intervals. (a) A point 2-interval set where
D, () D> and D; < Ds. The pair of 2-intervals D> and D3 are not disjoint and thus are not comparable by any
relation. (b) A unitary 2-interval set where D1 (§ D>, D1 < D3, and D> < Ds. (¢) A balanced 2-interval set where
D3 C D-. The entire set is {<, C}-comparable. (d) An unlimited {<, C, (}-comparable 2-interval set.

The left part of Table 1 depicts the current state of the art for the 2-INTERVAL PATTERN
problem in terms of exact algorithms. In [20], 2-INTERVAL PATTERN over {C,{} and {<,C,{}
is proved to be NP-hard even for unitary 2-interval sets. The proof for the {<,, ()} model is
obtained as a direct consequence of the APX-hardness result for the MAXIMUM INDEPENDENT
SET problem in #-interval graphs [5]. The results in [5] also provide approximation algorithms for
this model. In [6], an NP-hardness result for the {<, §} model restricted to unitary 2-interval sets
is given. The time complexity for this same model when the input is restricted to point 2-interval
sets is still unknown. These results imply that in practical terms, secondary structures containing
pseudoknots are hard to predict in our suggested mathematical model. This is consistent with
previously known NP-hardness results for RNA secondary structures prediction in other models
considering arbitrary pseudoknots [1,15,16]. Other works which are similar to our line of research
include the ARC-PRESERVING SUBSEQUENCE (APS) and LONGEST ARC-PRESERVING COMMON
SUBSEQUENCE (LAPCS) problems studied in [8,13], and the CONTACT MAP OVERLAP problem
described in [11].

1.1 Our results

In this paper we focus on the three NP-hard models of the 2-INTERVAL PATTERN problem. More
specifically, we design constant factor approximation algorithms for the {<, =, §}, {T, 0}, and {<, (}
models. The approximation factors obtained by our algorithms vary depending on the given model
and the restriction imposed on the input set of 2-intervals. Furthermore, we complement the AP X-
hardness result for the {<,C, §} model [5,20], with an APX-hardness result for the {C, {j} model.



2-INTERVAL PATTERN - CLASSICAL COMPLEXITY 2-INTERVAL PATTERN- APPROXIMATION FACTORS
MODEL [UNLIMITED|BALANCED|UNITARY|  POINT MODEL |[UNLIMITED|BALANCED|UNITARY [POINT
{<, 5,0} NP-complete [5, 20] O(ny/n) 20]] [{<,C,Q} (Section 2)] 4 [5] 4? 3% 5] -
{5, 0} NP-complete [20] O(n’\/n) [6 {C, 0} (Section 3) 4¢ 4° 3¢ -
{<, 0} NP-complete [6] ? {<,0} (Section 4) 6 4 3P 3
{<,C} O(n?) [20] _
{0} O(n”logn) [20] * Polynomial-time algorithm (linear programming).
{C} O(nlogn) [6] b O(nlgn) time algorithm.
{<} O(nlogn) [20] ¢ O(n?lgn) time algorithm.

Table 1. The 2-INTERVAL PATTERN problem over it’s various models and restrictions. Left part: complexity results
for the 2-INTERVAL PATTERN problem, where n = |D|. The 2-INTERVAL PATTERN PROBLEM for the {<, ()} model
restricted to point 2-interval sets is not known to be in P or NP-complete. Right part: The approximation factors
we obtain for the 2-INTERVAL PATTERN problem supporting the idea that the problem has varying approximation
quality depending on the different possible restrictions imposed on the input 2-interval set.

Another contribution of this paper is a new restriction on the input set of 2-intervals, namely
the balanced restriction. By definition, unitary 2-interval sets are also balanced but the converse is
not necessarily true. Consequently, the above mentioned hardness results also hold for the balanced
case, and moreover, balanced 2-interval sets introduce a new combinatorial object which requires
particular consideration. Our motivation for considering balanced 2-interval sets is very natural in
the biological setting of the 2-INTERVAL PATTERN problem. Indeed in our suggested mathematical
model, a 2-interval corresponds to a helix in a RNA secondary structure, which is often considered
to be composed of two disjoint sequences of nucleotides of equal length.

Finally, we introduce a weighted variant of the 2-INTERVAL PATTERN problem, in which each
2-interval is associated with a weight, and the goal is to find a maximum weight subset of a 2-
interval set with respect to a prespecified model. Here, one can for instance, weight a 2-interval by
the total sum of the lengths of its intervals, thereby allowing more refined solutions in the biological
application of the problem. We show that our results can be extended to the weighted variant, while
still maintaining the same approximation factors.

This paper is organized as follows. In Section 2, we consider the 2-INTERVAL PATTERN problem
over the the {<, C, {} model. In Section 3, we describe an approximation algorithm for the problem
over the {, ()} model. In Section 4, the {<,{} model is considered, and different approximation
algorithms are introduced for all possible restrictions imposed on the input. In Section 5 we show
that our results extend to the WEIGHTED 2-INTERVAL PATTERN problem.

2 Approximation algorithms for the {<,,(} model.

We begin by considering the 2-INTERVAL PATTERN problem over the {<,C, ()} model. Recall that
in this case, given an input set of 2-intervals D, the problem asks to find a maximum {<,, (}-
comparable subset of D, or equivalently, to find a maximum pairwise disjoint subset of D.

For point 2-intervals sets, 2-INTERVAL PATTERN can be solved in polynomial time by maximum
matching [20]. For unitary 2-interval sets, the problem is already APX-hard [5]. Furthermore, the
results in [5] also yield approximation algorithms for our case, directly implying the following.

Proposition 1 ([5]). The 2-INTERVAL PATTERN problem over the {<,,(} model can be approz-
imated within a factor of 4 when restricted to unlimited 2-interval sets, and a factor of 3 when
restricted to unitary interval sets.



The approximation algorithm given in [5] that solves the case of unitary 2-interval sets can
be executed in O(nlgn) time, where n is the size of the input set of 2-intervals. However, the
algorithm for unlimited 2-interval sets uses linear programming techniques, which in practice are
very often too time costly. Clearly, the case of balanced 2-interval sets lies between the two cases
and is arguably the most biologically important case. In the rest of this section, we describe an
O(nlgn) time 4-approximation algorithm for balanced 2-intervals sets.

Given any balanced 2-interval set D, the smallest 2-interval in D is the 2-interval with the
shortest left (or right, as they are both of equal length) interval among all left intervals involved
in D (ties are broken arbitrarily). We suggest a simple greedy algorithm that repeatedly picks the
smallest 2-interval in the input, adds it to the solution, and omits all other 2-intervals in the input
which intersect it. A schematic description of this algorithm, which we call Bal-{<, C, {}-Approx,
is given in Figure 3.

Algorithm Bal-{<, C, ( }-Approx(D)
Data : A set of balanced 2-intervals D.
Result : A {<,C,(}-comparable subset of D.
begin
while D # 0 do
1. Let Dg be the smallest 2-interval in D.
2. Add Dg to the solution.
3. Omit Dy and all 2-intervals intersecting Do from D.
end
return the 2-intervals chosen for the solution.
end

Fig. 3. A schematic description of algorithm Bal-{<, , (j }-Approx.

Lemma 1. Algorithm Bal-{<,C,(}-Approz achieves an approzimation factor of 4 for the 2-
INTERVAL PATTERN problem over the general model, restricted to balanced 2-interval sets.

Proof. First note that Bal-{<,,(}-Approx computes a {<,,{}-comparable set of 2-intervals
by construction. Now, let D be the set of remaining 2-intervals at any arbitrary iteration of the
algorithm, and let Dy € D be the smallest 2-interval at this iteration. Since Dy is the smallest
2-interval in D, no interval involved in D can be properly contained in the left or right interval of
Dg. Thus, amongst all the 2-intervals omitted at this iteration, there can be no more than four
2-intervals which are mutually pairwise disjoint. It follows that at most four 2-intervals from any
optimal solution are omitted at this iteration. Applying this argument for all iterations of the
algorithm yields the desired approximation factor guarantee. a

Implementation remark. Note that as stated above, algorithm Bal-{<, C, {}-Approx runs in O(n?)
time. In the following we show that omitting 2-intervals which are not in the solution in a slightly
different way, allows reducing this time bound to O(nlgn).

First, we sort D from the smallest 2-interval to the largest one (i.e. the 2-interval with the
largest left or right interval). Furthermore, we use an auxiliary binary search tree that maintains
all endpoints of 2-intervals in our solution. The main idea is that in step 3 of each iteration, we
omit only Dy. Any 2-interval intersecting Dy is omitted at a later stage. In step 1 of each iteration,
we first check if the current Dg is one of those 2-intervals that should have been omitted earlier,
and it is omitted in such a case. Otherwise, in step 2 we add Dg to the solution, and we also insert
its four endpoints to the auxiliary search tree.



The only non-trivial computation is the one in step 1 that checks if Dy should have been omitted
earlier. Since all 2-intervals in the solution are smaller than the current Dy, if Dy has to be omitted,
then at least one of its intervals contains an endpoint of one of the 2-intervals in the solution. This
can be checked using two O(lgn) query operations in our search tree.

Time complezity. When implemented as above, algorithm Bal-{<, C, (}-Approx runs in O(nlgn)
time. Indeed, sorting the 2-intervals requires O(nlgn) time. Furthermore, each iteration can be
done in O(lgn) time, since we perform a constant number of insertion and query operations on our
search, and all other operations require O(1) time.

3 An approximation algorithm for the {C, ()} model.

We next consider the 2-INTERVAL PATTERN problem over the {C, ()} model. Recall that for point
2-interval sets there exists an O(n2?y/n) algorithm for the problem, while for unitary 2-intervals,
the problem is already NP-complete [20]. We begin our discussion in this section, by introducing a
single constant approximation algorithm, which achieves different approximation factors, depending
on the different possible restrictions imposed on the input 2-interval set. Following this, we show
that 2-INTERVAL PATTERN over {C,(j} is in fact APX-hard, even in the case where the input is
restricted to a unitary 2-interval set.

Our algorithm is a generalization of the O(n?y/n) algorithm devised in [6] for 2-INTERVAL
PATTERN over {, ()} restricted to point 2-interval sets. As in [6], the notion of interval graphs is
used extensively throughout the section. An interval graph is an intersection graph of a finite family
of intervals, all defined over a single line [12, 17].

Given a 2-interval D = (I, .J), let C'(D) denote the smallest interval that covers D, i.e., C(D) =
[[(I) : r(J)] where[(I) and r(.J) are the left and right endpoints of I and .J, respectively. Blin et al. [6]
called C'(D) the covering interval of D. They also observed that any pair of disjoint 2-intervals are
{C, {}-comparable if and only if their corresponding covering intervals intersect. Thus, given a set
of 2-intervals D, and the set C(D) of all covering intervals of 2-intervals in D, any {C, ( }-comparable
subset D' C D corresponds to a pairwise intersecting subset of C' C C(D). However, the converse is
not true as a pair of non-disjoint 2-intervals have corresponding intersecting covering intervals as
well. Hence, a pairwise intersecting subset of C(D) can contain corresponding 2-intervals which are
non-disjoint in D. Figure 4 depicts this relationship between 2-intervals and their corresponding
covering intervals.

Let D be the input set of 2-intervals and C(D) be the set of covering intervals of all 2-intervals
in D. First, we construct the interval graph (2¢(p) of C(D). Any pair of 2-intervals with covering
intervals in a clique of {2¢(p), are either nesting or crossing (but not preceding), or they are non-
disjoint. Now, let OPT denote a maximum cardinality {C,(}-comparable subset of D, and let
C(OPT) be the set of covering intervals of OPT. The subgraph of {2¢(p) which corresponds to
C(OPT) is a clique, and is thus a subset of some maximal (in inclusion order) clique of (2¢(p).
Furthermore, any 2-interval with a covering interval in this clique and not in OPT is necessarily
non-disjoint with at least one of the 2-intervals in OPT.

Observation 1. OPT is a mazimum pairwise disjoint subset of a set of 2-intervals D' (OPT C
D' C D), such that C(D'), the set of covering intervals of D', corresponds to a mazimal clique in

Since {2¢(py is an interval graph, it has at most [V (£2¢(py)| = |D| maximal cliques, and these
can be computed in polynomial time [10]. Furthermore, given the 2-intervals which corresponds to
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Fig. 4. A set of 2-intervals, their corresponding covering intervals, and the interval graph of these covering intervals.
Subsets {C1,C>,C3} and {C1, Cs, C4s} are the maximal intersecting subsets of C(D) and therefore are maximal cliques
in the interval graph. Subset {D1, D2, D3} is {C, () }-comparable in D, while subset {D1, D3, D4} is not because Ds
and D, intersect.

a maximal clique in {2¢(p), one can use the algorithms in Section 2 to find an approximation of
the maximum pairwise disjoint subset of these 2-intervals. A detailed schematic description of our
algorithm, which is called {C, (}-Approx, is given in Figure 5.

Algorithm {C, { }-Approx(D)
Data : A set of 2-intervals D.
Result : A {C,(}-comparable subset of D.
begin
1. Construct C(D), the set of covering intervals of all 2-intervals in D.
2. Construct 2¢(p), the interval graph of C(D).
3. Compute all maximal cliques of £2¢(p) using [10].
4. foreach mazimal clique C' of f2¢(py do
(a) Compute Do C D, the 2-intervals with covering intervals in C'.
(b) Approximate the maximum pairwise disjoint subset of D¢ using the algorithms described in the

previous section.
end

return the largest pairwise disjoint subset found in step 4(b).

end

Fig. 5. A schematic description of algorithm {, (}-Approx.

Lemma 2. Algorithm {C,(}-Approx is a 4-approximation (3-approzimation) algorithm for the 2-
INTERVAL PATTERN problem for unlimited and balanced (unitary) 2-interval sets.

Proof. Immediate from the above discussion and from Proposition 1 and Lemma, 1. O

Time complexity. The number of sub-procedure invocations in step 4(b) of {C,(}-Approx is
bounded by O(n) where n denotes the size of the input set. Also, generating all maximal cliques of
Qc(py can be done in O(n?) time. Hence, we have a super-quadratic running time of O(n?Ign) for
unitary and balanced 2-interval sets, and a polynomial running time for unlimited 2-interval sets [5].

Next we show that 2-INTERVAL PATTERN over {C,(} is APX-hard. For this, we consider a
special class of intersection graphs, called 2-union graphs [5]. A 2-union graph is the union of two



interval graphs with the same vertex set. Thus, given two distinct lines, a 2-union graph is an
intersection graph of a family of pairs of intervals, where each pair consists of two intervals, one
on each line. Two vertices are connected in the graph if, and only if, the intervals of the pairs are
intersecting on at least one of these lines.

In [5], Bar-Yehuda et al. proved that the MAXIMUM INDEPENDENT SET problem for 2-union
graphs is APX-hard, even if the input includes a unitary representation of the graph. That is,
it includes a family of pairs of intervals, such that each interval in the family is of equal length.
We show that finding a maximum pairwise disjoint subset in such a family, and hence a maximum
independent set in the graph, reduces to finding a maximum {C, () }-comparable subset in a set of
unitary 2-intervals.

Let G be a 2-union graph and let R(G) be its unitary representation. Construct a set of 2-
intervals D by considering the two lines over which the intervals in R(G) are defined over, as two
disjoint segments of the same line (see Figure 6). Clearly G is also the intersection graph of D.
Furthermore, D does not contain any pair of 2-intervals which is {<}-comparable. Hence, any
independent set in G corresponds to a {C, () }-comparable subset of D of equal size.

Fig. 6. A unitary representation of a 2-union graph transformed into a unitary 2-interval set.

Corollary 1. The 2-INTERVAL PATTERN problem over the {C,(} model is APX-hard, even when
restricted to unitary 2-interval sets.

4 Approximation algorithms for the {<, ()} model.

We now turn to considering the 2-INTERVAL PATTERN problem over the {<,§} model. Recall that
the problem is known to be NP-hard for unitary 2-interval sets, while for point 2-interval sets
the problem is not known to be polynomial-time solvable [6]. Thus, in this section we consider
all possible restrictions for this model. More specifically, we design a 3-approximation algorithm
for unitary 2-interval sets which is also a 2-approximation algorithm for point 2-interval sets. We
later slightly modify this algorithm to obtain a 5-approximation algorithm for balanced 2-interval
sets. Finally, we introduce a slightly more involved modification which yields a 6-approximation
algorithm for the unlimited case. Determining whether or not the problem is APX-hard, and if so
under what restrictions, is left as an open problem.

Throughout the section, we will use the notion of trapezoid graph [7,9]. Consider two intervals,
I' and J', defined over two distinct horizontal lines. The trapezoid T = (I',.J') is the convex set of
points bounded by I’ and J’, and the two line segments connecting the right and left endpoints of I’
and .J'. We call I’ the bottom interval and J' the top interval of T. A family of trapezoids is a finite
set of trapezoids which are all defined over the same two horizontal lines. The above definitions
imply, that two distinct trapezoids Ty = (I, J{) and To = (I}, J3) in a family of trapezoids are



disjoint, i.e. they contain no common point, if and only if (I] < I} and J| < Jj) or (I < I and
Jy < J) holds. If T} and T are indeed disjoint, then one trapezoid is completely to left of the other,
say for instance 77, and this is denoted by 77 < T5. Finally, a trapezoid graph is an intersection
graph of a family of trapezoids.

4.1 Point and unitary 2-interval sets.

We begin our discussion in this section by describing an approximation algorithm for point and
unitary 2-interval sets. We call this initial algorithm {<, (j}-Approx. The general outline of {<, §}-
Approx consists of the following stages: First 7(D), a family of trapezoids representing the 2-
intervals in D, is constructed. Next, the maximum pairwise disjoint subset of 7(D) is computed
using the algorithm proposed in [9]. Finally, trapezoids in this subset which correspond to non-
disjoint 2-intervals in D are omitted, and the filtered solution is outputted.

Definition 4 (Corresponding trapezoid family). Let D be a set of 2-intervals, and let o and
B be two distinct horizontal lines which are aligned and such that o is below B. The corresponding
trapezoid family of D, denoted T (D), is defined as the family containing a single trapezoid T =
(I',J") € D for each 2-interval D = (I,J) € D, where I' is defined over «, J' is defined over 3,
and I' =1,J = J.
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Fig. 7. {<, (}-comparable 2-intervals correspond to disjoint trapezoids but the converse is not necessarily true. The
bottom right pair of 2-intervals correspond to a pair of clashing trapezoids.

Let D be a set of 2-intervals and let 7(D) be the corresponding trapezoid family of D. It is
not difficult to see that {<,(j}-comparable 2-intervals in D correspond to disjoint trapezoids in
T (D), while {C }-comparable 2-intervals in D correspond to intersecting trapezoids in T (D) (see
Figure 7).

Observation 2. Any two disjoint 2-intervals in D are {<, () }-comparable if and only if their cor-
responding trapezoids in T (D) are disjoint.

Felsner et al. [9] presented an O(nlgn) algorithm for finding a maximum disjoint subset in a
family of n trapezoids. Unfortunately, this alone does not suffice in our case, since there may be
disjoint trapezoids in 7 (D) which correspond to non-disjoint 2-intervals in D. (see Figure 7).

Definition 5 (Clashing intervals). Let I' = [I[(I'),r(I")] and J" = [I(J"),r(J")] be two distinct
intervals defined over two distinct horizontal lines such that [(I') < 1(J'). The two intervals I' and
J' clash, if either [(I') < I(J") < r(J) < r(I') or I(I") <U(J") <r(I') < r(J').



Definition 6 (Clashing trapezoids). Let Ty = (I}, J]) and Ty = (I}, J}) be two distinct trape-
zoids in a family of trapezoids. The two trapezoids Ty and Ty clash, if either I and J} clash or I}
and J| clash.

Observation 3. Any pair of 2-intervals in D are {<, (}-comparable if and only if their correspond-
ing trapezoids in T (D) are disjoint and do not clash.

Observation 3 is the heart of algorithm {<,(j}-Approx. Note that the number of maximal
(in inclusion order) pairwise disjoint subsets of 7 (D) can be exponential, so exhaustively search-
ing through all these for a maximum non-clashing subset is unfeasible. Now, let 7' be the
maximum pairwise disjoint subset of 7 (D). Since the maximum {<,{}-comparable subset of 2-
intervals OPT C D corresponds to a pairwise disjoint non-clashing subset of trapezoids, we have
|OPT| < |T'|. Next we show that in case D is a unitary 2-interval set, we can obtain a pairwise
non-clashing subset of 77 which is no more than a constant factor smaller than 77, and hence no
more than a constant factor smaller than OPT.

Consider the leftmost trapezoid Ty of 7', and let Dy be its corresponding 2-interval in D. By
definition, any trapezoid in 7 (D) has a bottom interval which is completely to the left of its top
interval. Hence, Ty only clashes with trapezoids on its right in 7’. Now, if D is a point 2-interval
set, then all 2-intervals with left intervals intersecting the right interval of Dy have the same left
interval, and as 7' is pairwise disjoint, at most one of these has a corresponding trapezoid in 7.
Furthermore, if D is a unitary 2-interval set, distinct intervals involved in D which are non-disjoint
must overlap. Thus, any trapezoid in 77 clashing with T corresponds to a 2-interval with a left
interval which contains either endpoints of the right interval of Dy. Since T is pairwise disjoint,
there can be at most two such trapezoids in 7.

Algorithm {<, §}-Approx first computes 7", the maximum pairwise disjoint subset of 7 (D), and
then repeatedly adds the leftmost trapezoids in 7' to the solution, while omitting all trapezoids
which clash with this trapezoid in 7". A schematic description of algorithm {<, (j}-Approx is given
in Figure 8.

Algorithm {<, (}-Approx(D)
Data : A set of 2-intervals D.
Result : A {<,{}-comparable subset of D.
begin
1. Construct 7 (D), the corresponding trapezoid set of D.
2. Compute 7' C T(D), a maximum pairwise disjoint subset of 7 (D) using [9].
3. while 7' # () do
(a) Let Ty be the leftmost trapezoid in 7.
(b) Add To to the solution.
(c) Omit Ty and all trapezoids clashing with T from 7.
end
return the set of 2-intervals corresponding to the trapezoids in the solution.

end

Fig. 8. A schematic description of algorithm {<, (}-Approx.

Lemma 3. Algorithm {<,(}-Approx is a 3-approximation (2-approzimation) algorithm for the 2-
INTERVAL PATTERN problem over the {<,{} model restricted to unitary (point) 2-interval sets.

Proof. First note that {<, (}-Approx outputs a subset of 2-intervals which correspond to pairwise
disjoint non-clashing trapezoids. Hence, by Observation 3, this subset is {<, (j}-comparable. Now,



let OPT be a maximum {<, (j}-comparable subset of D. Prior to step 3 in the algorithm, we have
|OPT| < |T’|. Furthermore, if D is a point 2-interval set, for every trapezoid omitted from 7" in
step 3, a trapezoid is added to the solution. Hence {<, (j}-Approx is a 2-approximation algorithm
in this case. The case where D is unitary is similar, except that here two trapezoids may be omitted
for every trapezoid added to the solution. ad

Time complezity. Let |D| = n. The family of trapezoids 7 (D) can be constructed in O(n) time,
and according to [9], 7' C T (D) can be computed in O(nlgn) time. Furthermore, if we sort all
the right endpoints of intervals involved in D in an O(nlgn) preprocessing stage, we can compute
each iteration of step 3 in linear time with respect to the number of trapezoids omitted. As there
is only a constant number of such trapezoids in each iteration, step 3 can be computed in O(nlgn)
time. This gives us a total of O(nlgn) running time for the entire algorithm.

4.2 Balanced 2-interval sets.

We next consider balanced 2-interval sets. Bal-{<, (}-Approx is a 5-approximation algorithm for
this problem. It differs from {<, §}-Approx only by the fact that at each iteration of step 3, instead
of choosing the leftmost trapezoid in 7" as Ty, we choose the smallest trapezoid (i.e. the trapezoid
corresponding to the smallest 2-interval) as Tp.

Lemma 4. Algorithm Bal-{<,(}-Approz is a 5-approzimation algorithm for the 2-INTERVAL PAT-
TERN problem over the {<, ()} model restricted to balanced 2-interval sets.

Proof. The correctness of Bal-{<, §}-Approx follows again from Observation 3. As for the approx-
imation guarantee, consider 7' at an arbitrary iteration of step 3 in Bal-{<, (}-Approx, and let
To be the smallest trapezoid of 7' at this iteration. Also let OPT denote the maximum {<,{j}-
comparable subset of D. Since Ty is the smallest trapezoid, by a similar argument used in Lemma 1,
Ty clashes with at most 4 other trapezoids in 7" at this iteration. Hence, since |OPT| < |T'| prior
to step 3, our solution is at least of size %|7" |, and the lemma follows. O

Time complexity. Step 3 in Bal-{<, (}-Approx can be done in O(nlgn) time, where n = |D|, using
the same techniques used in Bal-{<, C, {§ }-Approx. Hence, as in {<, {}-Approx, the entire running
time of Bal-{<, (}-Approx is O(nlgn).

4.3 Unlimited 2-interval sets.

The rest of this section is devoted to the 2-INTERVAL PATTERN problem over the {<,{§} model for
unlimited 2-interval sets. We introduce a slightly more involved modification of {<, (}-Approx to
obtain a 6-approximation algorithm for unlimited 2-interval sets.

Consider two clashing trapezoids T} = (I1, J{) and Ty = (I}, J}) such that T} < T5. We say that
Ty sees Ty if either [(I) < I(J]) < r(L5) or I(I}) < r(J]) < r(I}), where I(J]),r(J]) and I(1}), r(I})
are the left and right endpoints of J| and I} respectively. Thus, T sees Ty if one of the endpoints
of its top interval is in the range of the bottom interval of T5 (see Figure 9).

Definition 7 (Nice family of trapezoids). A family of trapezoids T" is nice, if T" is pairwise
disjoint, and no trapezoid sees any other trapezoid in T".

Now, given a pairwise disjoint family of trapezoids 7', computing a nice subset 7" C 7' can
be done similarly to step 3 in {<, (}-Approx. Instead of omitting all trapezoids clashing with the
leftmost trapezoid Ty at every iteration, we omit only those that T sees. Since 7' is pairwise
disjoint, Ty can see at most two trapezoids in 7”. Hence, [T"| > £|T7|.



Definition 8 (Clashing trapezoid graph). Given a family T of trapezoids, the clashing trape-
zoid graph of T, denoted by G, is a graph with T as its vertex set, and two vertices are connected
by an edge if and only if their corresponding trapezoids clash.

Lemma 5. If T" is a nice family of trapezoids then Gy is a forest.

Proof. Let T" be a nice family of trapezoids and let G+ = (V, E) be its corresponding clashing
trapezoid graph. Define G%-, = (V*, E*) as the directed graph obtained by orienting the edges of
G according to the precedence relation of 7”. In other words, V* =V and (Ty,T») € E* if and
only if {T1,T>} € E and T} < Ty in T". Since 7" is nice, every trapezoid in 7" clashes with at
most one trapezoid on its left, and so the in-degree of every vertex v € V* is at most one. Hence,

any cycle (vg,...,v,v0) in G is a (directed) cycle in G%-,. However, in such a case we must have
Ty < T; < Ty, a contradiction. Hence, we conclude that Gy~ contains no cycles, and the above
lemma holds. a

(@)

Tl; 'i'z T, 'i", 'i's Te T, T, T, Ts Tg /T,
e ) H :>
(b)
B—@—® =~ D ®

Fig. 9. (a) A family of pairwise disjoint family of trapezoids and a nice subset of this family. Trapezoid T} sees both
T> and T3 and so these are omitted in order to obtain the nice subset. (b) The corresponding clashing trapezoid
graphs of the two families above.

It is well known that the maximum independent set in any forest G = (V, E) is of size at
least |V| and that this set can be found in linear time with respect to |V|. Also, by definition,
since 7" is a pairwise disjoint family of trapezoids, any independent set of G+ corresponds to a
pairwise disjoint non-clashing set of trapezoids, and so it also corresponds to a {<, (j}-comparable
subset of 2-intervals. A schematic description of our algorithm for unlimited 2-intervals sets, called
Unl-{<, (}-Approx, is given in Figure 10.

Lemma 6. Algorithm Unl-{<,(}-Approz is a 6-approzimation algorithm for the 2-INTERVAL PAT-
TERN problem over the {<,(} model.

Proof. The correctness of Unl-{<, (j}-Approx follows from the fact that an independent set in Gy
corresponds to a pairwise disjoint non-clashing subset of trapezoids. Now, let D be the input set of
2-intervals and let 7(D), 7' and 7" be the trapezoid families as described in the above description
of Unl-{<,(§}-Approx. Also, let OPT be a maximum {<,(j}-comparable subset of D. We have
|OPT| <|T'| and |T'| < 3|T"|. Furthermore, since Gy is a forest, we have |V (G7»)| < 2a(Gyn),
where a(G7n) is the size of the maximal independent set of G7~. Together we get:

|OPT| < |T’| < 3|T”| =3|V(Gy»)| < 6a(Grn),

and the lemma follows. a



Algorithm Unl-{<, {}-Approx(D)

Data : A set of 2-intervals D.

Result : A {<,{}-comparable subset of D.

begin
1. Construct 7 (D), the corresponding trapezoid set of D.
2. Compute 7', a maximum pairwise disjoint subset of T (D).
3. Compute 7", a nice subset of 7', such that [T > £|7"|.
4. Compute G~ and a maximum independent set I of G7.

return the set of 2-intervals corresponding to the mazimum independent set I of G .
end

Fig. 10. A schematic description of algorithm Unl-{<, (}-Approx.

Time complezity. Let |D| = n. Steps 1-3 in Unl-{<, §}-Approx can be computed in O(nlgn) time
by a similar analysis given in {<, (§}-Approx. Furthermore, step 4 can be computed in O(n) time
since Gy is a forest. Hence, the entire algorithm has a total of O(nlgn) running time.

5 Approximation framework for weighted 2-interval sets

In this section we consider the weighted version of the 2-INTERVAL PATTERN problem.

Definition 9. Let D be a set of 2-intervals and let R C {<,C,(}, R # 0, be a given model. Also
let w:D — R be a weight function. The WEIGHTED 2-INTERVAL PATTERN problem asks to find a
maximum weight R-comparable subset of D.

All algorithms for the polynomial solvable models of 2-INTERVAL PATTERN given in [6, 20] apply
to the weighted version as well. In the following we show that our results also extend to WEIGHTED
2-INTERVAL PATTERN.

We denote w(D') as the sum Xpeprw(D), for any subset of 2-intervals D' C D and any weight
function w : D — R. For a model R and a weight function w, a given subset S C D is r-approzimate
with respect to R and w, if w(S) > Lw(D’) for any R-comparable D' C D.

5.1 A local ratio approximation framework

The local-ratio technique [2-4] is based on the Local-Ratio Theorem, which in our case is stated as
follows.

Theorem 4 (Local-Ratio [2]). Let R be a given model and let w,wy, and wy be weight functions
such that w = wy + wy. Then, if D' C D is r-approzimate, both with respect to (R,w1), and with
respect to (R,ws), then D' is also r-approzimate with respect to (R,w).

In Figure 11, we present a local ratio approximation framework that is based on the approxi-
mation framework for scheduling and resource allocation from [2]. It uses the following definition:
Given a set of 2-intervals D, a model R, and a 2-interval D € D, N[D] denotes the subset of
2-intervals in D that are not R-comparable with D (D € N[D]). We assume that the initial weights
are positive (2-intervals with non-positive weights can be omitted). However, note that the weights
may become negative during the execution of the algorithm.

The selection of Dy determines the approximation ratio of the algorithm. Informally, the ap-
proximation ratio would be small, if in each iteration, we are able to choose a 2-interval Dy such
that the intersection of N[Dy] with any R-comparable subset in this iteration is small.



Algorithm LR(D, R, w)

Data : A set of 2-intervals D, a model R, and a weight function w.
Result : An R-comparable subset of D.
begin

1. if D = () then return 0.
2. Select a 2-interval Dg € D.
3. Define wy (D) = {w(DO) D € N1Do],
0 otherwise
. Define wa = w — w;.
. DT« {D e D : ws(D) >0}
. S« LR(D", R, ws).
. if SU{Do} is R-comparable then § < SU {Dy}.
return S.

N O O

end

Fig. 11. A local ratio approximation framework.

Definition 10 (Dy-maximal subset). Let R be a model, and let Dy be a 2-interval. We say
that an R-comparable set S is Dy-maximal if either Dy € S, or Dy ¢ S but S U {Dy} is not
R-comparable.

Definition 11 (r-effective weight function). Given a model R and a 2-interval Dy, a weight
function wy is called r-effective with respect to Dy, if every Dy-mazimal R-comparable subset S C D
18 T-approxrimate with respect to wy and R.

Lemma 7. If wy is r-effective with respect to Dy in every recursive call of algorithm LR, then LR
computes an r-approzimate R-comparable subset S.

Proof. First, the solution computed by the algorithm is R-comparable by construction. We prove
it is r-approximate by induction on the number of recursive calls (which is bounded by n). At
the recursive basis, the solution § returned is the empty set, and hence it is optimal and clearly
r-approximate. For the inductive step, assume that at some recursive call of the algorithm, the
intermediate solution S computed at step 6, is r-approximate with respect to wo. Step 7 ensures
that & is Dg-maximal, and so § is r-approximate with respect to w; after this step. Furthermore,
since w9 (D) = 0, S remains r-approximate with respect to wo after this step as well. Therefore,
by the Local Ratio Theorem, we get that the solution returned at the end of this recursive call is
r-approximate with respect to w, and the lemma follows. O

Next, we give an alternative analysis for algorithm LR. Basically, we show that the approxima-
tion ratio would be small, if in each iteration we are able to choose a 2-interval Dy such that N[Dg]
is small. As we shall later see, this will be useful when the input set of 2-intervals for algorithm LR
is not the original set D, but rather a subset whose weight is at least the weight of a maximum
weight R-comparable subset of D.

Lemma 8. If |[N[Dy]| < r in every recursive call of algorithm LR, then LR computes an r-
approzimate R-comparable subset S.

Proof. Let wi and D} be the weight w; and the 2-interval Dy in the ith recursive call of Algo-
rithm LR, respectfully. First observe that >, w}(D) > w(D) for any 2-interval D € D. Hence,

> k(D) > 3 w(D) = (D).

DeD ¢ DeD



On the other hand, w(D) = 3, wi(D) for any D € S, and therefore

Y Y D= wis)
DeS 1 7

Now, in any recursive call 7, S is Dy-maximal, and so w}(S) > wy(D}). Furthermore, by definition
of w! and since [N[D{]| < r, we have wi(D}) > L 3, wi(D). Accumulating all these inequalities

together we get:
$) = X ui() 2 Lul0) > S (D) 2 ~w(D)
i

i DeD
and we are done. O

We now turn to show that the analysis of algorithm LR given in Lemma 7 and 8 is sufficient for
extending our results from the previous sections to the WEIGHTED 2-INTERVAL PATTERN problem.
More specifically, we show that the algorithms for the unweighted version of the problem can be
extended to the weighted version while still maintaining their approximation factors.

5.2 The {<,,(} model

First, both the 4-approximation algorithm for unlimited 2-interval sets and the 3-approximation
algorithm for unitary 2-interval sets from [5] work for weighted instances.

Lemma 9. There is a 4-approzimalion algorithm for the WEIGHTED 2-INTERVAL PATTERN prob-
lem over the {<,C, ()} model restricted to balanced 2-interval sets.

Proof. We show a 4-approximation algorithm for weighted balanced 2-interval sets. Our algorithm
uses the approximation framework of algorithm LR by selecting Dy as the smallest 2-interval in
D. Due to Lemma 7, to show that this algorithm has an approximation factor of 4, it is enough to
show that w; is 4-effective with respect to Dy in every recursive call of LR.

Consider a Dg-maximal R-comparable subset S at any recursive call of algorithm LR. Since
Dy is the smallest 2-interval in D, no interval is properly contained in the left or right interval
of Dgy. Hence, for any {<,,(}-comparable D' C D, at most four 2-intervals in D’ are also in
N[Dy]. As only the 2-intervals in N[Dy] are assigned a positive weight (w;(Dy)) by wi, we have
wi(D') < 4wy (Dyp). On the other hand, we have w(S) > wi(Dy), since S is Dy-maximal and
S N N[Dy] # (. Therefore wy(D') < 4wy (S) and so w; is 4-effective with respect to Dy. a

5.3 The {C,(} model

The following is the weighted variant of Observation 1.

Observation 5. Let OPT denote the mazimum weight {C, (}-comparable subset of D. Then OPT
is a pairwise disjoint subset of a set of 2-intervals D' (OPT C D' C D), such that C(D'), the covering

intervals of D, corresponds to a mazimal clique in $2c(py, the interval graph of all covering intervals
of D.

Hence, our algorithm for WEIGHTED 2-INTERVAL PATTERN over {, (} is very much similar to
{C, 0}-Approx (Figure 5). Here, we search through all maximal cliques of {2¢(p) for an approxima-
tion of the maximum weight {C, §}-comparable solution. This is done using the algorithms given
above (Section 5.2).

Corollary 2. There is a j-approximation (3-approzimation) algorithm for the WEIGHTED 2-
INTERVAL PATTERN problem over the {C,(} model restricted to unlimited and balanced (unitary)
2-interval sets.



5.4 The {<,(} model

We begin by considering the case of unitary and point 2-intervals. Recall algorithm {<, {j}-Approx.
In Steps 1 and 2, we compute the corresponding trapezoid family 7 (D) of D and the maximum
pairwise disjoint subset 7' of this family. Let D’ be the set of trapezoids corresponding to 7.
We modify {<,(j}-Approx by replacing step 3 in the algorithm with a call to LR(D’, {<,{}, w)
(Figure 11), where Dy is selected as the 2-interval which corresponds to the leftmost trapezoid
at each recursive call. The modified version of {<, (}-Approx then outputs the solution given by
algorithm LR. In Section 4.1 we showed that Tp, the trapezoid corresponding to Dy, clashes with
at most two trapezoids in 7' in case D is unitary, and at most one trapezoid in case D is a point
2-interval set. Hence, |[N[Dy]| < 3 in every recursive call of LR if D is unitary, and |[N[Dy]| < 2 in
case D is a point 2-interval set. Therefore, by Lemma 8, algorithm LR computes a 3-approximate
solution for unitary 2-interval sets and a 2-approximate solution for point 2-interval sets.

The case of balanced 2-intervals is similar, except that here we select Dy as the smallest 2-
interval in every recursive call of algorithm LR. As |[N[Dy]| < 5 in every recursive call, LR computes
a b-approximate solution in this case.

For unlimited 2-interval sets, we modify algorithm Unl-{<, (}-Approx (Figure 10) by replacing
step 3 with a variant of algorithm LR. In this variant, we choose Dj to be the 2-interval corre-
sponding to the leftmost trapezoid T € T'. Next, we replace N[Dg] by N'[Dy], where N'[Dy] is the
set of all 2-intervals which correspond to trapezoids that Tj sees. Finally, instead of requiring S to
be R-comparable, we require the corresponding trapezoid family be nice. By the analysis given in
Section 4.3, we have |N'[Do]| < 3 in any recursive call of algorithm LR, and so by Lemma 8, this
variant of algorithm LR computes a nice trapezoid family 7" of size at least £|77|. From here the
analysis of this algorithm is similar to the unweighted case.

Corollary 3. There is a 6-approzimation (5-approximation, 3-approximation, and 2-
approzimation) algorithm for the WEIGHTED 2-INTERVAL PATTERN problem over the {<,(}
model restricted to unlimited (balanced, unitary, and point) 2-interval sets.

6 Conclusions and future work

In this paper we addressed the problem of approximating the 2-INTERVAL PATTERN problem over
its various models and restrictions. We presented algorithms with constant approximation factor
guarantees for all NP-hard cases of the problem. In addition, we showed that these can be extended
to the weighted version of the problem with no cost to the approximation factors.

A first natural open problem to consider is improving the approximation factors of our algo-
rithms. An additional problem is to provide an efficient algorithm for the {<,, ()} model with
unlimited 2-interval sets. This is of great interest, since the inefficiency of the algorithm in [5] also
propagates to our suggested algorithm for the {C,{} model. Note that [5] give a fast O(lg|D|)-
approximation algorithm for this case.

As for hardness of approximation results, unlike the {<,C,{} and {C,(} models, the APX-
hardness results described in [5] do not extend easily to the {<, ()} model. Whether the 2-INTERVAL
PATTERN problem over the {<, (j} model is APX-hard, and if so, for what restrictions on the input
does this still hold, remains open.

Finally, and perhaps most interesting, is to determine the time complexity of the 2-INTERVAL
PATTERN problem over the {<, §} model restricted to point 2-intervals. This has been posed as an
open problem both in [20] and in [6], and is still left open by this paper.
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