
Approximating the 2-Interval Pattern problemMaxime Cro
hemore?, Danny Hermelin??,Gad M. Landau? ? ?, Dror Rawitzy, and St�ephane VialettezAbstra
t. We address the problem of approximating the 2-Interval Pattern problem over its var-ious models and restri
tions. This problem, motivated by RNA se
ondary stru
ture predi
tion, asksto �nd a maximum 
ardinality subset of a 2-interval set with respe
t to some prespe
i�ed geometri

onstraints. We present several 
onstant fa
tor approximation algorithms whose performan
e guaranteedepends on the di�erent possible restri
tions imposed on the input 2-interval set. In addition, we showthat our results extend to the weighted variant of the problem.Key Words: 2-interval, RNA se
ondary stru
ture predi
tion, 
ombinatorial approximation algorithms.1 Introdu
tionThe Ribonu
lei
 a
id (RNA) is a family of mole
ules whi
h have several important fun
tions inthe 
ell. An RNA mole
ule is a single stranded mole
ule whi
h 
an be viewed as a linear sequen
e
onsisting of four nu
leotides: Adenine (A), Cytosine (C), Guanine (G), and Ura
il (U). The pairsof nu
leotides A-U and C-G are known as 
omplementary nu
leotide pairs whi
h often link togetherby their phosphodiester bonds to form a three dimensional folding stru
ture. This folding stru
tureis 
aptured in many ways, in what is 
alled the se
ondary stru
ture, the set of all hydrogen bondsformed by the nu
leotides of the mole
ule. It is widely believed that for many interesting families ofRNA mole
ules, the fun
tionality of the mole
ule depends mostly on its se
ondary stru
ture [18℄.Sin
e 
urrent biologi
al methods for extra
ting sequential data ex
eed by far methods for extra
tingstru
tural data, there is a need to predi
t the se
ondary stru
ture of an RNA given its sequen
e ofnu
leotides. This is known as se
ondary stru
ture predi
tion [21℄.RNA se
ondary stru
ture predi
tion usually fo
uses on predi
ting the stru
ture with minimumfree energy [21℄, i.e. the stablest stru
ture possible, where ea
h nu
leotide is assumed to bondwith at most one other nu
leotide. There are many approa
hes to determine the free energy of agiven stru
ture. One simpli�ed approa
h, 
hosen also in [15℄, is to 
onsider only the heli
es of thestru
ture, as they are believed to 
ontribute to the stability of the stru
ture in the most signi�
antway. A helix in an RNA mole
ule 
onsists of two disjoint 
onse
utive sequen
es of nu
leotides, wherealmost every nu
leotide in one sequen
e is paired with another nu
leotide in the se
ond sequen
e.In [20℄, a geometri
 representation of a helix in an RNA mole
ule is proposed by means of anatural generalization of an interval, namely a 2-interval. There, intervals and 2-intervals represent,respe
tively, sequen
es of 
ontiguous nu
leotides and possible pairings between su
h sequen
es inthe RNA mole
ule (see Figure 1). The predi
tion of a se
ondary stru
ture under this approa
h
onsists of two stages. In the �rst stage, the sequen
e of mole
ules is s
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set of 2-intervals whi
h 
orrespond to all helixes that 
ould be involved in the mole
ule's se
ondarystru
ture. In the se
ond stage, a pairwise disjoint subset of 2-intervals is sought for, possibly undersome additional 
onstraints, so as to serve as an estimate of the a
tual se
ondary stru
ture of themole
ule. The problem we study in this paper, i.e. 2-Interval Pattern, is 
on
erned with these
ond stage of this pro
ess.
(a)

(b)

Fig. 1. Two segments of RNA mole
ules and the set of 
orresponding 2-intervals. In (a), the se
ondary stru
ture ispseudoknot-free. In (b), any pair of bonds C �G and A� U is a pseudoknot.A 2-interval [14, 19℄ is the union of two disjoint intervals de�ned over a single line. Throughoutthe paper, a 2-interval is denoted byD = (I; J) where I and J are two (
losed) intervals de�ned overa single line su
h that I is 
ompletely to the left of J . Two 2-intervalsD1 = (I1; J1) andD2 = (I2; J2)are disjoint, if both 2-intervals share no 
ommon point, that is, if (I1 [J1)\ (I2 [J2) = ;. For su
hdisjoint pairs of 2-intervals, three natural binary relations are of spe
ial interest.De�nition 1 (Relations between 2-intervals). Let D1 = (I1; J1) and D2 = (I2; J2) be twodisjoint 2-intervals. Then{ D1 < D2 (D1 pre
edes D2), if I1 < J1 < I2 < J2.{ D1 � D2 (D1 is nested in D2), if I2 < I1 < J1 < J2.{ D1 G D2 (D1 
rosses D2), if I1 < I2 < J1 < J2.A pair of 2-intervals D1 and D2 is R-
omparable for some R 2 f<;�; Gg, if either (D1;D2) 2 Ror (D2;D1) 2 R. A set of 2-intervals D is R-
omparable for some R � f<;�; Gg, R 6= ;, if anypair of distin
t 2-intervals in D is R-
omparable for some R 2 R. The non-empty subset R is
alled a model. Note that any two disjoint 2-intervals are R-
omparable for some R 2 f<;�; Gg.Equivalently, any pairwise disjoint subset of D is f<;�; Gg-
omparable.De�nition 2 (The 2-Interval Pattern problem [6, 20℄). Let D be a set of 2-intervals andlet R � f<;�; Gg, R 6= ;, be a given model. The 2-Interval Pattern problem asks to �nd amaximum 
ardinality R-
omparable subset of D.By the above de�nition, any solution for the 2-Interval Pattern problem over a model R
orresponds to a se
ondary stru
ture 
onstrained by R. For example, a solution for the 2-IntervalPattern problem over the f<;�g model 
orresponds to a pseudoknot-free stru
ture. A pseudoknot



in an RNA sequen
e S = s1; s2; : : : ; sn is 
omposed of two interleaving nu
leotide pairings (si; sj)and (si0 ; sj0) su
h that i < i0 < j < j0 (see Figure 1).De�nition 3 (Restri
tions for 2-interval sets). Let D be a set of 2-intervals and let S(D) bethe set of intervals involved in D.{ D is a point 2-interval set if all intervals in S(D) are pairwise disjoint (note that in this 
ase,all intervals in S(D) may be 
onsidered as points).{ D is a unitary 2-interval set if all intervals in S(D) are of equal length.{ D is a balan
ed 2-interval set if any 2-interval in D is a pair of two intervals of equal length.{ D is an unlimited 2-interval set if none of the above restri
tions are imposed.
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D3Fig. 2. The di�erent possible restri
tions 
onsidered for 2-interval sets. Intervals are represented by dark thi
k linesand points, and 2-intervals are represented by a thin line 
onne
ting two intervals. (a) A point 2-interval set whereD1 G D2 and D1 < D3. The pair of 2-intervals D2 and D3 are not disjoint and thus are not 
omparable by anyrelation. (b) A unitary 2-interval set where D1 G D2, D1 < D3, and D2 < D3. (
) A balan
ed 2-interval set whereD3 � D2. The entire set is f<;�g-
omparable. (d) An unlimited f<;�; Gg-
omparable 2-interval set.The left part of Table 1 depi
ts the 
urrent state of the art for the 2-Interval Patternproblem in terms of exa
t algorithms. In [20℄, 2-Interval Pattern over f�; Gg and f<;�; Ggis proved to be NP-hard even for unitary 2-interval sets. The proof for the f<;�; Gg model isobtained as a dire
t 
onsequen
e of the APX-hardness result for the Maximum IndependentSet problem in t-interval graphs [5℄. The results in [5℄ also provide approximation algorithms forthis model. In [6℄, an NP-hardness result for the f<; Gg model restri
ted to unitary 2-interval setsis given. The time 
omplexity for this same model when the input is restri
ted to point 2-intervalsets is still unknown. These results imply that in pra
ti
al terms, se
ondary stru
tures 
ontainingpseudoknots are hard to predi
t in our suggested mathemati
al model. This is 
onsistent withpreviously known NP-hardness results for RNA se
ondary stru
tures predi
tion in other models
onsidering arbitrary pseudoknots [1, 15, 16℄. Other works whi
h are similar to our line of resear
hin
lude the Ar
-Preserving Subsequen
e (APS) and Longest Ar
-Preserving CommonSubsequen
e (LAPCS) problems studied in [8, 13℄, and the Conta
t Map Overlap problemdes
ribed in [11℄.1.1 Our resultsIn this paper we fo
us on the three NP-hard models of the 2-Interval Pattern problem. Morespe
i�
ally, we design 
onstant fa
tor approximation algorithms for the f<;�; Gg, f�; Gg, and f<; Ggmodels. The approximation fa
tors obtained by our algorithms vary depending on the given modeland the restri
tion imposed on the input set of 2-intervals. Furthermore, we 
omplement the APX-hardness result for the f<;�; Gg model [5, 20℄, with an APX-hardness result for the f�; Gg model.



2-Interval Pattern - Classi
al ComplexityModel Unlimited Balan
ed Unitary Pointf<;�; Gg NP-
omplete [5, 20℄ O(npn) [20℄f�; Gg NP-
omplete [20℄ O(n2pn) [6℄f<; Gg NP-
omplete [6℄ ?f<;�g O(n2) [20℄fGg O(n2 log n) [20℄f�g O(n log n) [6℄f<g O(n log n) [20℄
2-Interval Pattern- Approximation Fa
torsModel Unlimited Balan
ed Unitary Pointf<;�; Gg (Se
tion 2) 4a [5℄ 4b 3b [5℄ {f�; Gg (Se
tion 3) 4a 4
 3
 {f<; Gg (Se
tion 4) 6b 4b 3b 3ba Polynomial-time algorithm (linear programming).b O(n lg n) time algorithm.
 O(n2 lg n) time algorithm.Table 1. The 2-Interval Pattern problem over it's various models and restri
tions. Left part: 
omplexity resultsfor the 2-Interval Pattern problem, where n = jDj. The 2-Interval Pattern problem for the f<; Gg modelrestri
ted to point 2-interval sets is not known to be in P or NP-
omplete. Right part: The approximation fa
torswe obtain for the 2-Interval Pattern problem supporting the idea that the problem has varying approximationquality depending on the di�erent possible restri
tions imposed on the input 2-interval set.Another 
ontribution of this paper is a new restri
tion on the input set of 2-intervals, namelythe balan
ed restri
tion. By de�nition, unitary 2-interval sets are also balan
ed but the 
onverse isnot ne
essarily true. Consequently, the above mentioned hardness results also hold for the balan
ed
ase, and moreover, balan
ed 2-interval sets introdu
e a new 
ombinatorial obje
t whi
h requiresparti
ular 
onsideration. Our motivation for 
onsidering balan
ed 2-interval sets is very natural inthe biologi
al setting of the 2-Interval Pattern problem. Indeed in our suggested mathemati
almodel, a 2-interval 
orresponds to a helix in a RNA se
ondary stru
ture, whi
h is often 
onsideredto be 
omposed of two disjoint sequen
es of nu
leotides of equal length.Finally, we introdu
e a weighted variant of the 2-Interval Pattern problem, in whi
h ea
h2-interval is asso
iated with a weight, and the goal is to �nd a maximum weight subset of a 2-interval set with respe
t to a prespe
i�ed model. Here, one 
an for instan
e, weight a 2-interval bythe total sum of the lengths of its intervals, thereby allowing more re�ned solutions in the biologi
alappli
ation of the problem. We show that our results 
an be extended to the weighted variant, whilestill maintaining the same approximation fa
tors.This paper is organized as follows. In Se
tion 2, we 
onsider the 2-Interval Pattern problemover the the f<;�; Gg model. In Se
tion 3, we des
ribe an approximation algorithm for the problemover the f�; Gg model. In Se
tion 4, the f<; Gg model is 
onsidered, and di�erent approximationalgorithms are introdu
ed for all possible restri
tions imposed on the input. In Se
tion 5 we showthat our results extend to the Weighted 2-Interval Pattern problem.2 Approximation algorithms for the f<;�; Gg model.We begin by 
onsidering the 2-Interval Pattern problem over the f<;�; Gg model. Re
all thatin this 
ase, given an input set of 2-intervals D, the problem asks to �nd a maximum f<;�; Gg-
omparable subset of D, or equivalently, to �nd a maximum pairwise disjoint subset of D.For point 2-intervals sets, 2-Interval Pattern 
an be solved in polynomial time by maximummat
hing [20℄. For unitary 2-interval sets, the problem is already APX-hard [5℄. Furthermore, theresults in [5℄ also yield approximation algorithms for our 
ase, dire
tly implying the following.Proposition 1 ([5℄). The 2-Interval Pattern problem over the f<;�; Gg model 
an be approx-imated within a fa
tor of 4 when restri
ted to unlimited 2-interval sets, and a fa
tor of 3 whenrestri
ted to unitary interval sets.



The approximation algorithm given in [5℄ that solves the 
ase of unitary 2-interval sets 
anbe exe
uted in O(n lgn) time, where n is the size of the input set of 2-intervals. However, thealgorithm for unlimited 2-interval sets uses linear programming te
hniques, whi
h in pra
ti
e arevery often too time 
ostly. Clearly, the 
ase of balan
ed 2-interval sets lies between the two 
asesand is arguably the most biologi
ally important 
ase. In the rest of this se
tion, we des
ribe anO(n lgn) time 4-approximation algorithm for balan
ed 2-intervals sets.Given any balan
ed 2-interval set D, the smallest 2-interval in D is the 2-interval with theshortest left (or right, as they are both of equal length) interval among all left intervals involvedin D (ties are broken arbitrarily). We suggest a simple greedy algorithm that repeatedly pi
ks thesmallest 2-interval in the input, adds it to the solution, and omits all other 2-intervals in the inputwhi
h interse
t it. A s
hemati
 des
ription of this algorithm, whi
h we 
all Bal-f<;�; Gg-Approx,is given in Figure 3.Algorithm Bal-f<;�; Gg-Approx(D)Data : A set of balan
ed 2-intervals D.Result : A f<;�; Gg-
omparable subset of D.beginwhile D 6= ; do1. Let D0 be the smallest 2-interval in D.2. Add D0 to the solution.3. Omit D0 and all 2-intervals interse
ting D0 from D.endreturn the 2-intervals 
hosen for the solution.end Fig. 3. A s
hemati
 des
ription of algorithm Bal-f<;�; Gg-Approx.Lemma 1. Algorithm Bal-f<;�; Gg-Approx a
hieves an approximation fa
tor of 4 for the 2-Interval Pattern problem over the general model, restri
ted to balan
ed 2-interval sets.Proof. First note that Bal-f<;�; Gg-Approx 
omputes a f<;�; Gg-
omparable set of 2-intervalsby 
onstru
tion. Now, let D be the set of remaining 2-intervals at any arbitrary iteration of thealgorithm, and let D0 2 D be the smallest 2-interval at this iteration. Sin
e D0 is the smallest2-interval in D, no interval involved in D 
an be properly 
ontained in the left or right interval ofD0. Thus, amongst all the 2-intervals omitted at this iteration, there 
an be no more than four2-intervals whi
h are mutually pairwise disjoint. It follows that at most four 2-intervals from anyoptimal solution are omitted at this iteration. Applying this argument for all iterations of thealgorithm yields the desired approximation fa
tor guarantee. utImplementation remark. Note that as stated above, algorithm Bal-f<;�; Gg-Approx runs in O(n2)time. In the following we show that omitting 2-intervals whi
h are not in the solution in a slightlydi�erent way, allows redu
ing this time bound to O(n lgn).First, we sort D from the smallest 2-interval to the largest one (i.e. the 2-interval with thelargest left or right interval). Furthermore, we use an auxiliary binary sear
h tree that maintainsall endpoints of 2-intervals in our solution. The main idea is that in step 3 of ea
h iteration, weomit only D0. Any 2-interval interse
ting D0 is omitted at a later stage. In step 1 of ea
h iteration,we �rst 
he
k if the 
urrent D0 is one of those 2-intervals that should have been omitted earlier,and it is omitted in su
h a 
ase. Otherwise, in step 2 we add D0 to the solution, and we also insertits four endpoints to the auxiliary sear
h tree.



The only non-trivial 
omputation is the one in step 1 that 
he
ks if D0 should have been omittedearlier. Sin
e all 2-intervals in the solution are smaller than the 
urrent D0, if D0 has to be omitted,then at least one of its intervals 
ontains an endpoint of one of the 2-intervals in the solution. This
an be 
he
ked using two O(lg n) query operations in our sear
h tree.Time 
omplexity. When implemented as above, algorithm Bal-f<;�; Gg-Approx runs in O(n lgn)time. Indeed, sorting the 2-intervals requires O(n lgn) time. Furthermore, ea
h iteration 
an bedone in O(lg n) time, sin
e we perform a 
onstant number of insertion and query operations on oursear
h, and all other operations require O(1) time.3 An approximation algorithm for the f�; Gg model.We next 
onsider the 2-Interval Pattern problem over the f�; Gg model. Re
all that for point2-interval sets there exists an O(n2pn) algorithm for the problem, while for unitary 2-intervals,the problem is already NP-
omplete [20℄. We begin our dis
ussion in this se
tion, by introdu
ing asingle 
onstant approximation algorithm, whi
h a
hieves di�erent approximation fa
tors, dependingon the di�erent possible restri
tions imposed on the input 2-interval set. Following this, we showthat 2-Interval Pattern over f�; Gg is in fa
t APX-hard, even in the 
ase where the input isrestri
ted to a unitary 2-interval set.Our algorithm is a generalization of the O(n2pn) algorithm devised in [6℄ for 2-IntervalPattern over f�; Gg restri
ted to point 2-interval sets. As in [6℄, the notion of interval graphs isused extensively throughout the se
tion. An interval graph is an interse
tion graph of a �nite familyof intervals, all de�ned over a single line [12, 17℄.Given a 2-interval D = (I; J), let C(D) denote the smallest interval that 
overs D, i.e., C(D) =[l(I) : r(J)℄ where l(I) and r(J) are the left and right endpoints of I and J , respe
tively. Blin et al. [6℄
alled C(D) the 
overing interval of D. They also observed that any pair of disjoint 2-intervals aref�; Gg-
omparable if and only if their 
orresponding 
overing intervals interse
t. Thus, given a setof 2-intervals D, and the set C(D) of all 
overing intervals of 2-intervals in D, any f�; Gg-
omparablesubset D0 � D 
orresponds to a pairwise interse
ting subset of C0 � C(D). However, the 
onverse isnot true as a pair of non-disjoint 2-intervals have 
orresponding interse
ting 
overing intervals aswell. Hen
e, a pairwise interse
ting subset of C(D) 
an 
ontain 
orresponding 2-intervals whi
h arenon-disjoint in D. Figure 4 depi
ts this relationship between 2-intervals and their 
orresponding
overing intervals.Let D be the input set of 2-intervals and C(D) be the set of 
overing intervals of all 2-intervalsin D. First, we 
onstru
t the interval graph 
C(D) of C(D). Any pair of 2-intervals with 
overingintervals in a 
lique of 
C(D), are either nesting or 
rossing (but not pre
eding), or they are non-disjoint. Now, let OPT denote a maximum 
ardinality f�; Gg-
omparable subset of D, and letC(OPT ) be the set of 
overing intervals of OPT . The subgraph of 
C(D) whi
h 
orresponds toC(OPT ) is a 
lique, and is thus a subset of some maximal (in in
lusion order) 
lique of 
C(D).Furthermore, any 2-interval with a 
overing interval in this 
lique and not in OPT is ne
essarilynon-disjoint with at least one of the 2-intervals in OPT .Observation 1. OPT is a maximum pairwise disjoint subset of a set of 2-intervals D0 (OPT �D0 � D), su
h that C(D0), the set of 
overing intervals of D0, 
orresponds to a maximal 
lique in
C(D).Sin
e 
C(D) is an interval graph, it has at most jV (
C(D))j = jDj maximal 
liques, and these
an be 
omputed in polynomial time [10℄. Furthermore, given the 2-intervals whi
h 
orresponds to
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Fig. 4. A set of 2-intervals, their 
orresponding 
overing intervals, and the interval graph of these 
overing intervals.Subsets fC1; C2; C3g and fC1; C3; C4g are the maximal interse
ting subsets of C(D) and therefore are maximal 
liquesin the interval graph. Subset fD1; D2; D3g is f�; Gg-
omparable in D, while subset fD1; D3; D4g is not be
ause D3and D4 interse
t.a maximal 
lique in 
C(D), one 
an use the algorithms in Se
tion 2 to �nd an approximation ofthe maximum pairwise disjoint subset of these 2-intervals. A detailed s
hemati
 des
ription of ouralgorithm, whi
h is 
alled f�; Gg-Approx, is given in Figure 5.Algorithm f�; Gg-Approx(D)Data : A set of 2-intervals D.Result : A f�; Gg-
omparable subset of D.begin1. Constru
t C(D), the set of 
overing intervals of all 2-intervals in D.2. Constru
t 
C(D), the interval graph of C(D).3. Compute all maximal 
liques of 
C(D) using [10℄.4. forea
h maximal 
lique C of 
C(D) do(a) Compute DC � D, the 2-intervals with 
overing intervals in C.(b) Approximate the maximum pairwise disjoint subset of DC using the algorithms des
ribed in theprevious se
tion.endreturn the largest pairwise disjoint subset found in step 4(b).end Fig. 5. A s
hemati
 des
ription of algorithm f�; Gg-Approx.Lemma 2. Algorithm f�; Gg-Approx is a 4-approximation (3-approximation) algorithm for the 2-Interval Pattern problem for unlimited and balan
ed (unitary) 2-interval sets.Proof. Immediate from the above dis
ussion and from Proposition 1 and Lemma 1. utTime 
omplexity. The number of sub-pro
edure invo
ations in step 4(b) of f�; Gg-Approx isbounded by O(n) where n denotes the size of the input set. Also, generating all maximal 
liques of
C(D) 
an be done in O(n2) time. Hen
e, we have a super-quadrati
 running time of O(n2 lgn) forunitary and balan
ed 2-interval sets, and a polynomial running time for unlimited 2-interval sets [5℄.Next we show that 2-Interval Pattern over f�; Gg is APX-hard. For this, we 
onsider aspe
ial 
lass of interse
tion graphs, 
alled 2-union graphs [5℄. A 2-union graph is the union of two



interval graphs with the same vertex set. Thus, given two distin
t lines, a 2-union graph is aninterse
tion graph of a family of pairs of intervals, where ea
h pair 
onsists of two intervals, oneon ea
h line. Two verti
es are 
onne
ted in the graph if, and only if, the intervals of the pairs areinterse
ting on at least one of these lines.In [5℄, Bar-Yehuda et al. proved that the Maximum Independent Set problem for 2-uniongraphs is APX-hard, even if the input in
ludes a unitary representation of the graph. That is,it in
ludes a family of pairs of intervals, su
h that ea
h interval in the family is of equal length.We show that �nding a maximum pairwise disjoint subset in su
h a family, and hen
e a maximumindependent set in the graph, redu
es to �nding a maximum f�; Gg-
omparable subset in a set ofunitary 2-intervals.Let G be a 2-union graph and let R(G) be its unitary representation. Constru
t a set of 2-intervals D by 
onsidering the two lines over whi
h the intervals in R(G) are de�ned over, as twodisjoint segments of the same line (see Figure 6). Clearly G is also the interse
tion graph of D.Furthermore, D does not 
ontain any pair of 2-intervals whi
h is f<g-
omparable. Hen
e, anyindependent set in G 
orresponds to a f�; Gg-
omparable subset of D of equal size.
1 3 4
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D5Fig. 6. A unitary representation of a 2-union graph transformed into a unitary 2-interval set.Corollary 1. The 2-Interval Pattern problem over the f�; Gg model is APX-hard, even whenrestri
ted to unitary 2-interval sets.4 Approximation algorithms for the f<; Gg model.We now turn to 
onsidering the 2-Interval Pattern problem over the f<; Gg model. Re
all thatthe problem is known to be NP-hard for unitary 2-interval sets, while for point 2-interval setsthe problem is not known to be polynomial-time solvable [6℄. Thus, in this se
tion we 
onsiderall possible restri
tions for this model. More spe
i�
ally, we design a 3-approximation algorithmfor unitary 2-interval sets whi
h is also a 2-approximation algorithm for point 2-interval sets. Welater slightly modify this algorithm to obtain a 5-approximation algorithm for balan
ed 2-intervalsets. Finally, we introdu
e a slightly more involved modi�
ation whi
h yields a 6-approximationalgorithm for the unlimited 
ase. Determining whether or not the problem is APX-hard, and if sounder what restri
tions, is left as an open problem.Throughout the se
tion, we will use the notion of trapezoid graph [7, 9℄. Consider two intervals,I 0 and J 0, de�ned over two distin
t horizontal lines. The trapezoid T = (I 0; J 0) is the 
onvex set ofpoints bounded by I 0 and J 0, and the two line segments 
onne
ting the right and left endpoints of I 0and J 0. We 
all I 0 the bottom interval and J 0 the top interval of T . A family of trapezoids is a �niteset of trapezoids whi
h are all de�ned over the same two horizontal lines. The above de�nitionsimply, that two distin
t trapezoids T1 = (I 01; J 01) and T2 = (I 02; J 02) in a family of trapezoids are



disjoint, i.e. they 
ontain no 
ommon point, if and only if (I 01 < I 02 and J 01 < J 02) or (I 02 < I 01 andJ 02 < J 01) holds. If T1 and T2 are indeed disjoint, then one trapezoid is 
ompletely to left of the other,say for instan
e T1, and this is denoted by T1 < T2. Finally, a trapezoid graph is an interse
tiongraph of a family of trapezoids.4.1 Point and unitary 2-interval sets.We begin our dis
ussion in this se
tion by des
ribing an approximation algorithm for point andunitary 2-interval sets. We 
all this initial algorithm f<; Gg-Approx. The general outline of f<; Gg-Approx 
onsists of the following stages: First T (D), a family of trapezoids representing the 2-intervals in D, is 
onstru
ted. Next, the maximum pairwise disjoint subset of T (D) is 
omputedusing the algorithm proposed in [9℄. Finally, trapezoids in this subset whi
h 
orrespond to non-disjoint 2-intervals in D are omitted, and the �ltered solution is outputted.De�nition 4 (Corresponding trapezoid family). Let D be a set of 2-intervals, and let � and� be two distin
t horizontal lines whi
h are aligned and su
h that � is below �. The 
orrespondingtrapezoid family of D, denoted T (D), is de�ned as the family 
ontaining a single trapezoid T =(I 0; J 0) 2 D for ea
h 2-interval D = (I; J) 2 D, where I 0 is de�ned over �, J 0 is de�ned over �,and I 0 = I; J 0 = J .
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J’2J’1Fig. 7. f<; Gg-
omparable 2-intervals 
orrespond to disjoint trapezoids but the 
onverse is not ne
essarily true. Thebottom right pair of 2-intervals 
orrespond to a pair of 
lashing trapezoids.Let D be a set of 2-intervals and let T (D) be the 
orresponding trapezoid family of D. It isnot diÆ
ult to see that f<; Gg-
omparable 2-intervals in D 
orrespond to disjoint trapezoids inT (D), while f�g-
omparable 2-intervals in D 
orrespond to interse
ting trapezoids in T (D) (seeFigure 7).Observation 2. Any two disjoint 2-intervals in D are f<; Gg-
omparable if and only if their 
or-responding trapezoids in T (D) are disjoint.Felsner et al: [9℄ presented an O(n lgn) algorithm for �nding a maximum disjoint subset in afamily of n trapezoids. Unfortunately, this alone does not suÆ
e in our 
ase, sin
e there may bedisjoint trapezoids in T (D) whi
h 
orrespond to non-disjoint 2-intervals in D. (see Figure 7).De�nition 5 (Clashing intervals). Let I 0 = [l(I 0); r(I 0)℄ and J 0 = [l(J 0); r(J 0)℄ be two distin
tintervals de�ned over two distin
t horizontal lines su
h that l(I 0) � l(J 0). The two intervals I 0 andJ 0 
lash, if either l(I 0) � l(J 0) � r(J 0) � r(I 0) or l(I 0) � l(J 0) � r(I 0) � r(J 0).



De�nition 6 (Clashing trapezoids). Let T1 = (I 01; J 01) and T2 = (I 02; J 02) be two distin
t trape-zoids in a family of trapezoids. The two trapezoids T1 and T2 
lash, if either I 01 and J 02 
lash or I 02and J 01 
lash.Observation 3. Any pair of 2-intervals in D are f<; Gg-
omparable if and only if their 
orrespond-ing trapezoids in T (D) are disjoint and do not 
lash.Observation 3 is the heart of algorithm f<; Gg-Approx. Note that the number of maximal(in in
lusion order) pairwise disjoint subsets of T (D) 
an be exponential, so exhaustively sear
h-ing through all these for a maximum non-
lashing subset is unfeasible. Now, let T 0 be themaximum pairwise disjoint subset of T (D). Sin
e the maximum f<; Gg-
omparable subset of 2-intervals OPT � D 
orresponds to a pairwise disjoint non-
lashing subset of trapezoids, we havejOPT j � jT 0j. Next we show that in 
ase D is a unitary 2-interval set, we 
an obtain a pairwisenon-
lashing subset of T 0 whi
h is no more than a 
onstant fa
tor smaller than T 0, and hen
e nomore than a 
onstant fa
tor smaller than OPT .Consider the leftmost trapezoid T0 of T 0, and let D0 be its 
orresponding 2-interval in D. Byde�nition, any trapezoid in T (D) has a bottom interval whi
h is 
ompletely to the left of its topinterval. Hen
e, T0 only 
lashes with trapezoids on its right in T 0. Now, if D is a point 2-intervalset, then all 2-intervals with left intervals interse
ting the right interval of D0 have the same leftinterval, and as T 0 is pairwise disjoint, at most one of these has a 
orresponding trapezoid in T 0.Furthermore, if D is a unitary 2-interval set, distin
t intervals involved in D whi
h are non-disjointmust overlap. Thus, any trapezoid in T 0 
lashing with T0 
orresponds to a 2-interval with a leftinterval whi
h 
ontains either endpoints of the right interval of D0. Sin
e T 0 is pairwise disjoint,there 
an be at most two su
h trapezoids in T 0.Algorithm f<; Gg-Approx �rst 
omputes T 0, the maximum pairwise disjoint subset of T (D), andthen repeatedly adds the leftmost trapezoids in T 0 to the solution, while omitting all trapezoidswhi
h 
lash with this trapezoid in T 0. A s
hemati
 des
ription of algorithm f<; Gg-Approx is givenin Figure 8.Algorithm f<; Gg-Approx(D)Data : A set of 2-intervals D.Result : A f<; Gg-
omparable subset of D.begin1. Constru
t T (D), the 
orresponding trapezoid set of D.2. Compute T 0 � T (D), a maximum pairwise disjoint subset of T (D) using [9℄.3. while T 0 6= ; do(a) Let T0 be the leftmost trapezoid in T 0.(b) Add T0 to the solution.(
) Omit T0 and all trapezoids 
lashing with T0 from T 0.endreturn the set of 2-intervals 
orresponding to the trapezoids in the solution.end Fig. 8. A s
hemati
 des
ription of algorithm f<; Gg-Approx.Lemma 3. Algorithm f<; Gg-Approx is a 3-approximation (2-approximation) algorithm for the 2-Interval Pattern problem over the f<; Gg model restri
ted to unitary (point) 2-interval sets.Proof. First note that f<; Gg-Approx outputs a subset of 2-intervals whi
h 
orrespond to pairwisedisjoint non-
lashing trapezoids. Hen
e, by Observation 3, this subset is f<; Gg-
omparable. Now,



let OPT be a maximum f<; Gg-
omparable subset of D. Prior to step 3 in the algorithm, we havejOPT j � jT 0j. Furthermore, if D is a point 2-interval set, for every trapezoid omitted from T 0 instep 3, a trapezoid is added to the solution. Hen
e f<; Gg-Approx is a 2-approximation algorithmin this 
ase. The 
ase where D is unitary is similar, ex
ept that here two trapezoids may be omittedfor every trapezoid added to the solution. utTime 
omplexity. Let jDj = n. The family of trapezoids T (D) 
an be 
onstru
ted in O(n) time,and a

ording to [9℄, T 0 � T (D) 
an be 
omputed in O(n lgn) time. Furthermore, if we sort allthe right endpoints of intervals involved in D in an O(n lgn) prepro
essing stage, we 
an 
omputeea
h iteration of step 3 in linear time with respe
t to the number of trapezoids omitted. As thereis only a 
onstant number of su
h trapezoids in ea
h iteration, step 3 
an be 
omputed in O(n lgn)time. This gives us a total of O(n lgn) running time for the entire algorithm.4.2 Balan
ed 2-interval sets.We next 
onsider balan
ed 2-interval sets. Bal-f<; Gg-Approx is a 5-approximation algorithm forthis problem. It di�ers from f<; Gg-Approx only by the fa
t that at ea
h iteration of step 3, insteadof 
hoosing the leftmost trapezoid in T 0 as T0, we 
hoose the smallest trapezoid (i.e. the trapezoid
orresponding to the smallest 2-interval) as T0.Lemma 4. Algorithm Bal-f<; Gg-Approx is a 5-approximation algorithm for the 2-Interval Pat-tern problem over the f<; Gg model restri
ted to balan
ed 2-interval sets.Proof. The 
orre
tness of Bal-f<; Gg-Approx follows again from Observation 3. As for the approx-imation guarantee, 
onsider T 0 at an arbitrary iteration of step 3 in Bal-f<; Gg-Approx, and letT0 be the smallest trapezoid of T 0 at this iteration. Also let OPT denote the maximum f<; Gg-
omparable subset of D. Sin
e T0 is the smallest trapezoid, by a similar argument used in Lemma 1,T0 
lashes with at most 4 other trapezoids in T 0 at this iteration. Hen
e, sin
e jOPT j � jT 0j priorto step 3, our solution is at least of size 15 jT 0j, and the lemma follows. utTime 
omplexity. Step 3 in Bal-f<; Gg-Approx 
an be done in O(n lg n) time, where n = jDj, usingthe same te
hniques used in Bal-f<;�; Gg-Approx. Hen
e, as in f<; Gg-Approx, the entire runningtime of Bal-f<; Gg-Approx is O(n lgn).4.3 Unlimited 2-interval sets.The rest of this se
tion is devoted to the 2-Interval Pattern problem over the f<; Gg model forunlimited 2-interval sets. We introdu
e a slightly more involved modi�
ation of f<; Gg-Approx toobtain a 6-approximation algorithm for unlimited 2-interval sets.Consider two 
lashing trapezoids T1 = (I 01; J 01) and T2 = (I 02; J 02) su
h that T1 < T2. We say thatT1 sees T2 if either l(I 02) � l(J 01) � r(I 02) or l(I 02) � r(J 01) � r(I 02), where l(J 01); r(J 01) and l(I 02); r(I 02)are the left and right endpoints of J 01 and I 02 respe
tively. Thus, T1 sees T2 if one of the endpointsof its top interval is in the range of the bottom interval of T2 (see Figure 9).De�nition 7 (Ni
e family of trapezoids). A family of trapezoids T 00 is ni
e, if T 00 is pairwisedisjoint, and no trapezoid sees any other trapezoid in T 00.Now, given a pairwise disjoint family of trapezoids T 0, 
omputing a ni
e subset T 00 � T 0 
anbe done similarly to step 3 in f<; Gg-Approx. Instead of omitting all trapezoids 
lashing with theleftmost trapezoid T0 at every iteration, we omit only those that T0 sees. Sin
e T 0 is pairwisedisjoint, T0 
an see at most two trapezoids in T 0. Hen
e, jT 00j � 13 jT 0j.



De�nition 8 (Clashing trapezoid graph). Given a family T of trapezoids, the 
lashing trape-zoid graph of T , denoted by GT , is a graph with T as its vertex set, and two verti
es are 
onne
tedby an edge if and only if their 
orresponding trapezoids 
lash.Lemma 5. If T 00 is a ni
e family of trapezoids then GT 00 is a forest.Proof. Let T 00 be a ni
e family of trapezoids and let GT 00 = (V;E) be its 
orresponding 
lashingtrapezoid graph. De�ne G�T 00 = (V �; E�) as the dire
ted graph obtained by orienting the edges ofGT 00 a

ording to the pre
eden
e relation of T 00. In other words, V � = V and (T1; T2) 2 E� if andonly if fT1; T2g 2 E and T1 < T2 in T 00. Sin
e T 00 is ni
e, every trapezoid in T 00 
lashes with atmost one trapezoid on its left, and so the in-degree of every vertex v 2 V � is at most one. Hen
e,any 
y
le (v0; : : : ; vt; v0) in GT 00 is a (dire
ted) 
y
le in G�T 00 . However, in su
h a 
ase we must haveT0 < Tt < T0, a 
ontradi
tion. Hen
e, we 
on
lude that GT 00 
ontains no 
y
les, and the abovelemma holds. ut
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Fig. 9. (a) A family of pairwise disjoint family of trapezoids and a ni
e subset of this family. Trapezoid T1 sees bothT2 and T3 and so these are omitted in order to obtain the ni
e subset. (b) The 
orresponding 
lashing trapezoidgraphs of the two families above.It is well known that the maximum independent set in any forest G = (V;E) is of size atleast 12 jV j and that this set 
an be found in linear time with respe
t to jV j. Also, by de�nition,sin
e T 00 is a pairwise disjoint family of trapezoids, any independent set of GT 00 
orresponds to apairwise disjoint non-
lashing set of trapezoids, and so it also 
orresponds to a f<; Gg-
omparablesubset of 2-intervals. A s
hemati
 des
ription of our algorithm for unlimited 2-intervals sets, 
alledUnl-f<; Gg-Approx, is given in Figure 10.Lemma 6. Algorithm Unl-f<; Gg-Approx is a 6-approximation algorithm for the 2-Interval Pat-tern problem over the f<; Gg model.Proof. The 
orre
tness of Unl-f<; Gg-Approx follows from the fa
t that an independent set in GT 00
orresponds to a pairwise disjoint non-
lashing subset of trapezoids. Now, let D be the input set of2-intervals and let T (D), T 0 and T 00 be the trapezoid families as des
ribed in the above des
riptionof Unl-f<; Gg-Approx. Also, let OPT be a maximum f<; Gg-
omparable subset of D. We havejOPT j � jT 0j and jT 0j � 3jT 00j. Furthermore, sin
e GT 00 is a forest, we have jV (GT 00)j � 2�(GT 00),where �(GT 00) is the size of the maximal independent set of GT 00 . Together we get:jOPT j � jT 0j � 3jT 00j = 3jV (GT 00)j � 6�(GT 00);and the lemma follows. ut



Algorithm Unl-f<; Gg-Approx(D)Data : A set of 2-intervals D.Result : A f<; Gg-
omparable subset of D.begin1. Constru
t T (D), the 
orresponding trapezoid set of D.2. Compute T 0, a maximum pairwise disjoint subset of T (D).3. Compute T 00, a ni
e subset of T 0, su
h that jT 00j � 13 jT 0j.4. Compute GT 00 and a maximum independent set I of GT 00 .return the set of 2-intervals 
orresponding to the maximum independent set I of GT 00 .end Fig. 10. A s
hemati
 des
ription of algorithm Unl-f<; Gg-Approx.Time 
omplexity. Let jDj = n. Steps 1-3 in Unl-f<; Gg-Approx 
an be 
omputed in O(n lgn) timeby a similar analysis given in f<; Gg-Approx. Furthermore, step 4 
an be 
omputed in O(n) timesin
e GT 00 is a forest. Hen
e, the entire algorithm has a total of O(n lgn) running time.5 Approximation framework for weighted 2-interval setsIn this se
tion we 
onsider the weighted version of the 2-Interval Pattern problem.De�nition 9. Let D be a set of 2-intervals and let R � f<;�; Gg, R 6= ;, be a given model. Alsolet w : D ! R be a weight fun
tion. The Weighted 2-Interval Pattern problem asks to �nd amaximum weight R-
omparable subset of D.All algorithms for the polynomial solvable models of 2-Interval Pattern given in [6, 20℄ applyto the weighted version as well. In the following we show that our results also extend toWeighted2-Interval Pattern.We denote w(D0) as the sum �D2D0w(D), for any subset of 2-intervals D0 � D and any weightfun
tion w : D ! R. For a modelR and a weight fun
tion w, a given subset S � D is r-approximatewith respe
t to R and w, if w(S) � 1rw(D0) for any R-
omparable D0 � D.5.1 A lo
al ratio approximation frameworkThe lo
al-ratio te
hnique [2{4℄ is based on the Lo
al-Ratio Theorem, whi
h in our 
ase is stated asfollows.Theorem 4 (Lo
al-Ratio [2℄). Let R be a given model and let w;w1, and w2 be weight fun
tionssu
h that w = w1 + w2. Then, if D0 � D is r-approximate, both with respe
t to (R; w1), and withrespe
t to (R; w2), then D0 is also r-approximate with respe
t to (R; w).In Figure 11, we present a lo
al ratio approximation framework that is based on the approxi-mation framework for s
heduling and resour
e allo
ation from [2℄. It uses the following de�nition:Given a set of 2-intervals D, a model R, and a 2-interval D 2 D, N [D℄ denotes the subset of2-intervals in D that are not R-
omparable with D (D 2 N [D℄). We assume that the initial weightsare positive (2-intervals with non-positive weights 
an be omitted). However, note that the weightsmay be
ome negative during the exe
ution of the algorithm.The sele
tion of D0 determines the approximation ratio of the algorithm. Informally, the ap-proximation ratio would be small, if in ea
h iteration, we are able to 
hoose a 2-interval D0 su
hthat the interse
tion of N [D0℄ with any R-
omparable subset in this iteration is small.



Algorithm LR(D;R; w)Data : A set of 2-intervals D, a model R, and a weight fun
tion w.Result : An R-
omparable subset of D.begin1. if D = ; then return ;.2. Sele
t a 2-interval D0 2 D.3. De�ne w1(D) = (w(D0) D 2 N [D0℄;0 otherwise .4. De�ne w2 = w � w1.5. D+  fD 2 D : w2(D) > 0g.6. S  LR(D+;R; w2).7. if S [ fD0g is R-
omparable then S  S [ fD0g:return S.end Fig. 11. A lo
al ratio approximation framework.De�nition 10 (D0-maximal subset). Let R be a model, and let D0 be a 2-interval. We saythat an R-
omparable set S is D0-maximal if either D0 2 S, or D0 62 S but S [ fD0g is notR-
omparable.De�nition 11 (r-e�e
tive weight fun
tion). Given a model R and a 2-interval D0, a weightfun
tion w1 is 
alled r-e�e
tive with respe
t to D0, if every D0-maximal R-
omparable subset S � Dis r-approximate with respe
t to w1 and R.Lemma 7. If w1 is r-e�e
tive with respe
t to D0 in every re
ursive 
all of algorithm LR, then LR
omputes an r-approximate R-
omparable subset S.Proof. First, the solution 
omputed by the algorithm is R-
omparable by 
onstru
tion. We proveit is r-approximate by indu
tion on the number of re
ursive 
alls (whi
h is bounded by n). Atthe re
ursive basis, the solution S returned is the empty set, and hen
e it is optimal and 
learlyr-approximate. For the indu
tive step, assume that at some re
ursive 
all of the algorithm, theintermediate solution S 
omputed at step 6, is r-approximate with respe
t to w2. Step 7 ensuresthat S is D0-maximal, and so S is r-approximate with respe
t to w1 after this step. Furthermore,sin
e w2(D0) = 0, S remains r-approximate with respe
t to w2 after this step as well. Therefore,by the Lo
al Ratio Theorem, we get that the solution returned at the end of this re
ursive 
all isr-approximate with respe
t to w, and the lemma follows. utNext, we give an alternative analysis for algorithm LR. Basi
ally, we show that the approxima-tion ratio would be small, if in ea
h iteration we are able to 
hoose a 2-interval D0 su
h that N [D0℄is small. As we shall later see, this will be useful when the input set of 2-intervals for algorithm LRis not the original set D, but rather a subset whose weight is at least the weight of a maximumweight R-
omparable subset of D.Lemma 8. If jN [D0℄j � r in every re
ursive 
all of algorithm LR, then LR 
omputes an r-approximate R-
omparable subset S.Proof. Let wi1 and Di0 be the weight w1 and the 2-interval D0 in the ith re
ursive 
all of Algo-rithm LR, respe
tfully. First observe that Piwi1(D) � w(D) for any 2-interval D 2 D. Hen
e,XD2DXi wi1(D) � XD2Dw(D) = w(D):



On the other hand, w(D) =Pi wi1(D) for any D 2 S, and thereforew(S) =XD2SXi D =Xi wi1(S):Now, in any re
ursive 
all i, S is D0-maximal, and so wi1(S) � w1(Di0). Furthermore, by de�nitionof wi1 and sin
e jN [Di0℄j � r, we have wi1(Di0) � 1rPD2D wi1(D). A

umulating all these inequalitiestogether we get: w(S) =Xi wi1(S) �Xi wi1(Di0) � 1rXi XD2Dwi1(D) � 1rw(D) ;and we are done. utWe now turn to show that the analysis of algorithm LR given in Lemma 7 and 8 is suÆ
ient forextending our results from the previous se
tions to theWeighted 2-Interval Pattern problem.More spe
i�
ally, we show that the algorithms for the unweighted version of the problem 
an beextended to the weighted version while still maintaining their approximation fa
tors.5.2 The f<;�; Gg modelFirst, both the 4-approximation algorithm for unlimited 2-interval sets and the 3-approximationalgorithm for unitary 2-interval sets from [5℄ work for weighted instan
es.Lemma 9. There is a 4-approximation algorithm for the Weighted 2-Interval Pattern prob-lem over the f<;�; Gg model restri
ted to balan
ed 2-interval sets.Proof. We show a 4-approximation algorithm for weighted balan
ed 2-interval sets. Our algorithmuses the approximation framework of algorithm LR by sele
ting D0 as the smallest 2-interval inD. Due to Lemma 7, to show that this algorithm has an approximation fa
tor of 4, it is enough toshow that w1 is 4-e�e
tive with respe
t to D0 in every re
ursive 
all of LR.Consider a D0-maximal R-
omparable subset S at any re
ursive 
all of algorithm LR. Sin
eD0 is the smallest 2-interval in D, no interval is properly 
ontained in the left or right intervalof D0. Hen
e, for any f<;�; Gg-
omparable D0 � D, at most four 2-intervals in D0 are also inN [D0℄. As only the 2-intervals in N [D0℄ are assigned a positive weight (w1(D0)) by w1, we havew1(D0) � 4w1(D0). On the other hand, we have w1(S) � w1(D0), sin
e S is D0-maximal andS \N [D0℄ 6= ;. Therefore w1(D0) � 4w1(S) and so w1 is 4-e�e
tive with respe
t to D0. ut5.3 The f�; Gg modelThe following is the weighted variant of Observation 1.Observation 5. Let OPT denote the maximum weight f�; Gg-
omparable subset of D. Then OPTis a pairwise disjoint subset of a set of 2-intervals D0 (OPT � D0 � D), su
h that C(D0), the 
overingintervals of D, 
orresponds to a maximal 
lique in 
C(D), the interval graph of all 
overing intervalsof D.Hen
e, our algorithm for Weighted 2-Interval Pattern over f�; Gg is very mu
h similar tof�; Gg-Approx (Figure 5). Here, we sear
h through all maximal 
liques of 
C(D) for an approxima-tion of the maximum weight f�; Gg-
omparable solution. This is done using the algorithms givenabove (Se
tion 5.2).Corollary 2. There is a 4-approximation (3-approximation) algorithm for the Weighted 2-Interval Pattern problem over the f�; Gg model restri
ted to unlimited and balan
ed (unitary)2-interval sets.



5.4 The f<; Gg modelWe begin by 
onsidering the 
ase of unitary and point 2-intervals. Re
all algorithm f<; Gg-Approx.In Steps 1 and 2, we 
ompute the 
orresponding trapezoid family T (D) of D and the maximumpairwise disjoint subset T 0 of this family. Let D0 be the set of trapezoids 
orresponding to T 0.We modify f<; Gg-Approx by repla
ing step 3 in the algorithm with a 
all to LR(D0; f<; Gg; w)(Figure 11), where D0 is sele
ted as the 2-interval whi
h 
orresponds to the leftmost trapezoidat ea
h re
ursive 
all. The modi�ed version of f<; Gg-Approx then outputs the solution given byalgorithm LR. In Se
tion 4.1 we showed that T0, the trapezoid 
orresponding to D0, 
lashes withat most two trapezoids in T 0 in 
ase D is unitary, and at most one trapezoid in 
ase D is a point2-interval set. Hen
e, jN [D0℄j � 3 in every re
ursive 
all of LR if D is unitary, and jN [D0℄j � 2 in
ase D is a point 2-interval set. Therefore, by Lemma 8, algorithm LR 
omputes a 3-approximatesolution for unitary 2-interval sets and a 2-approximate solution for point 2-interval sets.The 
ase of balan
ed 2-intervals is similar, ex
ept that here we sele
t D0 as the smallest 2-interval in every re
ursive 
all of algorithm LR. As jN [D0℄j � 5 in every re
ursive 
all, LR 
omputesa 5-approximate solution in this 
ase.For unlimited 2-interval sets, we modify algorithm Unl-f<; Gg-Approx (Figure 10) by repla
ingstep 3 with a variant of algorithm LR. In this variant, we 
hoose D0 to be the 2-interval 
orre-sponding to the leftmost trapezoid T0 2 T 0. Next, we repla
e N [D0℄ by N 0[D0℄, where N 0[D0℄ is theset of all 2-intervals whi
h 
orrespond to trapezoids that T0 sees. Finally, instead of requiring S tobe R-
omparable, we require the 
orresponding trapezoid family be ni
e. By the analysis given inSe
tion 4.3, we have jN 0[D0℄j � 3 in any re
ursive 
all of algorithm LR, and so by Lemma 8, thisvariant of algorithm LR 
omputes a ni
e trapezoid family T 00 of size at least 13 jT 0j. From here theanalysis of this algorithm is similar to the unweighted 
ase.Corollary 3. There is a 6-approximation (5-approximation, 3-approximation, and 2-approximation) algorithm for the Weighted 2-Interval Pattern problem over the f<; Ggmodel restri
ted to unlimited (balan
ed, unitary, and point) 2-interval sets.6 Con
lusions and future workIn this paper we addressed the problem of approximating the 2-Interval Pattern problem overits various models and restri
tions. We presented algorithms with 
onstant approximation fa
torguarantees for allNP-hard 
ases of the problem. In addition, we showed that these 
an be extendedto the weighted version of the problem with no 
ost to the approximation fa
tors.A �rst natural open problem to 
onsider is improving the approximation fa
tors of our algo-rithms. An additional problem is to provide an eÆ
ient algorithm for the f<;�; Gg model withunlimited 2-interval sets. This is of great interest, sin
e the ineÆ
ien
y of the algorithm in [5℄ alsopropagates to our suggested algorithm for the f�; Gg model. Note that [5℄ give a fast O(lg jDj)-approximation algorithm for this 
ase.As for hardness of approximation results, unlike the f<;�; Gg and f�; Gg models, the APX-hardness results des
ribed in [5℄ do not extend easily to the f<; Gg model. Whether the 2-IntervalPattern problem over the f<; Gg model is APX-hard, and if so, for what restri
tions on the inputdoes this still hold, remains open.Finally, and perhaps most interesting, is to determine the time 
omplexity of the 2-IntervalPattern problem over the f<; Gg model restri
ted to point 2-intervals. This has been posed as anopen problem both in [20℄ and in [6℄, and is still left open by this paper.
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