Efficient Text Fingerprinting
Via Parikh Mapping *

Amihood Amirf Alberto Apostolico! Gad M. Landau® Giorgio Satta¥

Bar-Ilan University =~ Universita di Padova Haifa University Universita di Padova
and and and
Georgia Tech Purdue University Polytechnic University
Abstract

We consider the problem of fingerprinting text by sets of symbols. Specifically, if S is a string,
of length n, over a finite, ordered alphabet ¥, and S’ is a substring of S, then the fingerprint of
S’ is the subset ¢ of ¥ of precisely the symbols appearing in S’.

In this paper we show efficient methods of answering various queries on fingerprint statistics.
Our preprocessing is done in time O(n|X|lognlog|X|) and enables answering the following
queries:

1. Given an integer k, compute the number of distinct fingerprints of size k in time O(1).
2. Given a set ¢ C X, compute the total number of distinct occurrences in S of substrings
with fingerprint ¢ in time O(|X|logn).

Key Words: Design and analysis of algorithms, combinatorial algorithms on words,

*This research was performed during exchange visits conducted, respectively, by the first and third authors at the
University of Padova, and by the second author at the Universities of Bar-Ilan and Haifa, as part of an Israel-Italy
exchange scientist grant jointly funded by the Israel Ministry of Science and the National Research Council of Italy.

"Department of Mathematics and Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel, (972-3)531-
8770, amir@cs.biu.ac.il. Partially supported by NSF grant CCR-01-04494, BSF grant 96-00509, and an Israel-Italy
exchange scientist grant.

iDipartimento di Elettronica e Informatica, Universita di Padova, Via Gradenigo 6/A, 35131 Padova, Italy, and
Department of Computer Sciences, Purdue University, Computer Sciences Building, West Lafayette, IN 47907, USA,
(39-049)827-7728 ; axa@cs.purdue.edu. Work supported in part by NSF Grant CCR-9700276, by MURST under
project PRIN: Biolnformatica e Ricerca Genomica, by the Univeristy of Padova under project Development of Novel
Pattern Discovery Algorithms and Software, and by an Israel-Italy exchange scientist grant.

SDepartment of Computer Science, Haifa University, Haifa 31905, Israel, phone: (972-4) 824-0103, FAX: (972-
4) 824-9331; Department of Computer and Information Science, Polytechnic University, Six MetroTech Center,
Brooklyn, NY 11201-3840; email: landau@poly.edu; partially supported by NSF grants CCR-9610238, and CCR-
0104307, by NATO Science Programme grant PST.CLG.977017, by the Israel Science Foundation grants 173/98 and
282/01, by the FIRST Foundation of the Israel Academy of Science and Humanities, and by IBM Faculty Partnership
Award.

I Dipartimento di Elettronica e Informatica, Universitd di Padova, Via Gradenigo 6/A, 35131 Padova, Ttaly, (39-
049)827-7831; satta@dei.unipd.it; Work supported in part by MURST under project PRIN: Biolnformatica e
Ricerca Genomica and by University of Padova, under project Sviluppo di Sistemi ad Addestramento Automatico per
I’Analisi del Linguaggio Naturale.

1 Introduction

Automatic rule induction and rule discovery techniques have been applied since the early 50’s in
several fields where data from physical observations were available in electronic form [5, 6]. Rule
discovering is mainly concerned with the problem of inferring generalizations of the input data, to
be further exploited by automatic classification systems or by predictive models of the phenomena
of interest. In this paper we investigate a problem that arises in the context of the induction of
rules for certain natural language processing tools called part-of-speech taggers, as discussed below.

As is well-known, natural languages have a high degree of lexical ambiguity, meaning that most
common words may belong to several lexical categories, as for instance Noun, Verb, Adjective, etc.
Despite this ambiguity, native language speakers can almost always determine a unique, intended
lexical category for each word occurrence in natural language texts. To give a simple example, the
English word “rule” belongs to both lexical categories Verb and Noun. But in the context of the
sentence “This is a rule”, the correct classification for the word “rule” is only one, namely Noun.
In natural language processing applications, this classification task can be automatically performed
by tools that are called part-of-speech taggers.

A common solution in the design of part-of-speech taggers is to exploit sets or cascades of rules that
are automatically induced from classification examples. Coming back to our example sentence “This
is a rule”, a nice rule that we could adopt is to choose the category Noun whenever the preceding
word has already been classified with the category Determiner (this is the case for the word “a”
in our sentence, when we process the input form left to right). But how would we generalize the
observed rule to work also for sentences like “This is a good rule”, or “This is a slightly better
rule”? In the general case, it turns out that very high accuracy can be achieved by specifying a set
of lexical categories that are allowed to occur in between some left trigger word and the word under
classification. In our example, we could choose the category Noun (given the choice of Verb and
Noun) whenever a left triggering word has been classified as Determiner and is followed by words
classified by categories in the set {Adjective, Adverb}. The use of sets is particularly effective
because very specific category distributions are found in the surrounding context of several lexical
categories to be discriminated, while the order of appearance of these surrounding categories is
often unpredictable and does not affect the classification accuracy. We refer the interested reader
to [2] for more details on the use of sets as constraints in the task of lexical categorization.

In the above perspective, methods for the automatic induction of lexical classification rules must
rely on analysis of symbol distributions, more specifically on the statistics of repetitive distributions
of the same sets of symbols within some input strings. The problem of interest can be formalized as
follows. Let S be a string of n symbols over some alphabet ¥. We say that a substring S’ occurring
within S has fingerprint ¥’ C ¥ if ¥/ is the set of all and only those symbols of 3 that have at least
one occurrence in S’. The fingerprint >’ is also called the alphabet of S’, and denoted by alph(S’).
We are interested in computing statistics on the various fingerprints observed within S, and would
like to efficiently construct data structures that allows for fast responses to queries of the following

type:

e Given k, how many distinct fingerprints of size k exist in S?

e Given subset ¢ € 3, how many substring occurrences exist in S that have fingerprint ¢?

In addition to natural language processing, the above-mentioned problems are of interest in several

other domains and applications in which classifications strongly depend on feature sets distribu-
tions, as opposed to feature sequences distributions. In fact, the approach to fingerprint computa-
tion presented in this paper solves the more general problem of computing the Parikh Mapping of all
substrings of a given text string. The Parikh mapping is a morphism from >* to the set of ordered
|X|-tuples of non-negative integers, that associates with every string S the array COUNTER][1..|X|]
such that COUNT ER][j] is the number of occurrences in S of the j-th alphabet letter. Parikh map-
pings enter some fundamental constructions and properties in the theory of formal languages, for
which we refer to [8, 9, 7].

This paper is organized as follows. We begin with the problem definition in section 2. In section 3
we provide a simple intuitive solution to the problem. While its time complexity of O(n|%|?) will be
subsequently improved in section 4, it still provides an easy understanding of our solution. Section 4
improves the time of our algorithm to O(n|X|lognlog|X|). This improvement is possible by using
a naming technique on the fingerprints. Section 5 describes the implementation of the renaming.
We conclude with a discussion on how to answer various queries on fingerprint statistics (section 6)
and open problems (section 7).

2 Problem Definition

Definition 1 Let S = s159--- s, be a string over a finite, ordered alphabet . Let S’ = s;8;41 - sj
be a substring of S of length j —i+1. The fingerprint of S’ is the ordered subset X' C X of symbols
appearing in S’

Formally we give an algorithm for the following problem:
The Fingerprint Computation Problem
INPUT: String S = sy --- s, over finite, ordered alphabet 3.

OUTPUT: The number of distinct fingerprints of all the substrings s;---s;, Vi,j, 1 <1 < j < n.
This number is < n|X|.

Example 1 The number of distinct fingerprints of the substrings of the string S = dccbcbabbbe is
10 - (a); (b); (c); (d); (¢, d); (b, ¢); (a, b); (b, ¢, d); (a, b, c); (a,b, c,d).

For ease of exposition, throughout this paper we assume ¥ = {1,...,|X|}. This enables us to treat
a symbol as an index.

This assumption can be made without loss of generality, since a O(nlogn) preprocessing of the
text is sufficient to construct an equivalent text over alphabet {1,...,|3|}. Translating query ¢ to
an equivalent query in the new alphabet can also be done in time O(|¢|logn). Both the added
preprocessing time and query translation time are subsumed by the time of the algorithms we
present for texts over alphabet {1,...,|X]|}.

3 An O(n|3|*) Algorithm

We start with an O(n|%|?) algorithm that finds all distinct fingerprints of size k, for every k with
1 <k < |X], of the substrings of S. The intuition behind our idea is similar to the linear algorithm
for computing the sum of every consecutive k elements of an array. The idea there is to move
a window of size k along the array adding the rightmost element and subtracting the leftmost
element.

In our application this window has variable size up to n since it must contain exactly k distinct
elements, each of which may occur more than once.

Definition 2 A (variable length) window is a pair (i,5), 1 <14 < j <n. The substring s;S;11---S;
is the substring within the window (i,7). A variable length window defines a k sized fingerprint if
there are exactly k different alphabet symbols within that window.

Algorithm’s Idea:

Let window (i,) define a k sized fingerprint. We may move the right boundary of the window to
the right (increase j) as long as no new symbol is encountered, and the new window still defines
the same k sized fingerprint. Once a new symbol is encountered, we move the left boundary to the
right (increase i) until one symbol is dropped and we have a new window which defines a k sized
fingerprint.

We use the trie [10] data structure to compare fingerprints.

Definition 3 A trie T for a set of strings {S1,---, Sy} is a rooted directed tree satisfying:

1. Fach edge is labeled with a character, and no two edges emanating from the same node have
the same label.

2. Each node v is associated with a string, denoted by L(v), obtained by concatenating the labels
on the path from the root to v, L(root) is the empty string.

3. There is a node v in T if and only if L(v) is a prefix of some string S; in the set.

Algorithm’s Implementation:

The algorithm maintains the following data structures:

e Two pointers ijer; and iyighe. At every iteration (ijeft, iright) is the window under consideration.

e An array COUNTER][1..|X|], where COUNTER][j] is the number of occurrences of letter j

in the string s;,, - - - Siight -

e A binary array LIFE[1..|X|] that represents the letters of the fingerprint of s, -

o Siright :

0, if COUNTER][j] = 0;

LIFE[j] =
] {1, otherwise.

The LIFE array is an implementation device to easily allow representing the fingerprint.
It is a “bit-vector” of all alphabet symbols, with the symbols in the fingerprint set to 1,
and the other symbols set to 0. Other schemes to represent the fingerprint could have been
used. We choose using the LIF'E array for its simplicity, and because we will use it in more
sophisticated schemes in later sections.

e A variable number that counts the number of distinct letters in s;_ - - - Siight

e A trie of all fingerprints of size k in S.

We are now ready for the algorithm:

In the initialization stage we construct (z'|eft,iright), the smallest leftmost window that defines a
k sized fingerprint. At each step COUN TER[siright] is incremented by one. When it is changed
from 0, number is incremented by one, and LIFE[s;,, | is changed to 1. The move stops when
number = k, and then the fingerprint is added to the trie.

Initialization

ileft <— 1
COUNTER, LIFE, number, igght < 0

Repeat until number = k:
iright — 'L.right +1
COUNTER][s;,,,] < COUNTER]s;,,] +1
if COUNTER]s;, .| =1 then number <— number + 1
LIFE[s,,,] <+ 1

Siright

{ Subroutine HandleFingerprint adds the k sized fingerprint defined by (ijeft, iright) to the
fingerprint trie. }
Call HandleFingerprint

end Initialization

The main part of the algorithm consists of pairs of moves. In each one 4gh; is moved to the right
until number exceeds k, then i is moved to the right until number goes down to k. At that point
a new k sized fingerprint is achieved and should be updated in the trie.

A move of iggni: At each step COUN TER[Sirigm] is incremented by one. If it is changed from 0,
number is incremented by one, LIFE[s;,, | is changed to 1, and the move ends.

A move of ijer: At each step COUNTER][s;,] is decremented by one. If it is changed to 0, number
is decremented by one, LIF E[s;] is changed to 0, and the move ends.

Main Part of Algorithm

Repeat until 4ighy = n

{iright Move }
Repeat until number =k + 1 or iyghy =n
'iright «— 7:right +1
COUNTER][sj,,] < COUNTER]s;,,] +1
if COUNTER]si,,,] = 1 then number < number + 1
LIFE[sj,,,] <1

{ileft Move }
If iright = n and number < k then end
Repeat until number = k
COUNTER]sj,] < COUNTER][s;,] — 1
if COUNTER]s;.,] = 0 then number < number — 1
LIFE[s;,] + 0
Uleft < lleft + 1

Call HandleFingerprint

end Main Part of Algorithm

Below we present a straightforward but inefficient implementation of HandleFingerprint. This is
done using the LIFE array. LIFE represents the fingerprint in a manner that does not depend
on the order of the letters in the string but only on their lexicographical order. The trie may hold
extra information depending on the queries we are to answer. For example, to be able to answer
how many different fingerprints exist in .S, all that is necessary is to count the number of leaves in
the trie. To answer how many substrings have a given fingerprint, we may add to every leaf in the
trie a counter that is incremented every time a fingerprint is found.

Subroutine HandleFingerprint

fingerprint <~ X\ {\ represents the null string. }
For i =1 to |X| do:
if LIFE[i] =1 then concatenate Symbol i to the right of string fingerprint

Add string fingerprint to trie, with its leaf’s counter set to 1. If it is already there then increment
its leaf’s counter by 1.

end Subroutine

Time: At every iteration, either iygne Or 4jef is incremented, thus, for a given £, moving on S takes
O(n) time. In the current implementation, adding a fingerprint to the trie takes O(|X|) time. For a
fixed k there are O(n) calls to HandleFingerprint. Thus for a fixed k the running time is O(n|X|).
k ranges from 1 to |3|; hence, the total running time is O(n|X|?).

4 An O(n|X|log(n)log(|X])) Algorithm

In this section we present a different idea for the bookkeeping of the fingerprints. We present a
new subroutine HandleFingerprint. The other parts of the algorithm remain unchanged.

Instead of keeping the fingerprints in a trie, each distinct fingerprint is given a unique name. The
names are given by using the naming technique [1, 4], which is a modified version of the algorithm
of Karp, Miller and Rosenberg [3].

The Naming technique: Let A be an array of size m. Assume, for the sake of simplicity, that m
is a power of 2, i.e. there is some b such that m = 2°. (If m is not a power of 2, A can be extended
to an appropriate size by concatenating to its end a substring of a repeated single symbol. The
size of the resulting string is no more than twice the size of the original string.)

A name is given to each subarray of size 2° that starts on a position £2¢ 4+ 1 in the array, where
0<i<band 0</<m/2. Names are given first to subarrays of size 1 then 2,4,...,2°! at the
end a name is given to the entire array.

A subarray of size 2’ is a concatenation of 2 subarrays of size 20~!. The names of these 2 subarrays
are used as the input for the computation of the name of the subarray of size 2'. The process may
be viewed as constructing a complete binary tree, which we will refer to as a naming tree. The
leaves of the tree (level 0) are the elements of the initial array. Node z in level 7 is the parent of
nodes 2z — 1 and 2z in level 7 — 1. See example 2. Note that for an array of length m, at most
2m — 1 names are given. Our implementation of the naming technique is shown in Section 5.

Example 2 Below is the result of naming string 0110001010110010:
11

10

| |
| : |
\ 6 \ 7 8 7 \
(2 [3 [43 [5]5 4]3]
loJ1]1]ofolol1]ol1]o]1]1]0]0][1]0]

We will use naming for handling the fingerprints. However, we do not use naming on the fingerprint
itself, since the changes from fingerprint to fingerprint require too much effort. Rather, we use
naming on the LI F'E array. As previously mentioned, an instance of LI F'E represents a fingerprint.
During one successful move of the variable length window, LI F'E changes ezactly twice, one bit is
added (the new alphabet symbol) and one bit gets deleted (the deleted symbol).

Example 3 Assume that the string 0110001010110010 from example 2 represents an instance of
the LIFE array. Suppose the window move adds the 10th alphabet symbol, i.e. the LIFE array
changes to 0110001011110010. In the diagram below we indicate in boldface the names that changed
as a result of the change to the string.

14

13

12

| |
| 9 | |
6 | 7 | 7|
L2 1 31 41315 5] 43|
(ol 1]1]ofofo]1]o]1]1][1]1]0]0]1]0]

From example 3 one can see that a single change in an array of size m causes at most log m names
to change, since there is at most one name change in every level. Formally:

Observation 1 Let A be an array of length m and let B be an array of length m derived by
changing the value of a single element of A. Then for every level in the naming tree, there is a
single name that requires a change. Since there are logm levels, then only logm names need to be
changed in order to compute the name of B.

We conclude from observation 1 that at every change of the variable length window, only O(log |X|)
names need to be handled, since only two locations of LIF E are changed.

The subroutine HandleFingerprint will now look as follows:

Subroutine HandleFingerprint (High Level)

Compute name life of array LIFE
If life is a new name, then set its counter to 1
If life appeared previously, then increment its counter by 1

end Subroutine

Time: In section 5 we show an implementation of HandleFingerprint in time O(lognlog|X|).
This means that for a fixed fingerprint size our algorithm’s running time is O(nlognlog|X|). &
ranges from 1 to |X[; hence, the total running time is O(n|X|log(n) log(|X])).

5 Computing Names

We have seen in section 4 that the name of the LI F'E array can be maintained at a cost of O(log|X|)
per change, which is the number of queries to the name data base. Subroutine HandleFingerprint
requires the knowledge of whether the updated LIFFE array gets a new name, or a name that
appeared previously. Before we show an efficient implementation of this task, let us bound the
maximum number of different names our algorithm needs to generate for a fixed fingerprint size k.

Lemma 1 The maximum number of different names generated by our algorithm’s naming of size
k fingerprints on a text of length n is O(nlog |X|). The mazimum number of names generated at a
fized level i in the naming tree is O(n).

Proof: The first fingerprint initializes the LI F'E array. Naming the initial LI F'E array requires at
most 2|X| —1 names (O(n)). Throughout the algorithm, at most n changes to the initial fingerprint

are possible. Assume, in the worst case, that every change creates a new fingerprint. Observation 1
guarantees that for every change in the fingerprint, no more than one change occurs in every level
of the naming tree. Therefore, the maximum number of different possible names at every level is
2n. Since there are O(log|X|) levels in the tree, then the maximum possible number of different
names necessary for a fixed fingerprint size k is O(nlog |X|). 1

Our naming strategy is as follows. A name is a pair of previous names. At level i of the naming,
we compute the name of subarray A; Ay of size 2/, where A; and A, are consecutive subarrays of
size 2/~ each. We give as names the natural numbers in increasing order. Notice that every level
only uses the names of the level below it, thus the names we use at every level are numbers from
the set {1,...,n}.

To give an array a name, we need only to know if the pair of names of the composing subarrays
has appeared previously. If it did, then the array gets the name of this pair. Otherwise, it gets a
new name. It is necessary, therefore, to show a quick way to dynamically access pairs of numbers
from a bounded range universe. Formally, we would like a solution to the following problem:

Definition 4 The dynamic pair recognition problem s the following:

INPUT: A sequence of queries {(a;,b;)}32,, where aj,b; € {1,...,5}.

OUTPUT: Dynamically decide, for every query (aj,bj), whether there exist ¢, ¢ < i such that
(a]'v bj) = (ac, be)-

We will present a solution that requires, for solving each query (aj;,b;), time O(log z), where z is
the number of previous queries whose first pair element is a;. In our case, since in every level there
are at most O(n) different numbers, a dynamic pair recognition query is solved in time O(logn).
A dynamic pair recognition query is asked O(log |X|) times for each fingerprint. We conclude:

Claim 1 The running time of HandleFingerprint is O(log|X|logn).

In the remainder of this section we present the solution to the dynamic pair recognition problem.
Note that our pair recognition problem is not really dynamic, since all pairs of level 1— 1 are available
before processing of level 7 begins. Thus it is possible to construct an n x n matrix initialized as 0,
and fill in all pairs as they are encountered. This allows solving each pair query in constant time
but the initial cost is O(n?). We presented the problem as a dynamic problem. While every query
will take time O(logn), there are only a total of O(n) queries, so our total time is O(n logn), which
is faster.

Intuition:

At any point j the pairs we are considering all have their first element no greater than j. Thus,
accessing the first element can be done in constant time by direct access. This suggest “gathering”
all pairs in trees rooted at their first element. However, if we make sure these trees are ordered by
the second element and balanced, we can find elements by binary search in time that is logarithmic
in the tree size.

Algorithm’s Implementation:

The algorithm maintains the following data structure:

e BAL[a] is a balanced binary tree of all pairs (a,b) that have been named so far, sorted by b.
Since a, b are increasing natural numbers, starting from 1, BAL[a] is directly accessed by a

The algorithm is now straightforward. We are given pair (a,b) at time j and need to recognize if
it has appeared so far.

Pair Recognition Algorithm

if (a,b) € BAL[a] then output “occurred previously, name is name(a, b)”
else:
j—j+1
add (a,b) to BALld]
name(a,b) < j
initialize empty BAL[j]

end Algorithm

Time: It is clear that the time for the pair recognition algorithm is the time for searching the
balanced tree, i.e. O(log|BALla]|) = O(log(n)).

6 Fingerprint Statistics

The above algorithm allows us to efficiently name every fingerprint encountered. This scheme easily
allows answering a number of queries on fingerprint statistics.

Query 1
INPUT: k.
OUTPUT: The number of different size %k fingerprints in S.

The answer to the above query can be provided immediately if one keeps count of the number of
top level names for every k.

Another type of query that interests us is providing the number of substrings of S that have
a given fingerprint. This query requires some discussion. Consider the string zabcabcabcy and
suppose k = 3. Clearly the window (2, 10) defines a substring whose fingerprint is abc. However,
so does every substring of abcabcabe (that is, every subwindow of (2,10)) whose length is at least
3. When we want to count the number of substrings whose fingerprint is abe, which number do we
count? This brings us to a sharpening of the definition. (We assume sy and s,11 are defined and
do not belong to X.)

Definition 5 Let S = s159 -+ -5y, be a string over finite, ordered alphabet 3. Let ¢ be a fingerprint.
We call substring s;---s; ¢-maximal if s;_1 and s;11 do not belong to fingerprint ¢. We say that
;-8 s ¢-minimal if both s; and s; appear only once in the substring (i.e. removal of either of
them will change the fingerprint).

If s;---s; is ¢p-mazimal (p-minimal) and ¢ has size k then we say that s;---s; is k-maximal (k-
minimal).

10

We can now formally phrase Query 2:

Query 2
INPUT: Fingerprint ¢.
OUTPUT: The number of ¢-maximal (¢-minimal) substrings in S.

Maximal substrings:

The movements of the 4,jghe and 7jef; pointers in the main algorithm of section 3 define the maximality
of the substring. If we let 4,igp; continue as long as number = k+1 (rather than until number = k+1)
and we leave the advance of 4ef as originally written, then we will get windows that provide maximal
substrings.

Minimal substrings:

Lemma 2 For k > 3, substring s;---s; is a k-minimal substring iff siy1---sj—1 is a (k — 2)-
mazimal substring and s; # s;.

Proof: Assume s;---s; is k-minimal. Then clearly s; # s;j, otherwise one of them could be
dropped without changing the fingerprint which would contradict the substring’s k-minimality. For
the same reason s; does not appear in s;11---s; and s; does not appear in s; - --s;_1. This means
that s;11---s; 1 has fingerprint £ — 2. Extending the substring on any side raises its fingerprint
size. Therefore by definition 5 s;41---sj_1 is (k — 2) maximal.

Conversely, if s;41 -+ sj_1 is (k—2) maximal then by definition 5 s; does not appear in s;1---s;_1
and s; does not appear in s;;1---s;j_1. If, in addition, s; # s; then the fingerprint of s;-- - s; is of
size k, and is minimal since dropping s; or s; reduces the fingerprint size by 1. 1

Using Lemma 2, to find k-minimal substrings we simply check, for any (k —2)-maximal substring, if
the letter preceding the substring is not equal to the letter following it. Hence, the main algorithm
gives the mechanism to count maximal or minimal substrings. Note that the (k — 2)-maximal
substrings and the k-minimal substrings are computed together.

We are now ready to tackle Query 2. At the time of fingerprint naming maintain, for every
name (representing a maximal or minimal fingerprint), a counter for the number of times it was
encountered. Subsequently, the answer to the above query can be provided by computing the name
of fingerprint ¢. The time for mapping ¢ to its LIFE bit notation is O(|X|). The name is then
computed in time O(|X|logn). The number of times it appears is denoted by the name.

A similar problem that could be of interest is finding all substrings with a given fingerprint ¢. The
total number of substrings with fingerprint ¢ can be easily computed using the following immediate
observations.

Observation 2

1. No two different ¢p-mazimal substrings overlap.

2. If 81 is a ¢p-mazimal substring and Sy is a ¢-minimal substring then either S is a substring
of S1 or Sy and Sy don’t overlap.

11

3. Bvery substring with fingerprint ¢ is contained in a ¢-mazximal substring and contains at least
one ¢-minimal substring.

For every pair of substrings (S1,.52) where S; is ¢-maximal, Sy is ¢-minimal, and S is a substring
of S (let Sy = s;j---sj and Sy = Sjypn, - Sj—p,) the pair (S1,S2) contributes (n, + 1)(n, + 1)
substrings with fingerprint ¢.

7 Open Problems

Recall that we can only solve Query 2 (for input fingerprint ¢ count the number of substring
occurrences whose fingerprint is ¢) by mapping ¢ to its LI F'E notation. This automatically lower
bounds the time by O(|X]|), even for small |¢|. Is it possible to answer Query 2 in time O(|¢| X
polylog n)?

It may be possible to improve the algorithm by a constant factor if the position of i only moves
after computing fingerprints of all sizes starting at location 4jef, rather than the proposed method of
computing the fingerprints size by size. However, the algorithm will still have |X| as a multiplicative
factor. It would be interesting to see if the || factor can also be reduced. If such a reduction is
possible, it will probably involve a different idea, perhaps one that computes the fingerprints without
recourse to the greater amount of information provided by the Parikh vector. Is such a method
possible?

Finally, Parikh vectors per se and their natural generalizations to weighted alphabets find possible
use in a number of applications, e.g., approximate string searching in biosequences and other
textfiles in which the individual symbols carry some weight. Some problems thus revolve around
the existence of non-trivial extensions to these formulations of the techniques developed in this

paper.

References

[1] A. Apostolico, C. Iliopoulos, G.M. Landau, B. Schieber, and U. Vishkin. Parallel construction
of a suffix tree with applications. Algorithmica, 3:347-365, 1988.

[2] F. Karlsson, A. Voutilainen, J. Heikkild, and A. Anttila. Constraint Grammar. A Language
Independent System for Parsing Unrestricted Text. Mouton de Gruyter, 1995.

[3] R. Karp, R. Miller, and A. Rosenberg. Rapid identification of repeated patterns in strings,
arrays and trees. Symposium on the Theory of Computing, 4:125-136, 1972.

[4] Z. M. Kedem, G. M. Landau, and K. V. Palem. Parallel suffix-prefix matching algorithm and
application. STAM J. Comp, 25(5):998-1023, 1996.

[5] P. Langley. Elements of Machine Learning. Morgan Kaufmann, San Francisco, 1995.
[6] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[7] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complex-
ity. Prentice Hall, Englewood Cliffs, New Jersey, 1982.

12

[8] R. J. Parikh. On context-free languages. Journal of the ACM, 14(4):570-581, 1966.
[9] A. Salomaa. Formal Languages. Academic Press, New York and London, 1973.
[10] R. Sedgewick. Algorithms. Addison-Wesley, second edition, 1988.

13

