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Abstract

The goal of scaled permuted string matching is to find all occurrences of a pattern in a text,
in all possible scales and permutations. Given a text of length n and a pattern of length m we
present an O(n) algorithm.
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1 Introduction

The well known string matching problem that appears in all algorithm textbooks has as its input
a text T of length n and a pattern P of length m over a given alphabet ¥. The output is all text
locations where there is an exact match of the pattern. This problem has received much attention,
and many algorithms have been developed to solve it (e.g. [6, 13, 14]). A detailed modern view of
stringology can be found in a number of published books [5, 7, 11].

Most recent work has dealt with inexact matches. Many types of differences between the patterns
were defined, for example, errors (Hamming distance, LCS [12], Edit distance [15]), rotations
[1, 3,9, 10], scaling [2, 4], or permutation. Most of the theoretical work has dealt with one type of
difference at a time. This paper is one of the first attempts to deal with two types of differences
together — scaling and permutation.

Definition 1 Scaled permuted string matching
Input: A pattern P =py---py and a text T =ty -- - t,, both over alphabet 3.

Output: All positions in T where an occurrence of a permuted copy of the pattern P, scaled to k
starts (k=1,...,|.>]). The pattern is first permuted and then scaled.

Example: The string bbbbaabbaaccaacc is a scaled (to 2) permutation of baabbacc.
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The scaled (only) string matching problem is a well studied problem. The algorithm presented
in [4], which follows the method described in [8], achieves a linear running time for the scaled
string matching problem. In [2] the case where the scaling of the pattern is by real numbers was
considered, and a linear time algorithm was introduced.

An algorithm for the permuted string matching problem over run-length encoded strings is described
in section 2. In section 3 we present the main result of this paper, an algorithm that solves the
scaled permuted string matching problem in O(n) time and space. Open problems are given in
section 4.

2 Permuted string matching over run-length encoded text

The permuted string matching problem over uncompressed text is simply solved. A sliding window
of size |P| can be moved over T to count, for each location of T', the order of statistics of the
characters. Obviously, this can be done in O(n) time.

The run-length of a string S is a popular encoding method. According to this encoding S can be
described as a sequence of ordered pairs (o,%), often denoted by the symbol o*, each consisting of
an alphabet character ¢ and an integer . Each pair corresponds to a run in S, consisting of ¢
consecutive occurrences of o.

Let T" be the run-length compressed version of T' where T' = 7' --- 0‘2'3". Similarly, P’ is the
run-length compressed pattern. The pattern can be permuted, and therefore, in each location of
the text we check if the order of statistics of the characters is equal to that of the pattern. As a
result, a better compression can be achieved. Symbols with the same character are compressed.
For example, let P = aabbbaccaab, its run-length compressed version is P’ = a?b%a'c?a?b’ and a
permuted run-length compressed version is P = a%b*c?. The technique we use is similar to the
sliding window technique: a window is shifted on 7" from left to right in order to locate all the
matches. The window is a substring of 7" that represents a candidate for a match. Unlike the

simple algorithm, this time the window size is not fixed.

We will define a valid window as a substring of 7" that fulfills the following two properties:
sufficient — The number of times each character appears in the window is at least the number of
times it appears in the pattern.

minimal — Removing the rightmost or the leftmost symbol of the window violates the sufficient

property.

Note that: (a) The valid window property does not ensure a match. (b) If a permutation of the
pattern occurs in a valid window of T”, 0;"i - - - 077, then only the characters o; and o can appear
more times in this window than they appear in P". (c) If o; = o; then the pattern may occur
more than once in the valid window. Also, if 0;_1 = 0 (0; = 0]-+1) the pattern may occur more
than once in o;_1"=' -+ 0" (0,7 -+ 0j4177+"). (d) A permuted pattern occurs in the text only in
a valid window (including the symbols on the left and right of the window).

The algorithm scans the text, locates all valid windows and finds the ones in which a permuted
copy of the pattern occurs. During the scan of the text, given a valid window, it is trivial to check
if it contains a match. Hence, we will describe only how to locate all valid windows.

Note that given a text T" = o7 ---orlTT"‘: (a) At most one valid window may start on each o;'. (b)



A walid window does not contain another valid window.

The wvalid windows are found by scanning the text from left to right, using two pointers, left and
right. To discover each valid window, the right pointer moves first to find a sufficient window and
then the left pointer moves to find the valid window within the sufficient window. Each move of
the right pointer increases the size of the window. The right pointer moves as long as deleting the
leftmost symbol of the window violates the sufficient property of the window. When this symbol
can finally be removed, the right pointer stops and the left pointer starts moving. Each move of the
left pointer decreases the size of the window. The pointer moves as long as deleting the leftmost
symbol of the window does not violate the sufficient property of the window. At this point, a new
valid window has been found.

Example: Let P" = a?b3c?d? and T' = c3a?c?a?d?b3c! then c2a’c?a®d?b?® is the first sufficient
window, and c2a3d?b? is the first valid window (but not a match).

Claim 1 The algorithm finds all (and only) valid windows.

Proof: The algorithm reports only valid windows. We will prove by contradiction that the algorithm
finds all the valid windows. Denote by [[; and [], two consecutive valid windows that are discovered
by the algorithm, and by 4je s, irighty, Gefto and iright, the left and right pointers of those windows
respectively. Assume that there exists a valid window []3 (with left and right pointers i;.f;, and
irights Tespectively) between [[; and [[y (iright; < irights < frighty) that the algorithm does not
discover. By the minimal propriety we get that 4jep¢; < 4efi5- After reporting [[; the algorithm
looks for the next walid window. During the scanning of the right pointer the algorithm passes
irights and does not stop, which means that the window jefs; + 1 -+ irjgneg does not satisfy the
sufficient property. Since, djef¢; + 1 < ijefi5 We conclude that the window []3 does not satisfy the
sufficient property as well, and hence, it is not wvalid.

Time complexity: We assume that || is O(|P"]), hence, the time complexity of the algorithm
is O(|P"| + |T'|). In case the input pattern is not given in a permuted run-length compressed
format, an O(|P|) time preprocessing step is added.

3 A linear time algorithm for the scaled permuted string matching
problem

The algorithm is composed of two stages:

1. Preprocessing the text T". Computing compact copies of the text for each possible scale
1<s< 2

2. Applying the permuted string matching over the run-length encoded text algorithm (section 2)
on the copies of the text.

Observation 1 If a permutation of P scaled to s occurs in o;% ---o}7% then j;i1,...,j5k_1 are
multiples of s, and j;, jr > s.

Following the above observation, we compute for each scale s a compact text 7% in the following
two steps: Step 1: Locate all the regions in T” where the symbols appear with multiples of s. Add
the symbol § as a separator between the regions. Step 2: Expand these regions to include the



symbols on their boundaries. In order to simplify the computation of Stage 2, a symbol ¢;"i of T"

is replaced in T, by t-L_siJ.

Step 1. Locatlng the regions — T’ is scanned from left to right. Consider a symbol ¢;"i. A new
symbol ¢; 5 is added to T! if r; is a multiple of s. The following code describes this idea:

Step 1 — The parallel construction of the new text

For every symbol in T" do:
{ let a” be the current symbol being examined }
s=1
Repeat Until s > /7
If (r mod s = 0) Then
Add a5 to T!
{ skip the next line if s = /T }
Add a® to T7
s=s+1

Note that the efficiency of this procedure depends on the method that finds all the divisors of an
integer. In the above example we used a naive method. A new symbol that is added at the end of
T? may continue a region or start a new one. In the second case we add a separator ($) between
the regions.

Step 2. Expansion of the regions — The last refinement is done by scanning each 7% text from
left to right and expanding all the regions we generated in step 1. In the next procedure we deal
with symbols that appear on the left side of a $ separator in 77. The opposite case is treated in
the same way:

Step 2

For every $ separator in T! do:

{let tz s be the symbol appearing on the left side of the current $ separator on T,
and let ¢;11"+! be the adjacent symbol to ¢;"¢ on T}
If (7‘,~+1 > 8) then

Ti4+1

Add t;4175

I to T between tiTs_i and the $ separator

Example: Let 7" = a®0%c*a3d®h?d?c®b*a”, the new text after applying step 2 is:

T] =$ a®b%c*a®do°d?c®b*a’$ , T = $a’bc?a'$brd c*b?a3$, T4 = $a?Sclald $d'b*$, T = $c' $c?blal$,
T = $d'b'$ T, = $a'$, T! = $a'$, T} = $c'$, T = $b'$

Stage 2 runs the permuted string matching over a run-length encoded text algorithm (section 2)
on all the new compact texts.

Time complexity: The input to our problem is a compressed text T = ¢, ..., , whose original
length is n, and a pattern P” of length |P”| (or a pattern P of length m). Both the pattern and
the text are over alphabet ¥. The following claim shows that the total length of all compact new
texts is linear.



Claim 2 The total length of all the new texts T, (1 <s < ) is O(n).

Proof: In step 1, we consider each symbol ¢;"i in T', and the number of new symbols that we
produce from ¢;"¢ is bounded by 2,/7;. In addition we may add a $ separator to each new symbol.
In step 2, two new symbols may be added to each $ separator. Hence the total length of all new

texts is: 8- 28 VTi=0(n). 11

The running time of both Stage 1 and Stage 2 is bounded by the length of the new texts, hence
the total time complexity is O(n).

4 Open problems

The algorithm described in this paper is the first to deal with scaling and permutation. We
considered the case in which the pattern is first permuted and then scaled. The first challenge is to
design an o(nm) algorithm for the case in which the pattern is first scaled and then permuted. We
also dealt with integer scales. The second challenge is to deal with scales that are real numbers.
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