JOURNAL OF ALGORITHMS 19, 449-473 (1995)

Graph Sandwich Problems

Martin Charles Golumbic

Department of Mathematics and Computer Science, Bar-Ilan University,
Ramat Gan, Israel

Haim Kaplan

Department of Computer Science, Princeton University, Princeton, New Jersey 08544
and

Ron Shamir

Department of Computer Science, Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 69978, Israel

Received February 1993; revised January 1994

The graph sandwich problem for property 11 is defined as follows: Given two
graphs G' = (V, E') and G2 = (V, E?) such that E' C E%, is there a graph
G = (V, E) such that E' c E ¢ E? which satisfies property I1? Such problems
generalize recognition problems and arise in various applications. Concentrating
mainly on properties characterizing subfamilies of perfect graphs, we give polyno-
mial algorithms for several properties and prove the NP-completeness of others.
We describe polynomial time algorithms for threshold graphs, split graphs, and
cographs. For the sandwich problem for threshold graphs, the only case in which a
previous algorithm existed, we obtain a faster algorithm. NP-completeness proofs
are given for comparability graphs, permutation graphs, and several other families.
For Eulerian graphs, one version of the problem is polynomial and another is
NP-completc. © 1995 Academic Press, Inc.

1. INTRODUCTION

The graph G' = (V', E') is a supergraph of the graph G = (V, E) if
V' =V and E ¢ E'. Given two graphs G' = (V, E') and G* = (V, E?),
such that G? is a supergraph of G', the graph G = (V, E) is called a
sandwich graph for the pair G', G* if E' ¢ E C E*. In other words, G

449

0196-6774 /95 $12.00

Copyright @ 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

450 GOLUMBIC, KAPLAN, AND SHAMIR

must be “sandwiched” between G' and G*. We define the graph sandwich
problem for property 11 (denoted TI-SP) as

GRAPH SANDWICH PROBLEM FOR PROPERTY II (II-SP):

INPUT: Two graphs, G' and G*, such that G? is a supergraph of G'.

QUESTION: Does there exist a sandwich graph for the pair G', G*
which satisfies property I1?

For notational simplicity in the sequel, we define E° = E*\ E', and let
E3 be the set of all edges in the complete graph with vertex set V, which
are not in E?. In this notation, the edge set of a sandwich graph must
include all of E', no edge from E°, and any subset of the edges in E°.
(The superscript “o” in the E° is a reminder that these edges are
optional.)

In this paper we study graph sandwich problems for various properties
Il. The graphs we address are finite, without self-loops and undirected,
unless noted otherwise. Such problems arise as natural generalizations of
recognition and completion questions on graphs. In the (by now classical)
recognition problem, one is asked to determine if a given graph satisfies a
desired property (e.g., connectedness, chordality, perfectness). Put differ-
ently, the goal is to determine if a given graph falls into a specific family of
graphs. Many families of graphs were shown to have important applica-
tions, in diverse areas such as algebra, VLSI design, communication,
biology, and numerous others. Graphs having such properties (which fall
into known families) may be amenable to polynomial solution of optimiza-
tion problems which are in general NP-hard, e.g., minimum coloring or
maximum independent set. For a systematic study of such families of
graphs, their properties, their recognition, and many fascinating applica-
tions see [17, 30]. References [3, 24] review many additional results.

In practice, it may happen that the input graph may not belong to the
desired family but is “close” to the family in some sense; thus one may
wish to slightly relax the condition for accepting a given input. The type of
relaxation depends on the application. One type of relaxation which has
been well studied in the past is completion problems: Given a graph and an
interger k, can one add to the original graph at most k edges in order to
obtain a graph in the desired family? Such problems have been studied for
interval graphs, edge graphs, path graphs (cf. [13, pp. 198-199]), and
chordal graphs [37].

Sandwich problems may be viewed as a different kind of relaxation of
the recognition problem: Certain edges must definitely be included in the
graph, and certain edges are disallowed, but there is freedom in deciding
to include any subset of the (possibly many) other edges. Sandwich
problems have been studied explicitly in [20], and implicitly in [2, 21, 34].
Below we give several examples of important sandwich problems arising in

GRAPH SANDWICH PROBLEMS 451

practice. (Definitions of the graph families mentioned in the examples are
given in later sections.)

Physical Mapping of DNA (5]. In molecular biology, information on
intersection or nonintersection of pairs of segments originating from a
certain DNA chain is known experimentally. (The nucleotide sequences of
the segments or the chain are not known yet) The problem is how to
arrange the segments as intervals along a line (the DNA chain), so that
their pairwise intersections match the experimental data. In the graph
presentation where vertices correspond to segments, two vertices are
connected by an E' edge (respectively E® edge) if their segments are
known to intersect (respectively not to intersect). If complete, exact experi-
mental information were available (i.e., for each pair of segments it was
known whether they intersect), the question would be efficiently solvable
using an interval graph recognition algorithm. In practice, however, typi-
cally information on intersections is known only in part, because of
incomplete or inconclusive experimental results. That ambiguity introduces
E° edges into the graph. In that case, the decision problem is equivalent to
the interval sandwich problem which was recently shown to be NP-com-
plete [20]. A detailed investigation of this application and further results
are found in [18].

Temporal Reasoning. Given is a set of events, and for each pair of
events a specification whether (i) they are disjoint, (ii) they share some
common timepoint, or (iii) both cases are possible. Is this information
consistent, i.e., can one assign a time interval to each event so that all
pairwise relations hold? This problem is equivalent to the interval sand-
wich problem [20].

Synchronizing Parallel Processes. let V' be a set of processes, and let G
be a graph such that two processes are not permitted to run in parallel if
and only if they are adjacent in the graph G. Henderson and Zalcstein [23]
raised the question of which such problems of synchronizing parallel
processes can be solved with a single variable called a semaphore and a
generalization of standard PV primitive functions, and showed that they
correspond precisely to threshold graphs. (See also [17, Chap. 10].) How-
ever, this condition can be applied in a broader fashion to handle other
practical cases as follows: (i) assume we are given G as above which is not
a threshold graph, but we are prepared to add certain extra edges in order
to allow single semaphore PV-chunk synchronizing; (ii) those pairs of
vertices corresponding to processes which must be permitted to run in
parallel have E* edges between them (i.e., must be nonedges in a solution).

452 GOLUMBIC, KAPLAN, AND SHAMIR

Then there exists a PV-chunk solution if and only if there is a threshold
sandwich. We give here a linear time algorithm for the threshold sandwich
problem.

Phylogenetic Trees. Buneman [4] showed that the perfect phylogeny
(PP) problem in evolution reduces to the graph theoretical problem of
triangulating colored graphs (TCG). Kannan and Warnow [25] showed that
TCG reduces to PP. Bodlaender et al [2] and Steel [34] recently proved
that TCG is NP-complete. It is easy to see that TCG is a restriction of the
chordal sandwich problem, which is therefore also NP-complete.

Sparse Systems of Linear Equations. Consider the system of equations
Ax = b where A is a sparse, symmetric, and positive definite. When
performing Gaussian elimination on A, an arbitrary choice of pivots may
result in the fill-in of some zero positions with nonzeros, thereby reducing
sparsity. Given A, define a graph G(A4) = (V, E) where |V| = n and [¢,,
vj] € E iff a;; # 0 and i # j. Rose [31] (see also {17, Chap. 12)) proved that
finding a sequence of pivots which induces minimum fill-in is equivalent to
finding a minimum set of edges whose addition to G(.4) makes the graph
chordal. This problem was proved to be NP-complete by Yannakakis [37].
Asking for a sequence of pivots such that the fill-in they induce may occur
only in specific positions of A is equivalent to solving a chordal sandwich
problem in which G' = G and (v,v;]1 € E° iff i # j, a;; = 0, and position
(i, j) in the matrix is allowed to become nonzero during factorization. The
problem arises in practice when one wants to maintain (and exploit) a
special structure of the zeros in the matrix throughout the elimination.

The paper is organized as follows: Section 2 contains some basic
definitions and notation. Section 3 contains basic results on the relative
complexity of sandwich problems. Sections 4, 5, and 6 give polynomial
algorithms for the split graph, threshold graph, and cograph sandwich
problems, respectively. Section 7 deals with two variants of the Euler
sandwich problem. One of them turns out to be polynomial while the other
is NP-complete. Section 8 contains an NP-completeness proof for the
comparability sandwich problem. Section 9 contains an NP-completeness
proof for the permutation sandwich problem. Section 10 discusses some
other families for which the sandwich problem is NP-complete. We sum-
marize our results in Section 11 and present some open problems.

2. DEFINITIONS

In a sandwich problem, (E', E°, E?) is a partition of the edge set of the
complete graph on the vertex set V. The input to a sandwich problem can

GRAPH SANDWICH PROBLEMS 453

equivalently be given by the vertex set I/ and the partition (E!, E°, E?), or
in fact, the vertex set I together with any noncomplementary pair out of
the four sets E°, E', E?, E*. Hence, we may denote a problem instance by
(V, E', E?),(V, E', E°), or (V, E', E®), depending on the way the input is
given or on our convenience. The superscripts of the two edge sets will
indicate in which form the instance is given. Clearly, the other edge sets
can be computed from any such form of input in O(|V|*) steps. We define
also G =(V, E), i=0,1,2,3.

A graph G = (V, E) is a subgraph of H=(U, F)if Vc U and E CF.
For a graph G = (V, E) and a vertex subset X C V, denote by E the set
of edges of G with both endpoints in X. G, = (X, E,) is the induced
subgraph of G on the vertex set X. If (V, E', E’) is a sandwich instance,
the induced sandwich instance on X is (X, E%, E{) denoted (V, E', E),.

For two disjoint graphs G = (I, E) and H = (W, F), their union is
GUH=WuUW, EUF), and their join G + H is the graph obtained
from G U H by adding all the edges between vertices from V' and vertices
from W. If H is a single vertex p we will also denote the union of G and
{p} by G U p and the join by G + p. _ _

The complement of a graph G = (V, E) is the graph G = (V, E) such
that E consists of all the edges between vertices in ¥ which are not in E.
A set S of vertices in a graph is independent if no two vertices in the set
are adjacent. S is a cligue in G if it is independent in G.

Throughout the paper, we use [v, w] to denote an undirected edge
between the vertices v and w, and (v, w) to denote an arc directed from v
to w.

3. BASIC RESULTS

In this section we summarize some easy observations on sandwich
problems, which will help us concentrate on those sandwich problems
which are “interesting” in terms of their complexity, i.e., neither trivially
NP-hard nor trivially polynomial.

A graph property II is called hereditary if when a graph G satisfies 11
every induced subgraph of G satisfies II. We first consider properties
which are hereditary in a stronger sense: A graph property 11 is hereditary
on subgraphs if when a graph G satisfies I1, every subgraph of G satisfies
I1.

PrROPOSITION 3.1. If property 11 is hereditary on subgraphs then there
exists a sandwich graph for (V, E', E?) with the property 11 iffG' = (V, E")
has the property I1.

454 GOLUMBIC, KAPLAN, AND SHAMIR

Many families of graphs have characterizations in terms of forbidden
subgraphs or forbidden induced subgraphs. Those graph properties which
can be characterized in terms of forbidden subgraphs are hereditary on
subgraphs. For such properties, by the above proposition we can conclude:

COROLLARY 3.2. If property 11 has a forbidden subgraphs characteriza-
tion, then deciding whether a sandwich graph with property 11 exists for (V,
E', E?) is equivalent to deciding whether G' has property T1.

Hence, for each property which is hereditary on subgraphs, the sandwich
problem reduces to the recognition problem of this property on the single
graph G'. For example, we can decide whether a planar sandwich, a
bipartite sandwich, or a sandwich without cycles exists in polynomial time
simply by checking if G' satisfies these properties.

A graph property Il is ancestral if when a graph G satisfies II, every
supergraph of G satisfies II. In other words, Il cannot be violated by
adding edges to a graph which satisfies the property. For such properties,
we have the following analog of Proposition 3.1:

PropOSITION 3.3. Let Il be an ancestral graph property. There exists a
sandwich graph for (V, E', E®) with property 11 iff G* = (V, E?) has
property T1.

For example, the properties “k connected” and “containing a k-clique”
are ancestral. According to Proposition 3.3 the sandwich problem for these
properties reduces to determining if G? satisfies these properties.

For a property IT of graphs, we define the complementary property Tl as
follows: For every graph G, G satisfies IT iff G satisfies TI. Some well-
known examples are cochordality and cocomparability.

PROPOSITION 3.4. There is a sandwich graph with property 11 for the
instance (V, E', E°) iff there is a sandwich graph with property 11 for the
instance (V, E', E®), where V =V, E' = E*, and E® = E°.

By Proposition 3.4, we get the following complexity equivalence between
the sandwich problems of any two complementary properties:

THEOREM 3.5. For every property 11, the problems TI-SP and TI-SP are
polynomially equivalent.

I1-SP is clearly at least as hard as the problem of recognizing graphs
with property I, since given a polynomial algorithm for the II-SP, one can
use this algorithm with E' = E? = E to recognize if a graph G = (V, E)
satisfies property II.

Note that every problem which asks for the existence of certain sub-
graphs in a given graph (e.g., spanning tree, perfect matching, and Hamil-
tonian path) can, in fact, be viewed as a sandwich problem: Simply take
E' = &, E° = E, and define the property 11 appropriately.

GRAPH SANDWICH PROBLEMS 455

In the rest of this paper we shall concentrate on the complexity of the
sandwich problem for various properties Il. In view of the discussion
above, we shall concentrate on properties I for which (A) the recognition
problem is polynomially solvable, and (B) the property II is not hereditary
on subgraphs or ancestral.

When every graph G which satisfies a graph property I1? also satisfies a
graph property I1', we say that T1? is stronger than II'. It is interesting to
note that even if we know that IT? is stronger than I1' we cannot deduce
anything about the complexity of [1'-SP from the complexity of I12-SP and
vice versa. For example, take II' = connected and I1° = Hamiltonian.
Clearly, 112 is stronger than II' and I1'-SP is in P, but IT%-SP is in NPC
since the recognition problem for Hamiltonian graphs in NP-complete. On
the other hand, if we take I1' = interval graph and I1* = complete graph,
12 is again stronger than II' but this time IT%-SP is in P and T1'-SP is in
NPC [20].

4. SPLIT GRAPHS

A graph G = (V, E) is a split graph if there is a partition of the vertex
set V' = K + I where K induces a clique in G and I induces an indepen-
dent set [10]. A linear time recognition algorithm for split graphs is
described in [22], based on a degree sequence characterization of split
graphs. We now show that the split sandwich problem is polynomial. The
algorithm which we describe has a different spirit than the recognition
algorithm of [22] and is not based on degree sequences. Given an input (V,
E', E®) for the split sandwich problem we need to determine for each
vertex if it belongs to K or I. Clearly, if [x, y] € E', then the situation
[x &I and y € I]is impossible. Similarly, if [x, y] € E?, then [x € K and
y € K1 is impossible. Represent these constraints by a set of Boolean
equations: For each vertex x in I/ define a Boolean variable X, where X
will be true iff x € K. Hence, the set of constraints can be rewritten as a
set of Boolean equations:

(XvY) forevery [x,y]ekE?

(1)
(XVY) forevery [x,y]E€E".

LEMMA 4.1. There exists a split sandwich iff system (1) is consistent.

Proof. 1f a split sandwich exists, then the truth assignment #(X) =
TRUE iff x € K satisfies system (1). Conversely, if system (1) is consistent,
then there is a truth assignment ¢ which satisfies it. Define x € K
iff t(X) = TRUE. A sandwich graph G = (V, E) will contain all the clique

456 GOLUMBIC, KAPLAN, AND SHAMIR

edges on K, none of the edges between vertices in /, and all E' edges
between K and /, in addition to any subset of £° edges between K and I.

We need to show that for every x, ye V if x €K, y € K then
[x, y]l € E' U E°, but this is implied by the condition [x, y] € E* = (X v
Y). Similarly, if x € I and y € I, then [x, y] € E° U E? follows from the
condition [x, y]€ E' = (X vY). |

THEOREM 4.2. The split sandwich problem is solvable in O(V'| + |E'| +
[E3) time.

Proof. The transformation of the problem into the set of equations
requires O(|E'| + |E?|) steps. By Lemma 4.1, it then suffices to solve the
system. Since this system is an instance of 2-Satisfiability, it is solvable in
O(V|+ |E' + |E*) time [1). 1}

5. THRESHOLD GRAPHS

A graph G = (V, E) is a threshold graph if one can assign a nonnegative
integer value a(v) to each vertex ¢ such that § € V is independent iff
T, s alv) <t for some “threshold” integer value f. Equivalently, if G is
an n-vertex graph, there is a single hyperplane in the n-dimensional space
separating all the characteristic vectors of independent sets from those of
nonindependent sets. Threshold graphs were introduced by Chvatal and
Hammer who also described a linear time recognition algorithm for them
(6]

The threshold sandwich problem is polynomial. Hammer er al. [21,
Section 4] have given an O(n*) algorithm for the problem. In this section
we present an O(|V| + |E'| + | E*]) time algorithm for the problem. Define
Adj(x) to be the set of neighbors of a vertex x in a graph. We need the
following characterization of threshold graphs:

LEMMA 5.1 [6). G = (V, E) is a threshold graph if and only if for each
subset X C V there exists a vertex x € X such that Adj(x) " X = & or
Adi(x) N X = X — {x}.

Hence, if G is a threshold graph and v is a new vertex then G + v and
G U v are threshold graphs. Applying this lemma one can easily show:

LEMMA 5.2, If a threshold sandwich for (V, E*, E*) exists, then there is
an isolated vertex in G' or an isolated vertex in G*.

ProposITION 5.3. Let (V, E', E*) be a threshold sandwich instance and
let v € V be an isolated vertex in G' or G*. There is a threshold sandwich for
(V, E', E®) iff there is a threshold sandwich for (V, E', E),_,,.

GRAPH SANDWICH PROBLEMS 457

Proof. The “only if” direction is obvious since being a threshold graph
is an hereditary property. To prove the converse, suppose there is a
threshold sandwich G* for (V, E', E*),_,. If v is isolated in G' then
G* U v is a sandwich graph for (V, E', E*) and according to Lemma 5.1 it
is a threshold graph. Similarly, if v is isolated in G* then G* + v is a
threshold sandwich for (V, E', E3). |

The algorithm for solving the threshold sandwich problem repeatedly
reduces the sandwich instance by applying the following simple procedure:
Look for an isolated vertex v in G! or G?, and delete v and all the edges
incident to it from the sandwich instance. According to Lemma 5.2 and
Proposition 5.3, if this procedure ends with an empty sandwich instance
there is a threshold sandwich graph; otherwise, there is no threshold
sandwich.

A straightforward implementation of this algorithm will maintain two
sets of vertices in the current induced sandwich instance. One contains
isolated vertices in G' and the other isolated vertices in G?. It will also
maintain the G' and G* degrees of each vertex in this sandwich instance.
When a vertex isolated in G'(G?) is deleted, the G*(G') degree of its
neighbors is decreased and those which become isolated due to the
deletion are added to the appropriate set.

THEOREM 5.4. The threshold sandwich problem is solvable in O(|V'| +
[E' + |E®]) steps.

Proof. Validity follows from the discussion above. In every iteration of
the algorithm we eliminate a vertex while traversing all the edges in E'
incident with it or all the edges in E? incident with it. Thus, the overall
complexity is O(IV| + |[E'| + |E*). 1

The above procedure can be used to construct a sandwich graph if one
exists: Record in the procedure the order v,,...,, in which the vertices
are removed, and for each vertex whether it was isolated in G' or in G3
when removed. Then for i < j, the edge [v,, uj] is the in the sandwich
graph iff v, was isolated in G when removed.

6. COGRAPHS

A graph is called a complement reducible graph, or a cograph, if it does
not contain a P, (a path with four vertices) as an induced subgraph [8]. A
linear time recognition algorithm for cographs is described in [9]. In this
section we shall give a polynomial algorithm for the cograph sandwich
problem. We shall use two known characterizations for cographs (cf. [8]):

458 GOLUMBIC, KAPLAN, AND SHAMIR

THEOREM 6.1. For a graph G, the following statements are equivalent:

(1) G is a cograph.
(2) G belongs to the set of graphs which can be defined recursively as
follows:
o A single vertex is a cograph.
o If G|, G,,...,G, are cographs, then so is their union G, U G,
U UGy _
e If G is a cograph then so is its complement G.
(3) The complement of any nontrivial connected induced subgraph of G
is disconnected.

From characterization (2), using the relation G, + G, + - +G, =
G, UG,V U Gy, we obtain:

Remark 6.2. 1f G,,...,G, are disjoint cographs, then G, + G, + -
G, is a cograph.

(Note that the join operator is associative, thus the sum is well defined.)
Let (V, E', E*) be a cograph sandwich instance where |V| > 1. Using
characterization (3) we obtain:

LEMMA 6.3. If G' and G* are both connected, then there is no cograph
sandwich for (V, E', E*).

Proof. Any sandwich graph for (V, E', E’) must be connected, as a
supergraph of G', and its complement must also be connected, as a
supergraph of G®. Hence it violates characterization (3) in Theorem 6.1
and thus is not a cograph. 1

LEMMA 6.4. Suppose G' is connected and G* is disconnected, and let
Vis....V, be the vertex sets of the distinct connected components of G*. If
t+---. G} are cograph sandwiches for (V, E', E*),,...,(V, E', E?),,
respectively, then G* = G + -+ + G} is a cograph sandwich for (V, E', E 3.

Proof. By Remark 6.2, G* is a cograph. But G°® is a sandwich graph
for (V, E', E®), since all the edges between different components {[u, v]
EV,XIﬁli#j}areinEz. []

Applying Proposition 3.4 to Lernma 6.4 one can obtain:

LEMMA 6.5. Suppose G° is connected, G' is disconnected, and let
Vi,..., V) be the vertex sets of the distinct connected components of G'. If
G3,...,G} are cograph sandwiches for (V, E, E3)V1,...,(V, E', E3)Vk,
respectively, then G U --- U Gj is a cograph sandwich for G(V, E', E*).

Since the property of being a cograph is hereditary one obtains:

GRAPH SANDWICH PROBLEMS 459

LEMMA 6.6. There exists a cograph sandwich for instance (V, E', E®) iff
for every X C V there exists a cograph sandwich for (V, E', E?),.

We can now describe an algorithm for the cograph sandwich problem:
Partition the vertex set into connected components in G'. By Lemma 6.4,
if there is a cograph sandwich for each component, then one can take the
union of the sandwiches as the overall solution. By Lemma 6.6, if there is
no cograph sandwich for any component, then there is none for the
original problem.

Next, for each vertex set composing such a connected component in G',
examine the subgraph of G* induced by this set. If it is connected (and not
a singleton), then by Lemma 6.3 there is no cograph sandwich induced on
it, and by Lemma 6.6 there is no cograph sandwich for the original
instance. If it is disconnected, then it suffices to find a cograph sandwich
for each component, since by Lemma 6.5 and Remark 6.2 the join of those
sandwiches is a sandwich and a cograph. For each new cograph sandwich
instance the algorithm can now be applied recursively. A formal descrip-
tion of the recursive Boolean procedure is given below:

procedure COGRAPH-SANDWICH (V, E!, E?),
/* input: a sandwich problem instance (V, E', E’) */
/* output: TRUE if a cograph sandwich exists, FALSE otherwise * /
begin
1. if [V] = 1 then return(TRUE).

else
2. Decompose G! into its connected components: C, ..., C,.
3. for each component C; do
4. Decompolse Géi into its connected components
cl,...,Cl.
5. if/ =1 and |C}| > 1 then return(FALSE).
else
6. for each component C;/ do
7. if not COGRAPH-SANDWICH(C{, El,
E?;) then return(FALSE). '
8. return(TRUE). /* all the recursive calls returned OK */
end

THEOREM 6.7. The cograph sandwich problem is solvable in O(|VX|V| +
|EY| + | E®)) steps.

Proof. Validity follows from the discussion above. In each iteration of
the procedure above we decompose to connected components a set of
induced subgraphs of G! and a set of induced subgraphs of G>. Since the
size of the maximal induced sandwich instance reduces in every iteration,
the number of iterations is bounded by O(|V]). Decomposing graph G(V,

460 GOLUMBIC, KAPLAN, AND SHAMIR

E) into its connected components requires O([V| + [E|) time by depth first
search (cf. [35]). Thus, there is an O(IVI(|V| + |E'| + | E*])) implementa-
tion for this procedure. |

From the discussion above, it follows that the algorithm can be slightly
modified to also give a sandwich graph (if one exists): Simply exclude from
the sandwich all edges between components in step 2 and include in it all
edges between components in step 4. (Note that this also gives a tree
partition of the sandwich, in the spirit of cotrees discussed in [8].)

7. EULERIAN GRAPHS

A graph in which every vertex has even degree is called Eulerian. We
now show that the Eulerian sandwich problem is polynomial.

Suppose (V, E', E°) is an instance of the Eulerian-SP. Let x, be a
variable corresponding to each edge ¢, in E°. For each vertex v; define a
constant d, to be one if the parity of the degree of v, in G' is odd, and
zero otherwise. Every Eulerian sandwich corresponds to a solution of the
following linear system of equations over the field GF(2) (Galois field with
only two elements):

Y ox,=d, i=1,..,V

e=lvr]€E®

Thus, we can solve the Eulerian-SP as fast as we can solve a linear
system over GF(2). Using an algorithm of Coppersmith and Winograd, an
n X n system can be solved in O(n*?") [7].

A directed graph is Eulerian iff the in-degree of every vertex equals its
out-degree. We now show that the directed Eulerian sandwich problem is
also polynomially solvable: Let x, be a variable corresponding to arc ¢, in
E°. Define a constant d; to be equal to in_degree(v;) — out_degree(y;) in
G'. Every directed Eulerian sandwich corresponds to an integer 0-1
solution of the following linear system of equations:

Y (x)- L (x)=d, i=1,..,V

ey={(v;, ¢)EE" e;={r;,)L

Since the coefficient matrix of this system is the adjacency matrix of a
digraph G° = (V, E®), it is totally unimodular. Thus, we can add the
constraints 0 < x, < 1, and the corresponding linear program has a solu-
tion iff it has an integer 0—1 solution. Hence, we can solve the directed
Eulerian sandwich problem simply by checking if the corresponding linear
program is feasible.

GRAPH SANDWICH PROBLEMS 461

Another approach to solve the system uses network flow techniques: Let
d; be the supply (demand) at vertex i if d;, > 0 (d, < 0), in the network
G°(V, E°) with all arc capacities equal to one. The system is solvable iff
there is a flow function ¥ on the arcs of G° which satisfies all supplies
and demands. Introduce a source s and a sink ¢, and if d, > 0 (< 0)
introduce an arc (s, v,X(v;, 1)} with capacity |d,l. The original problem is
feasible iff in the extended network the maximum s — ¢ flow value is
achieved by a flow function which saturates all the arcs emanating from s.
The maximum flow can be computed, e.g., by the algorithm of [26] in
O(VIIE®) + [V]**€) for any fixed € > 0. In conclusion:

THEOREM 7.1. The directed and undirected Eulerian sandwich problems
are polynomial.

If in the Eulerian-SP the graph G' is not connected, then the sandwich
graph may also be disconnected. Interestingly, by adding the requirement
of connectivity, the problem becomes NP-complete. In the connected
undirected Eulerian sandwich problem one asks for the existence of a
sandwich graph which is both connected and Eulerian:

THEOREM 7.2. The connected Eulerian sandwich problem is NP-complete.

Proof. A subgraph G' = (V, E') of a cubic graph G =(V, E) is
connected and Eulerian iff it is Hamiltonian. The Hamiltonian circuit
problem on cubic graphs was shown to be NP-complete in [14].

8. COMPARABILITY GRAPHS

In this section we prove that the comparability sandwich problem is
NP-complete. We need the following definitions from [17]: For a set of
(undirected) edges 4 C F, denote the corresponding set of (directed) arcs
{(w, v), (v, w) | [w, v]) € A} by A. For a set F of arcs, define the inverse
set by F~!' = {(v, w)|(w, v) € F}. Let G = (V, E) be an undirected
graph. An orientation of G is a subset F of E such that F N F~! = Jand
FUF™" = E. An orientation F is transitive iff F2 CF where F2 =
{(w, v) | (w, w), (u, v) € F for some vertex u}. A graph G is a comparabil-
ity graph (or transitively orientable, TRO) if it has a transitive orientation
F. A comparability graph which has exactly two transitive orientations F
and F' is called uniquely transitively orientable (UTRO). TRO and UTRO
graphs can be recognized in polynomial time (cf. [17].

For the undirected graph G = (VV, E), define a binary relation
I' between the elements of E as follows: (a, »)I'(a’, b") iff a = a’ and
{b,b'l & E,or b=>b" and [a, a'] € E. The reflexive, transitive closure I'*
of I' is easily shown to be an equivalence relation on E and hence

462 GOLUMBIC, KAPLAN, AND SHAMIR

partitions E into equivalence classes which are called implication classes.
The union of an implication class and its inverse class is called a color
class. The reader is referred to [17] for a detailed exposition and discussion
of these terms and their usage.

We need the following characterization of TRO graphs:

THEOREM 8.1 {12, 12]. G = (V, E) is a comparability graph iff for every
implication class A of E: AN A" = @.

The reduction uses as a “gadget” the TRO sandwich problem in Fig. 1a.
We shall call the three edges [/, ¢;], 1/}, c;}, and [1,, ¢} the oprional edges.
The following lemma states that the only TRO sandwich graphs are those
containing exactly one optional edge.

LEMMA 8.2. For the sandwich problem in Fig. la there are exactly three
comparability sandwich graphs, all of which are isomorphic to the graph G in
Fig. lc.

The proof follows from Theorem 8.1 by simply checking all possible
sandwich graphs, and is omitted.

Remark 8.3. Since G contains only one color class, it is UTRO. The
two other UTRO graphs which are isomorphic to G° = (W, H?) are
W, H' u{l,, c,}) and (W, H' U {{1;, c,]). In any transitive orientation
of these graphs, out of the edges [x;, ;] i =0, 1, 2 not all three are
oriented from x; and not all three are oriented to x,. More specifically, let
us call the edges [x;, /,], i =0, 1, 2 the external edges, and for a given
orientation, we say that the external edge [x;, /;] is directed out of
(respectively, inro) x, if its orientation is (x;, /,) (respectively, (/;, x,)). Then
in each orientation of (W, H U {[/,, ¢;, ,]}) the external edges [x;, /;] and
[x,,,» {;,,] have the same orientation, and [x,.,, [;,,] has the opposite
direction. (Here and in the proof below, all operations on indices are
modulo 3.) Put differently, given an orientation of the three external

Fig. 1. (a) A comparability sandwich problem instance (W, H', H°). H': Solid edges
(mandatory). H": Dotted edges (optional). H? is H' U H". (b) A comparability sandwich
graph G7 = (W, H?). (¢c) A transitive orientation for G7.

GRAPH SANDWICH PROBLEMS 463

edges, in which the two external edges incident on x; and x;,, are
oriented one way and the third is oriented the opposite way, one can add
the optional edge “between” them [/, c;,,] to the sandwich graph and
complete the orientation to form a TRO graph.

THEOREM 8.4. The comparability sandwich problem is NP-complete.

Proof. The problem is clearly in NP since a given sandwich graph can
be checked for transitive orientability in polynomial time (cf. [17]). We
describe a reduction from NOT-ALL-EQUAL 3-SATISFIABILITY (ab-
breviated NAE-3SAT): Given a 3CNF-formula @ with variables X,,..., X,
and clauses C,,...,C,, is there an assignment of truth values to the
variables so that either one or two literals (but not zero or three) are true
in each clause? This problem was shown to be NP-complete by Schaefer
[33]. Given an instance of NAE-3SAT, we can assume without loss of
generality that no clause contains a variable and its negation. We construct
a TRO sandwich instance (V, E', E°) with 2n + 6m vertices, n + 9m
mandatory edges, and 3m optional edges, as follows:

The vertex set is V' = {x;, X, [i = 1,...,n} U {Il’f, cili=1,...,m, j=0,
1, 2}. x; and X, are called the vertices of literals X; and X;, respectively. The
six vertices I, cj, j = 0, 1, 2 are called the private vertices of clause C,.

To define the edge sets, let x, ,j=0,1,2be the vertlces correspondmg
to the hterals in clause C,. Connect the nine vertices i IO, 1, I,
ch, ci, ¢}, according to the scheme in Fig. 1a. (x, is replaced by x and /,,
c, are replaced by {i, ci, respectively.) The three edges [/, ¢; +1(mod »)
j=0,1,2, are in E° and all other edges are in E'. We call the sandwich
subproblem induced by these nine vertices the ith clause subproblem.
Finally, add an edge [x;, x,] € E! for 1,...,n. All edges between private
vertices of different clauses are forbidden.

Clearly this construction requires polynomial time. Let us now prove its
validity: Suppose first that there exists a TRO sandwich K’ = (V, E*) for
the problem, and let F* be a transitive orientation of E‘. For each
variable X, j = 1,...,n, if (x;, X;) € F°, then by transitivity, F* includes
(x;, I} for every edge [x;, lk] = and (I, %) for every edge [[;,
xjf € E'. Similarly, if (¥, x;) € F° then F* mcludes (%, I}) for every edge
(%, 4,1 € E' and (/}, x;) for every edge [/}, x;} € E".

Construct a truth assxgnment t for the formula @ by assigning #(X;) =
TRUE if F’ includes (x;, X;); otherwise, assign #(X;) = FALSE. By the
transitivity of F*, this implies that for every true (respectively, false) literal
£, (£, D e F* (respectively, (I,) € F*) for every !/ €V such that
[2,1) € E.

Consider the subgraph G/ induced in K° on the subproblem corre-
sponding to the ith clause, and its corresponding induced orientation F;.
G; is isomorphic to a TRO sandwich for (W, H', H®). Thus, by Lemma

464 GOLUMBIC, KAPLAN, AND SHAMIR

8.2 and Remark 8.3, F° must contain at least one and at most two of the
edges (£, , 15), (£, 1)), (%,,, [4). Each such edge corresponds to a literal in
the clause which has been assigned the value TRUE. Hence, v is not-all-
equal truth assignment.

For the converse, suppose ¢ is a NAE truth assignment for the formula
®. We will construct a sandwich graph G* = (V, E°) for (V, E', E°) and
demonstrate that it has a transitive orientation F°*. For each variable x,
i=1,....nif t(x]-)‘= TRUE, F* will contain (x;, X;) and the arcs (x;, 1)
for every edge [x;, ;] € E'. If t(x,) = FALSE, F* will contain (X}, x;) and
the arcs (/;, x;) for every edge [x;, ;] € E'. (In other words, each edge
incident on a vertex corresponding to a true (respectively, false) literal is
oriented out of (respectively, into) that vertex.)

Since ¢ is NAE, there are exactly two literals with the same truth value
in each clause. By Remark 8.3, we can include in the sandwich subgraph
corresponding to this clause the optional edge between the vertices of
these two literals and complete the orientation of the edges in a transitive
fashion. |

Suppose we limit the NAE-SAT instances to be nonseparable instances
only, i.e., instances in which one cannot partition the set of clauses into
two nonempty subsets such that cach subset consists of a disjoint set of
variables. For such instances the graph G' = (V, E') as defined by the
reduction in Theorem 8.4 is connected. The NAE-SAT problem restricted
to such instances clearly remains in NPC, since one can obtain a solution
to a formula by solving independently each of its nonseparable compo-
nents.

According to Remark 8.3, for each clause C,, i = 1,..., m the sandwich
graph G/ induced in G* by the ith clause subproblem is UTRO. Thus, all
the edges of G/ are T'*-related. Due to the connectedness of G’ this
implies that all the edges of G® are I'*-related and G* = (V, E°) is
UTRO. We have thus proved the following theorem:

THEOREM 8.5. The uniquely transitively orientable sandwich problem is
NP-complete.

A simpler proof of Theorem 8.4, which does not extend to UTRO
sandwich, will be given in Section 9.

Remark 8.6. For nonseparable instances, although the sandwich graphs
G*® = (V, E*) generated in the proofs of Theorem 8.4 and Theorem 8.5 are
UTRO, they are not necessarily unique. There may be many UTRO
sandwich graphs, corresponding to different NAE-SAT assignments.

GRAPH SANDWICH PROBLEMS 465
9. PERMUTATION GRAPHS

Consider a finite family of nonempty sets. The intersection graph of this
family is obtained by representing each set by a vertex, two vertices being
connected by an edge if and only if the corresponding sets intersect. Many
interesting families of graphs have characterizations as intersection graphs.
In the following two sections we study the sandwich problem for several
such families, making use of the intersection representation in our analy-
sis. We refer the reader to [3, 17] for much more information on these
families and their polynomial recognition. We omit standard arguments for
membership in NP in the rest of this paper, since they all follow by the
existence of polynomial characterizations of the respective graph families.

A matching diagram of a permutation 7 on the numbers 1,..., n can be
described by writing n points on a straight horizontal line and marking
them 1,...,n in sequence, writing n points on another straight line
parallel to the first and marking them w(1),...,w(n) in sequence, and
adding n segments connecting point { above to point i (which is in position
17 '(#)) below. The connecting segments will be called chords. A graph is a
permutation graph iff it is the intersection graph of the chords of a
matching diagram (see Fig. 2 for an example). One can define a partial
order on the chords of a matching diagram by a < b iff the chord a is
completely to the left of chord b. This defines a partial order on the
complement of a permutation graph.

THEOREM 9.1. The permutation sandwich problem is NP-complete.

Proof. We shall give a reduction from the following problem:

BETWEENNESS:
INPUT: A set of elements S = {a,,...,a,}andaset T ={T,,...,T,}
of ordered triplets of elements from §, where T, = (a,-l, a

i

ah) i=1,...,m.
zzl' Vi '7;12 Vi, Vi
Vi) z} Uiy z’z Vi
(a) & @———o (b)

Fic. 2. (a) The subgraph corresponding to triplet 7). (All edges are E' edges. Nonedges
are in £%) (b) A matching diagram of a permutation graph of the S-chain (v, x/, ¢, x/,
;)

466 GOLUMBIC, KAPLAN, AND SHAMIR

QUESTION: Does there exist a one-to-one function f:§ - {1,
,n} such that either f(q,)<f(a)<f(ai‘) or
f(a)>f(a)>f(a Yfori=1,. ’

This problem was shown to be NP-complete by Opatrny [28]. Given an
instance of BETWEENNESS, form an instance (V, E'!, E?) of the permu-
tation sandwich problem as follows Define a vertex t; for each element
a;, and two vertices xj and x? for triplet T, The vertex set is V' =

J
{vy,... z}U{x x'lj—l .., mk Theedgessetsare

E! = {[L"y < [x o] [#2] [6h e] 1= 1,...,m}
{[LI’L]II:’é] {[l',,X][L',,x][xl,x]]l—1 }

All other edges are in £°. In other words, to each triplet corresponds a
5-chain (see Fig. 2a) which should also appear as a 5-chain in the sandwich
graph, and all the ¢;’s should form an independent set in that graph. The
reduction is clearly polynomial.

The key to the validity proof is that in any matching diagram corre-
sponding to a 5-chain (a, x, b, y, ¢), either a < b <c or ¢ < b < a (see
Fig. 2b).

Suppose there is a function f which satisfies the betweenness condi-
tions. Draw n vertical chords corresponding to the ¢;’s in the matching
diagram such that the chord corresponding to v; is to the left of the chord
corresponding to ¢; if and only if f(a;) < f(a,). Since the ord&.r condmons
on triplets are sansfled additional chords correspondmg to x! and x? can
be added for each triplet 7, such that the subgraph mduced by the five
vertices {v; , t;, ;, X, x}} is a 5-chain. The resulting permutation graph
on V is a sandwich graph.

For the converse, suppose there exists a permuation sandwich solution.
Since in that graph the set {v,...,u,} induces an independent set, a
complete ordering on S is generated by the order of the corresponding
chords in the matching diagram. Construct a function f according to this
order. By the key observation above, every triplet satisfies the betweenness
condition. §

A function diagram is defined by two parallel vertical lines and n
continuous function curves connecting them, having distinct intersection
points with the two vertical lines. Hence, a matching diagram (rotated 90°)
is a special case of a function diagram in which the functions are linear.
The following characterization of cocomparability graphs will be useful
here:

GRAPH SANDWICH PROBLEMS 467

THEOREM 9.2 [19]. G is a cocomparability graph iff G is the intersection
graph of the curves in a function diagram.

THEOREM 9.3. The cocomparability sandwich problem is NP-complete.

Proof. Apply the same reduction from BETWEENNESS as in Theo-
rem 9.1. The proof foilows in a very similar fashion. The key observation
here is that in any function diagram corresponding to the 5-chain (a, x, b,
y, ¢), b’s curve must lie between the curves of a and ¢ (without intersect-
ing them). |

10. OTHER NP-COMPLETE SANDWICH PROBLEMS

10.1. Circle Graphs

An undirected graph G is called a circle graph is there exists a set of
chords C on a circle and a one-to-one correspondence between vertices of
G and chords of C such that two distinct vertices are adjacent if and only
if their corresponding chords intersect. The set of chords C is a circle
representation of G. The class of circle graphs includes the permutation
graphs: From the matching diagram of a permutation graph we can easily
obtain a circle representation by identifying the right and left endpoints of
the two horizontal lines in the diagram. Recognizing circle graphs is
polynomial [11].

Given a permutation diagram for G one can easily obtain a circle
diagram for G + p where p is a single vertex and vice versa. This implies:

LEMMA 10.1. Let G be an arbitrary graph and let p be a graph consisting
of a single vertex. G is a permutation graph iff G + p is a circle graph.

THEOREM 10.2. The circle sandwich problem is NP-complete.

Proof. Reduce permutation-SP to circle-SP, as follows: Given an in-
stance (V, E !, E°) for the permutation-SP, add to V a vertex p and take
WV, E', E9Y=Wu{p), E' Ullp, vl v € V), E°) as the corresponding
instance for the circle-SP. According to Lemma 10.1, (V, E!, E°) has a
permutation graph sandwich iff (V, E!, E°) has a circle sandwich. §

10.2. Interval Graphs

The intersection graph of a family of intervals on the real line is called
an interval graph. Golumbic and Shamir [20] recently proved that the
interval sandwich problem is NP-complete. A simpler proof for the same
result can be obtained by arguments similar to those used in Section 9 (see

(18D.

468 GOLUMBIC, KAPLAN, AND SHAMIR

An interval graph which has an interval representation in which all
intervals have unit length is called unit interval graph. An interval graph
which has an interval representation in which no interval is properly
contained in another is called proper interval graph. Roberts [29] proved
that a graph is proper interval iff it is unit interval. By a careful modifica-
tion of the reduction in [20], one can prove:

THEOREM 10.3 ([18)). The unit interval sandwich problem is NP-complete.

The simpler proof indicated above for interval graphs does not seem to
generalize in a similar fashion to proper interval graphs.

10.3. Circular Arc Graphs

The intersection graph of a family of arcs on a circle is called a circular
arc graph (cf. [36]). If all the arcs have unit length the graph is called unit
circular arc and if no arc contains another the graph is called proper
circular arc. Note that these definitions do not coincide. The complexity of
circular arc-SP is immediately implied by the complexity of the interval-SP,
by the following observation.

LEMMA 104. Let G = (V, E) be an arbitrary graph and let v the graph
comprising of a single vertex. & is an interval graph iff G U v is a circular arc
graph.

THEOREM 10.5. The circular arc sandwich problem is NP-complete.

Proof. Reduce the interval-SP to the circular arc-SP, as follows: Given
an instance (V, E', E?) for the interval-SP, add to V an isolated vertex ¢’
and take (V, E', E?) = (VU {1}, E!, E?) as the corresponding instance
for the circular arc-SP. The reduction is clearly polynomial. By Lemma
10.4, (V, E', E?) has an interval graph sandwich iff (V, E', E?) has a
circular arc graph sandwich. |}

Note that G is a unit interval graph iff G U v is a unit circular arc graph
ifft G U v is a proper circular arc graph. Thus, by a similar reduction from
the unit interval-SP one can prove:

CoroLLAaRY 10.6. The unit circular arc-SP and the proper circular arc-SP
are NP-complete.

10.4. Circular Permutation Graphs

A circular permutation diagram of a permutation 7 consists of two
concentric circles C; D C, in the plane, n points labeled 1,..., 7 on C, in
clockwise direction, n points labeled 7(1),...,7(n) on C, in clockwise

GRAPH SANDWICH PROBLEMS 469

direction, and n paths between them. Path i connects the two points
labeled i, and two distinct paths do not intersect in more than one point. A
graph is a circular permutation graph iff it is the intersection graph of the
paths in a circular permutation diagram [32]. Clearly every permutation
graph is also a circular permutation graph.

THEOREM 10.7. The circular permutation sandwich problem is NP-com-
plete.

Proof. Reduction from permutation-SP, by a construction identical to
that used in Theorem 10.5 |

10.5. Path Graphs

A directed rooted tree is a directed acyclic graph with a distinguished
vertex from which there is a directed path to every other vertex. The
intersection graph of a family of directed paths on a directed rooted tree is
called a directed path graph [15]. The intersection graph of a family of paths
on an undirected tree is called a path graph [16]. Clearly, every interval
graph is also a directed path graph and every directed path graph is a path
graph.

LEMMA 10.8. Let G = (V, E) be an arbitrary graph and let G' = G + p
be the join of G with a singleton p. The following statements are equivalent:
(1) G is an interval graph. (2) G’ is a directed path graph. (3) G' is a path
graph.

Proof. Clearly (1) = (2) and (2) = (3). We shall complete the equiva-
lence by proving (3) = (1) Let I(w) be the path corresponding to the
vertex w in a representation of G'. Hence, I(v) N I(¢v') # & for every
v € V. Since the representation is of paths on a tree, which satisfy the
Helly property (cf. [17D, I(v) N I(w) # & for some v, w € V iff I(v) N
Iw) N I(v') # &. Therefore, the family {I(v) N I(¢')}, o, is a representa-
tion of G as intersection of intervals on a line. §

Using this lemma one can reduce interval-SP to the path-SP and to the
directed path-SP by a construction identical to that in Theorem 10.2 and
obtain:

THEOREM 10.9. The path sandwich and the directed path sandwich prob-
lems are NP-complete.
10.6. Chordal Graphs

A graph is triangulated or chordal if every cycle of length at least four
contains a chord. A proper coloring of a graph G = (V, E) with a set of

470 GOLUMBIC, KAPLAN, AND SHAMIR

colors Z is a function ¢:V — Z such that [u, v] € E = c(u) # c(v).
The triangulating colored graph problem (TCG) is defined as follows:

Triangulating Colored Graph Problem
INPUT: Graph G = (V, E) and a proper coloring ¢:V — Z of G,
where Z is a set of colors.
QUESTION: Is there a chordal supergraph of G which is properly
colored by ¢?

This problem arises in biology, in constructing evolutionary trees. Bod-
laender et al. [2] and Steel [34] recently proved that TCG is NP-complete.

........ perfest \

co-chordal Lo - it ‘comparabmty’

co-interval

NP. pl Pol fal errrereeene Open

FiG. 3. The complexity status of the sandwich problem for some graph classes. (4 - B
indicates that class A4 contains class B.)

GRAPH SANDWICH PROBLEMS 471

This immediately implies the following result:
THEOREM 10.10. The chordal sandwich problem is NP-complete.

Proof. Reduce TCG to chordal-SP. Given a graph G = (V, E) with
a coloring ¢ as an input to the TCG, build a chordal sandwich instance
(V, E', E?) in which E' = E and E? = {[u, v]]c(uw) # c(v)}. Clearly
there is a chordal supergraph of G properly colored by ¢ iff there is a
chordal sandwich to (V, E!, E?). |

11. SUMMARY

We have studied the complexity of the sandwich problems for some
families of graphs. Figure 3 summarizes many of the results and indicates
several outstanding open problems for subfamilies of perfect graphs.

ACKNOWLEDGMENTS

We thank Noga Alon and Miki Tarsi for helpful discussions on Section 7, Uri Peled on
Sections 4 and 5, and Tandy Warnow on Section 10.6. We are also thankful to two
anonymous referees for their careful reading and comments on the manuscript.

REFERENCES

1. B. Apsvall, M. F. Plass, and R. Tarjan. A linear-time algorithm for testing the truth of
certain quantified boolean formulas, Inform. Process. Lett. 8(3) (1979), 121-123.

2. H. L. Bodlaender, M. R. Fellows, and T. J. Warnow, Two strikes against perfect
phylogeny, “Proceedings 19th ICALP” (W. Kuich, Ed.), Lecture Notes in Computer
Science, Vol. 623, pp. 273-283, Springer Berlin, 1992.

3. A. Brandstidt, Special graph classes—A survey, Technical Report SM-DU-199, Univer-
sitat Duisburg, 1991.

4. P. Buneman, A characterization of rigid circuit graphs, Discrete Math. 9 (1974), 205-212.

5. A. V. Carrano, Establishing the order of human chromosome-specific DNA fragments, in
“Biotechnology and the Human Genome” (A. D. Woodhead and B. J. Barnhart, Eds.),
pp- 37-50, Plenum Press, New York, 1988.

6. V. Chvatal and P. L. Hammer, Aggregation of inequalities for interger programming,
Ann. Discrete. Math. 1 (1977), 145-162.

7. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, in
“Proceedings, 19th Annual ACM Symposium on Theory of Computing” 1987, pp. 1-6.

8. D. G. Comeil, H. Lerchs, and L. Stewart Burlingham, Complement reducible graphs,
Discrete Appl. Math. 3 (1981), 163-174.

9. D. G. Corneil, Y. Perl, and L. K. Stewart, A linear recognition algorithm for cographs,
SIAM J. Compur. 14(4) (1985), 926-934.

472 GOLUMBIC, KAPLAN, AND SHAMIR

10.

1.

12.

o
[}

2
98]

25.

26.

27.

28.
29.

S. Foldes and P. L. Hammer, Split graphs, in “Proceedings, 8th Southeastern Conference on
Combinatorics, Graph Theory and Computing” (F. Hoffman et al.,, Eds), pp. 311-315,
Louisiana State Univ., 1977.

C. P. Gabor, K. J. Supowit, and W_.-L. Hsu, Recognizing circle graphs in polynomial time,
J. Assoc. Comput. Mach. 36 (1989), 435-473.

T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hungar. 18 (1967),
25-66.

. M. R. Garey and D. S. Johnson, “Computers and Intractability: A Guide to the Theory of

NP-Completeness,” Freeman, San Francisco, 1979.

. M. R. Garey, D. S. Johnson, and R. E. Tarjan, The planar hamiltonian circuit problem is

NP-complete, SIAM J. Comput. 5 (1976), 704-714.

. F. Gavril, A recognition algorithm for the intersection graphs of directed paths in

directed trees, Discrete Math. 13 (1975), 237-249.

. F. Gavril, A recognition algorithm for the intersection graphs of paths in trees, Discrete

Math. 23 (1978), 211-227.

. M. C. Golumbic, “Algorithmic Graph Theory and Perfect Graphs,” Academic Press, New

York, 1980.

. M. C. Golumbic, H. Kaplan, and R. Shamir, On the complexity of DNA physical mapping,

Adv. Appl. Math. 15 (1994), 251-261.

. M. C. Golumbic, D. Rotem, and J. Urrutia, Comparability graphs and intersection graphs,

Discrete Math. 43 (1983), 37-46.

. M. C. Golumbic and R. Shamir, Complexity and algorithms for reasoning about time:

A graph-theoretic approach, J. Assoc. Comput. Mach. 48 (1993), 1108-1133,

. P. L. Hammer, T. Ibaraki, and U. N. Peled, Threshold numbers and threshold comple-

tions, in “Studies on Graphs and Discrete Programming” (P. Hansen, Ed.), pp. 125145,
North-Holland, Amsterdam, 1981.

P. L. Hammer and B. Simeone, The splittance of a graph, Combinatorica 1 (1981),
275-284.

. P. B. Henderson and Y. Zalcstein, A graph-theoretic characterization of the PV chunk

class of synchronizing primitives, SIAM J. Comput. 6 (1977), 88-108.

. D. S. Johnson, The NP-completeness column: An ongoing guide, J. Algorithms 6 (1985),

434-451.

S. K. Kannan and T. J. Warnow, Triangulating 3-colored graphs, SIAM J. Discrete Math.
5(2) (1992), 249-258.

V. King, S. Rao, and R. E. Tarjan, A faster deterministic maximum flow algorithm, in
“Proceedings, 3rd Annual ACM~SIAM Symposium on Discrete Algorithms,” pp. 157164,
ACM Press, New York, 1992,

R. M. McConnell and J. P. Spinrad, Linear-time modular decomposition and efficient
transitive orientation of comparability graphs, in “Proceedings, Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 94),” ACM Press, New York, 1994,

J. Opatrny, Total ordering problems, SIAM J. Comput. 8(1) (1979), 111-114.

F. S. Roberts, Indifference graphs, in “Proof Techniques in Graph Theory” (F. Harary,
Ed.). pp. 139-146, Academic Press, New York, 1969,

. F. S. Roberts, “Discrete Mathematical Models, with Applications 1o Social, Bivlogical and

Environmental Problems,” Prentice—Hall, Englewood Cliffs, NJ 1976.

. J. D. Rose, A graph-theoretic study of the numerical solution of sparse positive definite

systems of linear equations, in “Graph Theory and Computing” (R. C. Reed, Ed.),
pp. 183-217, Academic Press, NY 1972.

. D. Rotem and J. Urrutia, Circular permutation graphs, Networks 11 (1982), 429-437.
. T. J. Schaefer, The complexity of satisfiability problems. in “Proceedings, 10th Annual

ACM Symposium on Theory of Computing,” 1978, pp. 216-226.

GRAPH SANDWICH PROBLEMS 473

34. M. Steel, The complexity of reconstructing trees from qualitative characters and subtrees,
J. Classification (1992), 9 91-116.

35. R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972),
146-160.

36. A. C. Tucker, Characterizing circular arc graphs, Bull. Amer. Math. Soc. 76 (1970),
1257-1260.

37. M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Alg. Discrete
Methods 2 (1981).

