
Shape Sensitive Geometric Monitoring
Daniel Keren, Izchak Sharfman, Assaf Schuster, and Avishay Livne

Abstract—An important problem in distributed, dynamic databases is to continuously monitor the value of a function defined on the

nodes, and check that it satisfies some threshold constraint. We introduce a monitoring method, based on a geometric interpretation of

the problem, which enables to define local constraints at the nodes. It is guaranteed that as long as none of these constraints is

violated, the value of the function did not cross the threshold. We generalize previous work on geometric monitoring, and solve two

problems which seriously hampered its performance: as opposed to the constraints used so far, which depend only on the current

values of the local data, here we incorporate their temporal behavior. Also, the new constraints are tailored to the geometric properties

of the specific monitored function. In addition, we extend the concept of safe zones for the monitoring problem, and show that previous

work on geometric monitoring is a special case of the proposed extension. Experimental results on real data reveal that the new

approach reduces communication by up to three orders of magnitude in comparison to existing approaches, and considerably narrows

the gap between achievable results and a newly defined lower bound on communication complexity.

Index Terms—Data streams, distributed systems, geometric monitoring, shape, data modeling.

Ç

1 INTRODUCTION

MANY emerging applications require processing high-
volume streams of data. Examples include network

traffic monitoring systems, real-time analysis of financial
data [36], [38], distributed intrusion detection systems, and
sensor networks [26]. A key difference between these
problems and those handled by traditional Database
Management System (DBMS) is that the above-mentioned
application are required to process continuous queries. DBMS
receive queries that are static in nature, i.e., the system
receives a query, and returns a response based on the data
currently present in the system. Here, on the other hand, we
are interested in handling continuous queries, i.e., the system
receives a query and continuously updates the user as new
data arrives. This key difference poses new fundamental
challenges that are not addressed by traditional DBMS.

Various types of continuous queries have been studied in
the past, including continuous versions of selection and join
queries [27], various types of aggregation queries [4], [29],
and monitoring queries [9]. While most previous work
regarding data stream systems considers sequential setups
(the data are processed by a single processor), many data
stream applications are inherently distributed: examples
include sensor networks [26], network monitoring [20], and
distributed intrusion detection.

In many cases, the user of a distributed dynamic system
is interested in receiving notifications when global “events
of interest” occur. These tasks are referred to as distributed
monitoring tasks. Consider, for example, a distributed system
for detecting denial of service attacks. A node is considered

to be under attack if more than a certain percentage of the
incoming traffic, say 0.1 percent, is directed to that node.
The system is comprised of agents installed on the routers
controlling the network traffic entering a local network.
Each agent monitors the traffic flowing into the network
through its host.

It is easy to see that in the example given above, when a
certain node is under attack, at least one of the agents will
detect that the network traffic to that node exceeds
0.1 percent of the incoming traffic. In other words, the
global “event of interest” has a local indication. This fact can
be utilized to develop efficient monitoring algorithms, as
described in [20].

In more complex monitoring tasks, global “events of
interest” may be harder to detect by solely examining local
data. For example, consider a distributed search engine. The
engine is comprised of a distributed set of mirrors. Each
mirror receives a stream of queries, where each query
consists of multiple search terms. We are interested in
monitoring the correlation between the appearance of pairs
of terms is a search query. To achieve this, each mirror
keeps track of the queries it received in the last, say,
48 hours. We refer to these queries as the sliding windows
held by the mirrors. Given two search terms, denoted A and
B, let fA and fB be the respective global frequency of
occurrence1 of A and B, i.e., the frequency of their
occurrence in the union of the sliding windows held by
the mirrors. In addition, let fAB be the global frequency of
occurrence of both A and B. The correlation between the
appearance of A and that of B is measured using the
correlation coefficient �AB, which is defined by

�ABðfA; fB; fABÞ ¼
fAB ÿ fAfB

ffi

ÿ

fA ÿ f2A
�ÿ

fB ÿ f2
B

�

q :

The correlation coefficient receives values in the range
½ÿ1::1�. A negative score indicates that the terms tend to

1520 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

. D. Keren is with the Computer Science Department, Haifa University,
Haifa 31905, Israel. E-mail: dkeren@cs.haifa.ac.il.

. I. Sharfman, A. Schuster, and A. Livne are with the Computer Science
Faculty, Technion, Haifa 32000, Israel.

Manuscript received 16 July 2010; revised 30 Jan. 2011; accepted 16 Mar.
2011; published online 27 Apr. 2011.
Recommended for acceptance by N. Mamoulis.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-07-0401.
Digital Object Identifier no. 10.1109/TKDE.2011.102.

1. Frequency of occurrence is the number of search queries containing
the term, divided by the total number of queries.

1041-4347/12/$31.00 ß 2012 IEEE Published by the IEEE Computer Society

exclude each other, a score of zero indicates that there is no
correlation between the appearance of the terms, and a
positive score indicates that the terms tend to appear in the
same queries. A typical requirement in data mining
applications is to alert when the correlation coefficient
crosses a given positive threshold, since this means that two
search terms became correlated. It is easy to see that it’s
impossible to reach a correct decision, given only the local
values of the correlation coefficient. This is a characteristic
of nonlinear functions; see, for example, Section 4 (“Run-
ning Example”) in [33].

In this paper, we consider a set of nodes, each of which
holds a time varying data vector. The global “event of
interest” is defined by an arbitrary (possibly nonlinear)
function over the weighted average of the vectors held by the
nodes, and we are interested in detecting when the value of
this function crosses a predetermined threshold. For the
above example, this means that we’re not interested in
the exact value of the correlation coefficient between the
appearances of two tokens A;B at every point in time—the
large part of this information being redundant—but only on
whether the correlation coefficient had passed a certain
threshold.We refer to such tasks as nonlinear monitoring tasks.

1.1 Distributed Geometric Monitoring

While nonlinear monitoring tasks can be performed by a
naive algorithm that collects all the data to a central location
for analysis, the communication load incurred by such an
algorithm may be prohibitively high. Sensor networks are
particularly vulnerable to a high communication load, since
communication is the primary factor affecting the power
consumption of the network [37]. In addition to commu-
nication load concerns, collecting data to a central location
may violate privacy requirements in certain applications.

Previous work [34] proposed algorithms for performing
nonlinear monitoring tasks that are based on geometric
techniques. The idea is to use the geometric properties of
the local data vectors to construct a set of local constraints.
Each node then needs to verify that its local data vector
conforms to a local constraint. These constraints can be
verified independently (i.e., each node can verify its local
constraint without communicating with other nodes), and if
all the constraints are upheld, it is guaranteed that the
function did not cross the threshold. The constraints
proposed in [34], however, have several drawbacks.

The first deficiency of these constraints is that they are
constructed solely according to the current values of the
local data vectors. Real-world data usually displays an
underlying distribution. Here, we solve this problem by
fitting a probabilistic model to the data, and using it to
create local constraints that are optimized to the data
received on the nodes, in the sense that the probability of a
constraint violation is minimized.

Another disadvantage of the geometric constraints pro-
posed in previous work is that they are generic in the sense
that the same constraints are used regardless of the function
at hand. To solve this problem, we modify the constraints by
tailoring them to the geometric properties of the specific
function which is being monitored.

Lastly, we define a general notion of safe zones (SZs). A
node’s SZ consists of the set of vectors which satisfy the

local constraints, and as long as the vectors remain in their
SZs, no communication is required. We show that the SZs

defined in previous work on geometric monitoring are a

special case of a general paradigm for computing optimal

SZs, which are defined as certain convex subsets of the
function’s domain.

2 RELATED WORK

A well-studied problem is the monitoring of frequency
counts over a single data stream [4], [6], [11], [29], however

these works do not address distributed environments.

Other important problems over a single data stream were

studied in [10], [12], [19], [21].
Distributed function computation has been addressed by

the “Distributed Triggers” framework presented in [24].

Later, this framework has been employed to monitor

network wide traffic anomalies [22], [23]. Our work is

consistent with the distributed triggers framework in that it
employs a set of local constraints for detecting a global

event of interest. In contrast to [22], [23], which focus on an

anomaly detection problem, our work addresses a wide
class of nonlinear monitoring problems. Recent work

addressed thresholding a function defined on distributed

nodes in the static case by first solving the problem for a

monotonic function and then extending to a general
function by expressing it as the difference of two monotonic

functions [39].
Another important problem is the computation of the

sum or average of a distributed set of variables. Prominent

examples include [20], which addresses the problem of
detecting when the sum exceeds a given threshold, [13],

which proposes observing the distribution of the input data

to derive optimal algorithms, and [30] which enables

tracking the sum, average, or minimum of a distributed
set of variables within a certain predetermined error

margin. Our work differs in that we monitor the value of

an arbitrary function over a vector of distributed variables.
A common approach to distributed stream monitoring is

the use of sketches to summarize data while maintaining

accuracy bounds. This approach has been employed to

detect “heavy hitters” [28], compute quantiles [15], count

distinct elements [17], and compute join aggregates [14].
Other distributed computation problems studied in

previous work include top-k problems [8], set-expression

cardinality estimation [18], clustering [16], and distributed

verification of logical expressions [3].
Recent work addresses a theoretical tracking of fre-

quency moments tracking, where the goal is to minimize
communication while maintaining an accurate estimate

[40], tracking of “heavy hitters” (elements whose frequency

is at least a certain portion of a given set) and quantiles [41],

and optimal sampling from distributed streams [42].
Recently, the geometric monitoring scheme was proposed

in [34]. In contrast to the methods proposed in [34], which

are oblivious to the nature of the data on the streams and to
the monitored function at hand, the methods presented here

leverage this information, yielding a very significant

reduction in communications.

KEREN ET AL.: SHAPE SENSITIVE GEOMETRIC MONITORING 1521

3 THE MONITORING FRAMEWORK

We now present a general framework for performing
nonlinear monitoring tasks. Refer to the data held by each
node as the local data vector, and to their weighted average
as the global data vector. Denote the dimension of these
vectors by d (e.g., for the correlation coefficient example,
d ¼ 3). We refer to the function evaluated at the global data
vector as the monitored function. The combination of the
monitored function and the threshold value is viewed as
inducing a coloring over the d-dimensional domain: vectors
for which the value of the monitored function is above
(below) the threshold are colored white (gray). Given this
geometric interpretation, the goal of the monitoring task can
be viewed as determining the color of the global data vector
at all times.

Upon initialization of the monitoring task, and when
dictated by the monitoring algorithm, all the local data
vectors are collected by a certain node designated as the
coordinator. The coordinator calculates the weighted average
of the local data vectors (i.e., it determines the global data
vector), and sends this value to the nodes. We refer to this
vector as the estimate vector, and denote it by ~e. The process
of collecting the local data vectors and calculating the
estimate vector is referred to as a synchronization process.

As data arrive on the streams maintained by the nodes,
each node keeps track of the difference between the current
value of its data vector and its value at the time of the last
synchronization. We refer to this difference as the delta
vector. We denote the sum of the estimate vector and the
delta vector as the drift vector. The drift vector held by the
ith node is denoted by ~vi. It is easy to verify that the global
data vector is a convex combination of the drift vectors,
hence it belongs to their convex hull.

Fig. 1(left) depicts the coloring induced by the combina-
tion of the monitored function and the threshold value, the
initial data vectors (purple diamonds), and the estimate
vector (blue square). As data arrive at the nodes, the local
vectors change. The new location of the data vectors (purple
diamonds), as well as their initial location (white diamonds)
are depicted in Fig. 1(right). In addition, the corresponding
drift vectors (red circles) are depicted, and their convex hull
is highlighted in gray. Note that the difference between the
current and initial values of the a data vector is equal to
the difference between the corresponding drift vector and
the estimate vector.

Our goal is to define local constraints on the values of the
drift vectors, such that each node can verify its local

constraint independently, such that if all the constraints are
upheld, the convex hull of the drift vectors is guaranteed to
be monochromatic (i.e., all the vectors in it are of the same
color). As long as this convex hull remains monochromatic,
the function’s value did not cross the threshold and no
communication is required.

The local constraints are defined by regions inRd that each
node determines according to the estimate vector and its drift
vector. If the region determined by a node is monochromatic,
the constraint is upheld, otherwise it is violated.We call these
regions bounding regions, since we require that their union
covers the convex hull of the drift vectors.

We propose the following method for constructing
bounding regions: the nodes agree in advance on a d� d
symmetric positive definite matrix A, which we name the
shape matrix. In addition, the nodes agree on a common
vector denoted by ~r, which is called the reference vector.
The shape matrix and reference vector are determined
during the synchronization process. Given a node’s drift
vector~vi, the reference vector~r, and the shape matrix A, the
bounding region constructed by the node is the ellipsoid
EA, which is defined as follows, using the Mahalanobis
distance [43]

EAð~r;~viÞ ¼ ~z

�

�

�

�

�

~zÿ~rþ~vi
2

� �T

A ~zÿ~rþ~vi
2

� �

(

� ~rÿ~vi
2

� �T

A
~rÿ~vi

2

� �

)

:

ð1Þ

Note that by setting the shape matrix to the unit matrix,
the bounding region maintained by each node is a sphere
centered at the midpoint between the reference vector and
the node’s drift vector, whose radius is half the distance
between the reference vector and drift vector. Given a
reference vector and a drift vector, we denote the sphere
created by using the identity matrix as the shape matrix
by Bð~r;~viÞ

EIð~r;~viÞ ¼ Bð~r;~viÞ ¼ ~z ~zÿ~rþ~vi
2

2

� ~rÿ~vi
2

2

�

�

�

�

� �

:

Using the identity matrix as the shape matrix and the
estimate vector as the reference vector yields the spherical
bounds defined in [34].

When the shape matrix is not the identity, the bounding
region held by a node is an ellipsoid centered at the
midpoint between the reference vector and the node’s drift
vector. Fig. 2 illustrates the use of local constraints to
determine the value of the threshold function. The coloring
induced by the combination of the monitored function and
the threshold value is depicted. The convex hull of the drift
vectors (red circles) is highlighted, and the ellipsoids
constructed by the various node are shown. As illustrated
in the figure, all the ellipsoids are monochromatic,
guaranteeing that the convex hull is monochromatic as
well (note that the covering theorem is correct for every
choice of A). For a proof of the general case, see Section 4.2.

In summary, the monitoring algorithm proceeds as
follows: upon initialization, a synchronization process is
performed, after which each node holds an estimate vector,

1522 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

Fig. 1. Geometric interpretation of a monitoring problem.

a reference vector, and a shape matrix. Note that after the
synchronization process, all the drift vectors are equal to
the estimate vector. If the estimate vector is used as the
reference vector, the ellipsoids constructed by the nodes are
a single vector (and hence monochromatic), therefore after
the synchronization process, all the constraints are upheld.
As more data arrive on the streams, each node verifies that
its ellipsoid is monochromatic. If one of the ellipsoids is not
monochromatic, a synchronization process is performed.

We show that choosing the optimal shape matrix enables
us to customize the constraints to the properties of the data
received on the streams. In addition, we show that by
carefully selecting the reference vector, we can adjust the
constraints to the monitored function at hand.

In the following section, we discuss the use of ellipsoidal
constraints. We build a probabilistic model of the data, and
use it to determine the shape matrix.

4 CONSTRUCTING DATA SENSITIVE CONSTRAINTS

The goal in this section is to construct bounding regions that
cover the convex hull of the drift vectors as tightly as
possible. We thus decrease the number of “false positives”
generated by the constraints. A constraint causes a “false
positive” if the bounding region it defines is not mono-
chromatic, while the convex hull of the drift vectors is
monochromatic; that means that the alert sent by the node
was spurious. Intuitively, we want the bounding regions to
be “large”—not necessarily in terms of volume, but in terms
of the probability of the dynamic local vectors to remain in
their bounding volumes for as long as possible. While these
optimal bounding volumes are not required for correctness,
they substantially improve the monitoring algorithm by
minimizing communication.

We use previous data received on the streams to
construct a probabilistic model of future values, and then
use this model to construct optimal bounding regions.

4.1 Data Modeling

In order to model the data received on the streams, we view
it as if it were generated by a probabilistic data source.
Consider, for example, the search term correlation example
presented in Section 1. Let us assume that the appearance of
each search term in a query is determined by a stationary
random variable that receives 1 if the term appears in the

query, and 0 otherwise. We assume that the terms used in a
certain query are drawn independently of the terms used in
previous queries (note that we do not assume that the
values drawn for the various terms in a certain query are
independent). Consequently, given two search terms, A and
B, the global data vector ðfA; fB; fABÞ can be viewed as an
average of i.i.d random vectors.

Under these assumptions, according to the Central Limit
Theorem, the distribution of the global data vector con-
verges to a multivariate Gaussian (normal) distribution, as
the number of search queries held in the sliding windows
increases. Recall the multivariate Gaussian distribution

G~�;�ð~vÞ ¼
1

ð2�Þd=2 detð�Þ1=2
exp ÿ 1

2
ð~vÿ ~�ÞT�ÿ1ð~vÿ ~�Þ

� �

;

where ~� is the expected value of the global data vector,
and � is its covariance matrix. Given a set of previous
values of the drift vectors, we can construct an empirical
probability distribution of these values by calculating their
mean and covariance matrix, and use them as the
parameters of a multivariate Gaussian distribution. Then,
we can use this distribution to predict future values of the
drift vectors.

Note that a Gaussian distribution of drift vectors is not
particular to the search term correlation example. The
Gaussian distribution is commonly used to characterize the
behavior of natural phenomena, and is particularly suitable
whenever the drift vector can be modeled as the sum or
average of independently drawn random vectors. As a
result, we expect that the methods presented below will be
applicable to a large family of practical problems.

4.2 Using the Model to Construct Tight Bounding
Regions

Intuitively, it would be simpler to construct tight bounding
regions on the drift vectors if the data were isotropic, i.e.,
transformed so that it is distributed evenly in all directions.
Formally, this means that the variances of the transformed
data along the various axes is identical, and that the
covariance among any pair of axes is zero. We use the
model we built to determine a transformation that
normalizes the data so that it is isotropic. We show that
by first applying this transformation on the drift vectors,
and then using spherical bounding regions as described in
Section 3, we obtain ellipsoidal bounding regions. In
addition, we prove the validity of the ellipsoidal constraints
(i.e., the ellipsoidal bounding regions are guaranteed to
cover the convex hull of the drift vectors), and show that by
applying the normalizing transformation, we obtain the
tightest possible ellipsoidal bounding regions.

We start by describing the normalization process.
Given G~�;�ð~vÞ, we wish to transform the data so that the
variance of the transformed data is identical along the
various axes, and the covariance among any pair of axes is
zero. In order to do so, observe that the covariance matrix
� is symmetric and positive definite, and can therefore be
decomposed as follows:

� ¼ P�D�P
ÿ1
�

;

KEREN ET AL.: SHAPE SENSITIVE GEOMETRIC MONITORING 1523

Fig. 2. The use of ellipsoidal constraints.

where P� is a matrix whose columns are the normalized
eigenvectors of �, and D� is a diagonal matrix with the
respective eigenvalues on its diagonal. Since � is sym-
metric, its eigenvectors are orthogonal, and therefore P� is
orthonormal. Since � is positive definite, its eigenvalues are
positive. Let D0

� be the square root of D� (i.e., a diagonal
matrix with the square root of the eigenvalues of � on its
diagonal). Since P� is orthonormal, it can be viewed as a
rotation transformation, and Pÿ1

�
can be viewed as the

inverse rotation transformation. Since D0
� is a diagonal

matrix, it can be viewed as a scaling transformation. Let us
define the linear transformation T� ¼ D0ÿ1

� Pÿ1
� . Note that T�

is a concatenation of a rotation transformation and a scaling
transformation. Given a drift vector ~v, drawn from the
distribution G~�;�ð~vÞ, let ~v0 be the image of ~v under the
transformation T�, i.e., ~v0 ¼ T�~v. It is easy to show that
the distribution of the transformed vectors is G0

~�0 ;I
ð~v0Þ

G0
~�0;I

ð~v0Þ ¼ 1

ð2�Þd=2
exp ÿ 1

2
ð~v0 ÿ ~�0ÞT ð~v0 ÿ ~�0Þ

� �

;

where ~�0 ¼ T�~�. Note that the distribution G0
~�0;I

ð~v0Þ is
isotropic, i.e., the variance of the data is equal in all
directions (in the pattern recognition community such an
operation is often referred to as “whitening,” [43]).

The ellipsoidal bounding regions are constructed as
follows: given an estimate vector ~e and a drift vector ~vi, we
determine ~e0 and ~v0i, their image under the transformation
T�. Next, we construct a sphere centered at the midpoint
between ~e0 and ~v0i, with a radius of half the distance
between ~e0 and ~v0i (recall that this sphere is denoted by
Bð~e0; ~v0iÞ). Observe that the image of the sphere Bð~e0; ~v0iÞ
under the transformation Tÿ1

� is the ellipsoid E�ÿ1ð~e;~viÞ (see
(1)). According to a theorem from [34] (which is quoted
below), it follows that given a set of drift vectors ~v1; . . . ;~vn,
the union of the spheres Bð~e0; ~v01Þ; . . . ; Bð~e0; ~v0nÞ bounds the
convex hull of the vectors ~v01; . . . ; ~v0n:

Theorem 1. Let ~x; ~y1; ~y2; . . . ;~yn 2 Rd. Let Convð~x;
~y1; ~y2; . . . ;~ynÞ be the convex hull of ~x;~y1;~y2; . . . ;~yn. Let

Bð~x;~yiÞ be a sphere centered at ~xþ~yi
2

and with a radius of

k ~xÿ~yi
2

k2, i.e., Bð~x;~yiÞ ¼ f~zjk~zÿ ~xþ~yi
2

k2;� k ~xÿ~yi
2

k2g. Then,

Convð~x;~y1;~y2; . . . ;~ynÞ �
Sn

i¼1 Bð~x;~yiÞ.
Since linear transformations preserve convexity (i.e.,

the image of the convex hull of a set of vectors is the
convex hull of the images of these vectors), it follows that
the convex hull of the original drift vectors is covered by
the ellipsoids E�ÿ1ð~e;~v1Þ; . . . ; E�ÿ1ð~e;~vnÞ. Fig. 3 illustrates
the process of bounding the convex hull of a set of
vectors using ellipsoids. This process can be thought of as
first applying a rotation transformation (step 1) and then
a scaling transformation (step 2) on the vectors. Next, the
convex hull is bound using spheres (step 3), and finally,
the inverse transformations are applied (steps 4 and 5).

During the synchronization process, in addition to its
drift vector, each node sends the coordinator the covariance
matrix and mean vector of the data values contained in its
sliding window (note that if the dimension d is large,
bandwidth can be saved by compactly representing the
covariance matrix using the leading terms of its spectral
decomposition). The coordinator uses this data to calculate
the covariance matrix representing the global data set, sends
its inverse to the nodes as the shape matrix, and sends the
estimate vector as the reference vector. Experimental results
show that using these ellipsoidal bounding regions can
reduce communication by over an order of magnitude in
comparison to spherical constraints (see Section 8).

Next, we formally show that using the inverse of the
covariance matrix produces optimal ellipsoidal bounding
regions.

4.3 Optimality of the Ellipsoidal Bounds

In the previous section we proposed ellipsoidal bounding
regions, using the inverse of the covariance matrix of the
data as the shape matrix. Intuitively, this transformation
should be optimal, since using these ellipsoids is equivalent
to bounding transformed, isotropic data with spheres. In
other words, if we use a different shape matrix, we should

1524 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

Fig. 3. Bounding a convex hull with ellipsoids.

receive ellipsoids whose expected volume is greater.
Theorem 2 formally confirms this intuition; due to space
limitations, its proof is not included.

Theorem 2. Let A be a d� d positive definite matrix such that
detðAÞ ¼ 1. Let � be the covariance matrix of a d dimensional
Gaussian distribution Gð~0;�Þ centered at the origin. Let ~x be
a random vector drawn according to G. Let V ð~xÞ be the
volume of the ellipsoid EAð~0;~xÞ. Then, the expected value of
V ð~xÞ is minimized by A ¼ �

ÿ1

detð�ÿ1Þ1=d .

5 STRATEGIES FOR SELECTING A REFERENCE

VECTOR

Up to this point, we focused on creating constraints that
minimize the volume of the bounding region maintained by
each node. While this approach is very effective, it only
takes into account the convex hull that needs to be
bounded, but does not consider the monitored function.
In fact large, but carefully constructed bounding regions,
can be more effective than smaller regions in bounding the
convex hull of the drift vectors. The size of the bounding
regions is affected by the choice of the reference vector used
for constructing them. Up to this point, we used the
estimate vector as the reference vector. However, as the
following example demonstrates, the estimate vector is not
necessarily the best reference vector. Fig. 4 depicts the
coloring induced by the function fðx; yÞ ¼ 2x2=ðx2 þ 1Þ ÿ y,
and a threshold value of 0. In addition, it depicts two drift
vectors (red circles) ((0.45,0.39) and (0.105,0.055)) and an
estimate vector (blue square) (0.26,0.268). The figure depicts
two choices of reference vectors: in Fig. 4(left) the estimate
vector is used as the reference vector, while in Fig. 4(right),
a vector that is more distant from the threshold surface is
used (the threshold surface is the set of vectors for which
the value of the monitored function equals the threshold
value). As illustrated by the figure despite being larger, the
spheres created with the distant reference vector are
monochromatic, while the smaller spheres created with
the estimate vector are not.

Next, we will expand upon the intuitive concepts
described above. We begin by describing some concepts,
then define a formal construct called a safe zone. Then, we
show how safe zones can be used to evaluate the merits of a

given reference vector, and finally, describe a method for
selecting good reference vectors.

5.1 Notations

Following are some notations used throughout this section.
As mentioned above, a monitored function g and the
threshold value t define the threshold surface T ðg; tÞ, i.e.,
the set of vectors for which the value of the monitored
function is equal to the threshold value

T ðg; tÞ ¼ ~x gð~xÞ ¼ tjf g:

We assume that the monitored function g is continuous
and differentiable in all Rd.

The distance of a vector ~x to the threshold surface is
defined as the minimum over the distances of ~x to all the
vectors on the threshold surface, and is denoted by
distðT ðg; tÞ;~xÞ

distðT ðg; tÞ; ~xÞ ¼ min ~zÿ~xk k2 ~z 2 T ðg; tÞj
ÿ �

: ð2Þ

Note that a sphere is monochromatic if and only if the
distance of its center to the threshold surface is greater than
its radius. The vector on the threshold surface that is closest
to a given vector ~x is denoted by ~x�. Note that there may be
more than one vector on the threshold surface that
minimize the distance to ~x. In this case ~x� is arbitrarily
selected among these vectors. Denote the normal to the
threshold surface at ~x� by ~n~x� . These constructs are
illustrated in Fig. 5.

Given a monitored function g and a threshold value t,
define a function colg;tð~xÞ as follows:

colg;tð~xÞ ¼
1 if gð~xÞ > t
0 if gð~xÞ ¼ t
ÿ1 if gð~xÞ < t:

8

<

:

Two vectors ~x and ~y have the same color if colg;tð~xÞ �
colg;tð~yÞ ¼ 1.

Given a reference vector ~r, let Sg;tð~rÞ be the set of all the
vectors that create a monochromatic sphere with ~r

Sg;tð~rÞ ¼ ~z
~zÿ~r

2

2

< dist T ðg; tÞ;~zþ~r

2

� ��

�

�

�

� �

: ð3Þ

KEREN ET AL.: SHAPE SENSITIVE GEOMETRIC MONITORING 1525

Fig. 4. The effect of the reference vector on the bounding regions. The
green reference point, obtained by translating the blue reference point
away from the white region’s boundary, yields larger bounding volumes
for the two red dots representing data points; however, these volumes
are contained in the white region, while the smaller ones, dictated by the
blue reference point, are not.

Fig. 5. Illustration of a threshold surface, a reference point, and the
normal.

We call this set the safe zone induced by g, t, and ~r,
indicating that as long as the drift vectors lie inside their
safe zones, it is guaranteed that the function did not cross
the threshold, and no communication is required.

5.2 Using Safe Zones to Evaluate Reference Vectors

In this section, we assume that spherical bounding regions
are used to bound the convex hull of the drift vectors. In
Section 5.3, we will discuss how the techniques developed
in this section can be applied to ellipsoidal bounding
regions as well. Fig. 6 illustrates the safe zone defined by the
estimate vector and threshold surface that were depicted in
Fig. 4 (outlined in blue), as well as the safe zone defined by
the distant reference vector (outlined in green). It is evident
from the illustration that the safe zone induced by the
distant reference vector includes the safe zone induced by
the estimate vector. In other words, any drift vector that
creates a monochromatic sphere with the estimate vector
creates a monochromatic sphere with the distant reference
vector as well, but there is also a large set of drift vectors
that create a monochromatic sphere with the distant
reference vector but not with the estimate vector. In this
regard, the distant reference vector is a better choice of
reference vector than the estimate vector. Safe zones enable
us to formally evaluate the merits of a certain choice of
reference vector in relation to a given function. For example,
as described above, if the safe zone induced by a given
reference vector contains the safe zone induced by the
estimate vector, then the former is obviously a better
reference vector then the estimate vector. However, using
the full containment of safe zones as a criteria for evaluating
reference vectors can be restrictive. Intuitively, we would
like to find a reference vector so that the safe zone it induces
is large at the vicinity of the estimate vector. We are less
concerned about whether the safe zone includes vectors that
are far from the estimate vector. This is because after a
synchronization process, the drift vectors are equal to the
estimate vector. As data arrives at the nodes, the drift
vectors tend to concentrate around the estimate vector (this
is also supported by the probabilistic model of the data). In
order to capture this intuition we define a property we call
local containment of safe zones. The idea is that given two
reference vectors, ~r1 and ~r2, then for ~r2 to be considered
better than~r1, it is sufficient for Sg;tð~r2Þ to contain Sg;tð~r1Þ in

the “vicinity” of the estimate vector. We formally define a
vicinity of the estimate vector as a connected set2 of vectors
that contains the estimate vector. In addition, we say that a
vicinity of the estimate vector is sufficiently large if it also
contains ~e�, the point on the threshold surface that is the
closest to the estimate vector. A formal definition of the
local containment property follows.

Definition 1. Let g be a monitored function, t a threshold value,
and ~e an estimate vector. Let L be a vicinity of the estimate
vector. Let ~r1 and ~r2 be two reference vectors. We say that the
safe zone induced by ~r1 is locally contained in the safe zone
induced by ~r2 if ½Sg;tð~r1Þ \ L� � ½Sg;tð~r2Þ \ L�. Note that this
definition is with respect to a specific L.

We proceed to construct a sufficiently large vicinity of
the estimate vector and a reference vector, such that the safe
zone induced by it locally contains the safe zone induced by
the estimate vector. To achieve this, we examine the set of
vectors R that satisfy the following conditions:

1. For each vector ~r 2 R, ~e� is the vector on the
threshold surface that is the closest to ~r.

2. For each vector ~r 2 R, colg;tð~rÞ ¼ colg;tð~eÞ.
Let ~rmax be the vector in R that is the most distant from ~e�.
We refer to ~rmax as the internal vector (since, intuitively
speaking, it is found by moving from ~e� into the region—
white or gray—that contains ~e). Let Lmax be a sphere
centered at ~rmax, whose radius is the distance between ~rmax

and ~e� (see Fig. 7). Since ~e is in the line segment connecting
~rmax and ~e�, it is easy to see that Lmax includes both~e and ~e�,
and is therefore a sufficiently large vicinity of the estimate
vector. We propose using ~rmax as the reference vector. This
has two advantages. The first is that the safe zone induced
by ~rmax locally contains the safe zone induced by the
estimate vector (with respect to the vicinity Lmax). The
second is that given ~e, ~rmax can be efficiently determined.

1526 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

Fig. 6. The estimate vector (blue) and the distant vector (green) that
were depicted in Fig. 4, and their respective safe zones.

Fig. 7. A threshold surface, an estimate vector, the set R, and the vicinity
Lmax.

2. The term “connected set” refers to a pathwise connected set, i.e., given
two vectors ~x and~y that belong to the set, there exists a continuous function
f , that maps the interval [0,1] into the set such that fð0Þ ¼ ~x, fð1Þ ¼ ~y.

We start by showing that the safe zone induced by ~rmax

locally contains the safe zone induced by the estimate
vector. This proceeds as follows: in Lemma 1 we show that
the safe zone induced by ~rmax contains the entire vicinity.
As a result, it locally contains the safe zone induced by the
estimate vector.

Lemma 1. Let g be a monitored function, t be a threshold value,
and ~e be an estimate vector. Let ~rmax and Lmax be a reference
vector and a sufficiently large vicinity, as described above.
Then, Lmax � Sg;tð~rmaxÞ.

Proof. We need to show that for every vector ~z 2 Lmax, the

sphere Bð~rmax;~zÞ is monochromatic. It is easy to see that

this sphere is contained in Lmax, therefore it is sufficient to

show that Lmax is monochromatic. Let us assume, by way

of contradiction, thatLmax is notmonochromatic, i.e., there

is a vector ~z 2 Lmax such that colg;tð~zÞ � colg;tð~rmaxÞ ¼ ÿ1.

Since g is continuous, there exists a vector ~z0 on the line

segment between~rmax and~z such that colg;tð~z0Þ ¼ 0, i.e., ~z0

is on the threshold surface. Note that k~z0 ÿ~rmaxk2 <
~zÿ~rmaxk k2 � ~e� ÿ~rmax

2
. In summary, ~z0 is a vector on

the threshold surface that is closer to ~rmax than ~e�. This

stands in contradiction to ~e� being the vector on the

threshold surface that is the closest to~rmax, thus conclud-

ing the proof. tu
Next, we show that~rmax can be efficiently determined. In

order to do so, we observe that the vectors in R are located
along the normal to the threshold surface at ~e�. This follows
immediately from Lemma 2 below. The significance of this
observation is that regardless of the dimensionality of the
domain of the function g, the vectors in R are a subset of a
one-dimensional subspace.

Lemma 2. Let g be a monitored function, t a threshold value, ~x an
arbitrary vector, and ~x� the vector on the threshold surface that
is the closest to ~x. Then, ~x lies along the ray starting at ~x�, and
whose direction is defined by ~n~x� , the normal to the threshold
surface at ~x�. In other words, there is a real value �, such that
~x ¼ ~x� þ �~n~x� .

Proof. Given~x, let us search for the vector~y on the threshold

surface that is closest to ~x. Using the terminology and

results of Lagrange multiplier theory, denote F ð~yÞ ¼
k~yÿ~xk22 þ �ðgð~yÞ ÿ tÞ. The sought ~y satisfies @F

@~y ¼ 2ð~yÿ
~xÞ þ �ðrgÞð~yÞ ¼ 0, hence ðrgÞð~yÞ ¼ ÿ 2

� ð~yÿ~xÞ. However,

it is well known from calculus that ðrgÞð~yÞ is parallel to

the normal to the threshold surface at ~y, thus concluding

the proof. tu
The fact that the set R is one-dimensional enables

employing the following strategy for selecting a reference
vector: during the synchronization process, after determin-
ing the estimate vector ~e, the coordinator calculates ~e� (this
can be done by employing the optimization techniques
described in [31]). Once ~e� has been calculated, the
coordinator sets the reference vector to be equal to the
estimate vector, and iteratively examines new reference
vectors by doubling the distance of the previous reference
vector from ~e�, i.e., the reference vector~ri examined in the ith
iteration is ~e� þ 2ið~eÿ ~e�Þ. In each iteration we calculate the
vector on the threshold surface that is closest to ~ri. If this

vector is ~e�, we proceed to the next iteration, and, continuing
in this fashion, find ~rmax using a binary search. The
synchronization process is concluded by sending the nodes
~rmax as the reference vector.

Experimental results (Section 8) show that applying
spherical bounding regions while using the internal vector
as the reference vector typically reduces communication by
over an order of magnitude in comparison to the spherical
constraints used in [34].

5.3 Selecting Reference Vectors while Employing
Ellipsoidal Bounding Regions

In Section 4, we leveraged a probabilistic model of the data
to reduce communication load by employing ellipsoidal
constraints. In Section 5.2, we reduced communication by
selecting a better reference vector, but we used spherical
constraints. We now describe an algorithm that combines
both methods.

Recall that bounding the convex hull of the drift vectors
using ellipsoids is equivalent to bounding the convex hull
of drift vectors with spheres after applying a linear
transformation to the drift vectors. In order for the
transformed monitoring problem to remain consistent with
the original problem, we apply the transformation to the
monitoring function as well, i.e., if gð~vÞ is the monitored
function, and T� is the transformation applied to the drift
vectors, then the transformed function is gðTÿ1

� ~vÞ.
We can select a better reference vector while leveraging

the probabilistic model of the data by selecting the reference
vector in the transformed monitoring problem. Note that, as
opposed to the case of the isotropic distribution assumed in
Section 5.2, here the optimal direction by which to move
away from the boundary is not necessarily orthogonal to it.
Experimental results show that combining ellipsoidal
bounds with reference vector selection yields a reduction
in communication that is far greater than employing each of
these methods separately. Typically, the reduction in
communication achieved by combining both approaches
reaches two orders of magnitude in comparison to the
spherical constraints presented in [34], and in certain cases
exceeds three orders of magnitude.

5.4 An Example

In some cases, it is possible to provide an accurate
description of the safe zone, and the optimal choice of the
reference vector. We now present an example of a very
simple but illustrative threshold surface. Let the data be
two-dimensional, ðx; yÞ, the monitored function equal to y,
and the threshold equal to 0; so, the allowable region G is
simply the upper half-plane. It’s relatively simple to
compute the safe zone associated with a point.

Lemma 3. The safe zone (using spherical constraints) corre-
sponding to a point r0 ¼ ðx0; y0Þ is the parabola y ¼ ðxÿx0Þ2

4y0
.

Proof. Let D be the disk whose diameter is the line
segment connecting r0 and a point p ¼ ðx; yÞ. For the
disk to be contained in the upper half-plane, it is
enough to check whether its lowest point is in the
upper half-plane; but the y coordinate of the lowest
point is yþy0

2
ÿ kpÿr0k

2
. The result follows immediately.tu

Assume that the data distribution is a Gaussian
centered at ð0; 1Þ, with an eccentricity of 4, and at an
angle of �

4
(see Fig. 8). The equation of this Gaussian is

KEREN ET AL.: SHAPE SENSITIVE GEOMETRIC MONITORING 1527

eÿ
17
4
x2þ15

2
xyÿ15

2
xÿ17

4
y2þ17

2
yÿ17

4 . In order to illustrate the consid-
erations affecting the choice of a better reference point, we
now show an incremental version (as opposed to the
global choice of a single best reference point, treated in
Section 5.3). The question posed is: given a current
reference point, how should it be perturbed in order to
obtain an optimal reference point? If we fix the length of
the perturbation to some small positive constant (taken to
be 0.1 in the following example), the question is in what
direction to move in order to maximize the total prob-
ability in the safe zone. To determine this, the following
iterative computation was performed: at each stage, the
integral of the Gaussian was computed for the safe zones
of all points at a distance of 0.1 from the current reference
point, and the one with the highest integral was chosen as
the new reference point. The path that results from
concatenating these points (Fig. 8) represents the optimal
path by which to move away from G’s boundary. Note
that for an axes-aligned Gaussian, it will be simply a
straight vertical line, resulting in paraboloid regions with
increasing areas; here however, the safe zones are chosen
so as to also contain as much “probability volume” of the
Gaussian as possible.

6 THEORETIC OPTIMAL GEOMETRIC CONSTRAINT

Experimental results (Section 8) show that employing the
new geometric constraints presented above very substan-
tially reduces communication. The question arises—how
much further improvement to the constraints is at all
possible? The geometric monitoring scheme is based on
distributively constructing bounding regions, such that the
union of these regions covers the convex hull of the drift
vectors. Since the only thing the nodes know about the
global vector is that it is contained in this convex hull, the
most we can expect from any set of geometric constraints is
for a constraint to be violated only if the convex hull is not
monochromatic, i.e., a constraint with no “false positives.”
We refer to such constraints as optimal constraints

We can simulate optimal constraints by collecting all the
drift vectors every time new data are received by one of
the nodes, and checking whether the convex hull of these
vectors is monochromatic. Such an approach is not feasible

in practice, since checking the constraints requires the
nodes to communicate, but simulating these constraints
gives us an indication of how much additional improve-
ment is at all possible. In Section 8, we compare results not
only to previous work but to the theoretic optimal
constraints as well.

7 EXPERIMENTAL RESULTS

We performed several experiments using various geo-
metric constraints. The constraints were tested on a
distributed feature selection problem. In this setup news
stories, which are referred to as documents, are received at
a set of distributed nodes. Each document is categorized as
belonging to several categories (Sports, News, etc.). Our
goal is to select the most relevant words, or features, for
classifying the documents according to a certain label (e.g.,
News). This task, which is of great importance in data
mining and machine learning, is known as feature
selection. In order to decide, at any given time, whether
or not to select a certain feature, each node maintains a
sliding window containing the last k documents it
received. The relationship between the appearance of the
feature and the category label is captured using a
contingency table, and the relevance of the feature is
scored by evaluating the chi-squared measure on the sum
of the contingency tables held by the nodes. The feature is
selected if its chi-square score exceeds a predetermined
threshold. A detailed description of the feature selection
process can be found in [35].

We used the Reuters Corpus (RCV1-v2) [32] to generate a
set of data streams. RCV1-v2 consists of 804,414 news
stories, produced by Reuters between August 20, 1996, and
August 19, 1997. Each story has been categorized according
to its content, and identified by a unique document id.

RCV1-v2 has been processed by Lewis et al. [25].
Features were extracted from the documents, and indexed.
A total of 47,236 features were extracted. Each document is
represented as a vector of the features it contains. We refer
to these vectors as feature vectors. We simulate 10 streams
by arranging the feature vectors in ascending order
(according to their document id), and selecting feature
vectors for the streams in round robin fashion.

1528 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

Fig. 8. The optimal path (brown curve) by which to move the original reference point (dark circle) away from G’s boundary (the x-axis). The red
ellipses depict the level sets of the Gaussian distribution representing the data, and the three parabolic curves correspond to the safe zones of the
reference points with the respective colors. Note that initially the curve does not move vertically away from the boundary (as it would for an isotropic
Gaussian), but also curves to the left, in order to “capture more probability” of the Gaussian inside the safe zone (since this results in the apex of the
parabola moving to the left as well).

In the original corpus each document may be labeled as
belonging to several categories. The most frequent category
documents are labeled with is “CCAT” (the “CORPORATE/
INDUSTRIAL” category). In the experiments our goal is to
select features that are most relevant to this category.

Each node holds a sliding window containing the last
6,000 documents it received (this is roughly the amount of
documents received in a month). We chose three features
that display different characteristic behavior. The chosen
features are “Bosnia,” “ipo,” and “febru.” Fig. 9 depicts how
the chi-square score for each feature evolves over the
streams. The chi-square score for the feature “Bosnia”
displays a declining trend as the stream evolves. The score
for “ipo” remains relatively steady, while the score for
“febru” peaks halfway through the stream.

We monitored each feature using threshold values
ranging from 30 to 480. We repeated this experiment using
the following constraints:

1. The spherical constraints with the estimate vector as
the reference vector (the constraints presented in
[34]),

2. Ellipsoidal constraint with the estimate vector as the
reference vector,

3. Spherical constraint with the internal vector as the
reference vector,

4. Ellipsoidal constraint with the internal vector as the
reference vector,

5. Theoretic optimal constraint.

The results of these experiments are presented in Fig. 10.

Since the chi-square scores for “Bosnia” and “ipo” remain

relatively high (above 140), all the constraints are more

efficient when monitoring these features using low thresh-

old values. The chi-square scores for “ipo” fluctuate around

250, which explains why the communication expenditure is

highest for a threshold value of 250. The chi-square score for

“Bosnia” is more varied, therefore we do not see a distinct

decline in communication expenditure. The gap between

the performance of the spherical constraints presented in

[34] and that of the theoretic optimal constraints is typically

two orders of magnitude.
With the exception of the local peak about halfway

through the stream, “febru” receives a low chi-square score.

As a result, the number of times the chi-square score for

“febru” crosses a given threshold is low in comparison to the

other features, and the gap between the performance of the

spherical constraints presented in [34] and the theoretic

optimal constraints is typically only one order of magnitude.
It can be observed that using ellipsoidal bounding

regions (with the estimate vector as the reference vector)

reduces the communication expenditure by a constant

factor in comparison to the spherical constraints. In

contrast, using spherical constraints with an internal

reference vector is more effective for lower threshold

values. This is because the threshold surfaces induced by

chi-square and the examined threshold value are such that

they allow plenty of space for distancing the reference

vector when the chi-square score of the estimate vector is

above the threshold value, and very little space when it is

below the threshold. When higher threshold values are

used, it is more common for the chi-square score of the

estimate vector to be below the threshold value, thus

reducing the effectiveness of the internal reference vector.
The experiments clearly indicate that using constraints

that combine ellipsoidal bounds with an internal reference

vector consistently outperform the rest of the constraints.

Furthermore, in most cases, the communication cost

incurred when using these constraints is close (typically

by 50 percent for “Bosnia” and “ipo,” and by 90 percent for

“febru”) to the communication cost incurred when using

the theoretic optimal constraint.

KEREN ET AL.: SHAPE SENSITIVE GEOMETRIC MONITORING 1529

Fig. 9. Chi-square score for the features “Bosnia,” “ipo,” and “febru” as it
evolves over the streams.

Fig. 10. The number of messages generated by monitoring the chi-square score of the features using various constraints.

8 GENERALIZATION: SAFE ZONES AS CONVEX

SUBSETS OF G

We now present a more general view of the monitoring
problem, which includes the safe zones defined by
spherical/ellipsoidal bounding volumes as a special case.
The idea behind this generalization commences with the
observation that the safe zones defined by the spherical
bounding volumes are always convex, and vice versa
(every convex subset of the allowable region can serve as a
safe zone). Therefore, one may as well search for the
optimal convex subset. We now proceed to formalize and
prove the relevant concepts and theorems, and to compare
the generalized approach with the one presented in the
previous sections.

As before, denote the allowable region, defined by the
monitored function gðxÞ and the threshold t, by
G ¼ fxjgðxÞ < tg, and let the reference point be denoted
by r. Recall that the safe zone S consists of all the points v
such that Bðv; rÞ � G. The following lemma concerns a
general property of S, which holds for every function,
threshold, and reference point.

Lemma 4. S is convex.

Proof. First, note that Bðv; rÞ ¼ fxjðxÿ v; xÿ rÞ � 0g (this is
straightforward; in two dimensions, by the way, it
follows immediately from Thales’ theorem, which states
that an inscribed angle in a semicircle is a right angle).
Now, assume that fvigni¼1 are in S—that is, for 1 � i � n,
Bðvi; rÞ � G. Now let v be a convex combination of vi,
so there are scalars �i such that �i � 0,

P

i �i ¼ 1;
P

i �ivi ¼ v. To prove that Bðv; rÞ � G (hence v 2 S), we
will prove that Bðv; rÞ � [iBðvi; rÞ. Assume x 2 Bðv; rÞ;
so ðxÿ v; xÿ rÞ � 0. Since

P

�i ¼ 1, ðxÿ v; xÿ rÞ ¼
ðP�ixÿP

�ivi; xÿ rÞ ¼ P

�iðxÿ vi; xÿ rÞ. If for all i,
x 62 Si, then for all iðxÿ vi; xÿ rÞ > 0, and since �i are
positive, this would imply that

P

�iðxÿ vi; xÿ rÞ is also
positive; but this last expression equals ðxÿ v; xÿ rÞ
which we know to be negative. So, there must be an i
such that x 2 Si, which concludes the proof. Note that
this will also hold for ellipsoidal constraints. As the
following lemma demonstrates, the fact that the safe
zones defined by the spherical constraints is a convex
subset of G can be viewed as a special case of a sufficient
condition for safe zones. tu

Lemma 5. Assume WLG that the reference vector is the origin O,
and denote the initial data vector at node i by v0i (note that
P

i v
0
i ¼ 0, since the reference vector is the average of the local

vectors). Let C be any convex subset of G which contains O.
Then, the sets defined by SiðCÞ ¼4 fv0i þ cjc 2 Cg are legal safe
zones at the nodes. Note that the safe zone at the ith node is the
translation of C by the node’s initial data vector.

Proof. We need to prove that as long as the local vectors are

in their respective safe zones, the threshold of the

monitored function was not crossed—that is, that the

global vector did not wander out of G. Let the local

vector at node i equal v0i þ ci, for some ci 2 C. Then, the

global vector is the average of these local vectors which

equals g ¼4
P

i
ci

n (since
P

i v
0
i ¼ 0). But since C is convex,

g 2 C, hence g 2 G (recall that C is a subset of G). tu

8.1 Safe Zones Defined by Convexity

As Lemma 5 suggests, we can define safe zones by the
following construct. Assume that the probability distribu-
tion of the monitored data (which in the previous sections
we modeled as a Gaussian distribution) is pðxÞ. As before,
assume WLG that the reference vector is the origin O. Then,
solve the following optimization problem:

maximize

Z

C

pðxÞdx such that C is a convex subset of G

and O 2 C:

ð4Þ

Denoting the optimal C by C0, assign the ith node the
safe zone defined by C0 translated by v0i . These safe zones
are legal, since as proved in Lemma 5 the average of
vectors in the safe zones is inside G. Maximizing the
overall probability for the data to be in C0 guarantees that
the local vectors will remain in their safe zones for the
longest duration possible. Note that if one does not
impose convexity, the resulting safe zones will not be
valid, since the average of vectors which belong to a
nonconvex set need not be in the set.

8.2 Computing Convex Safe Zones

In order to find the optimal convex safe zone, it is required
to optimize over all convex subsets of G. Generally, this is
impossible, since the class of all such subsets is a nonlinear,
infinite dimensional space. To define an optimization
problem which can be practically solved in the general
case, one must restrict attention to a finitely parameterizable
family of subsets. In two-dimensional euclidean space R2, a
natural choice are convex polygons, which can be defined
as the convex hull of n points. Thus, there will be
2n parameters to the optimization problem (the coordinates
of these n points). The first question which arises is: how
much of the safe zone’s quality are we losing by restricting
it to a convex polygon with n vertices? The following
theorem [2] provides an answer:

Theorem 3. Let C be a convex subset of the plane, and let k be a

fixed integer. Denote byCk the maximal value of the ratio AðPkÞ
AðCÞ ,

where A stands for area and Pk is any convex polygon with k

vertices inscribed in C. Then, the minimal value of Ck is

obtained when C is a disk. It is straightforward to see that as k

increases, Ck behaves as 1ÿ �
k2 for some small constant �.

This theorem quantifies the rate of approximation of

an inscribed convex polygon to an arbitrary convex set in

the plane. In d < 4 dimensions, the bound �
k2 is replaced

by cd

k
2

dÿ1

< cd
k for a dimension-independent constant c. This

demonstrates that with a reasonable number of vertices, a

very good approximation can be achieved. Thus, it is

sufficient to restrict attention to safe zones defined as the

convex hull of an appropriately chosen number of points.

8.3 Details of the Optimization: Target Function and
Constraints

The optimal convex subset is solved for by a constrained
optimization paradigm. The constraints are 1) that it is
convex, and 2) that it is contained in G. The target function

1530 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

to maximize under these constraints is
R

C pðxÞdx. As noted
in Section 8.2, convexity is guaranteed by defining the
candidate safe zone C as the convex hull of the points which
are the input to the optimization routine (we have used
Matlab’s function convhull to construct the convex hull).
There are a few options to test whether C is contained in G;
typically, G is described by a certain inequality, and
standard methods, such as Lagrange multipliers, can be
used to determine the point in C farthest from G. The
distance between this point and G is then used in the
optimization routine as the measure of constraint violation
(we have used Matlab’s fmincon routine). It remains to
calculate the target function,

R

C pðxÞdx. We tested two
methods: the most direct one is integrating the Gaussian
p.d.f over C. In the two-dimensional case, we can use
Green’s theorem to reduce the integral to a one-dimensional
integral over C’s boundary @C, using the identity

Z Z

C

exp ÿAx2 ÿ 2Bxyÿ Cy2 ÿDxÿ Eyÿ F
ÿ �

dxdy

¼
ffiffiffi

�
p

2
ffiffiffiffi

A
p

I

@C

exp

�

ÿ Eyÿ F ÿ Cy2

þ ðDþ 2ByÞ2
4A

�

erf
ffiffiffiffi

A
p

xþDþ 2By

2
ffiffiffiffi

A
p

� �

:

In higher dimensions, one can use Stokes’ theorem, or
apply numerical integration methods. Another option is to
estimate the quality of C directly from the discrete data
available at the nodes, before it is approximated by a
Gaussian distribution. To implement this method, we

defined the target function as
P

i expðÿ�dðpi; CÞÞ, where
the data points are denoted pi and dðpi; CÞ is the distance
from pi to C (which equals zero if pi 2 C), and � is a
positive constant. The motivation for not taking the target
function as the number of points inside C is that this
defines a discontinuous target function, with jump dis-
continuities whenever a point enters or exits C. In our
experience, optimization routines find it difficult to handle
such discontinuities.

Some examples are now provided, in which the two
types of safe zones are compared. The data consist of wind
measurements of the El-Nino system in two directions (x is
for east-west and y for south-north), as taken from [5]. The
first function to monitor (Fig. 11) was xyÿ 196, hence G is
the set bounded from above by the graph of y ¼ 196

x , and
from below(left) by the positive half of the xðyÞ-axes. Fig. 11
depicts the safe zone defined by spherical bounding
volumes and the one found by optimizing over all hexagons
contained in G. Here, we used a discrete probability model.
Next (Fig. 12) we show results for a more complicated G,
whose boundary is made both of concave and convex parts.
The monitored function is a fourth-degree polynomial,
x4 þ y4 ÿ 5ðx2 þ y2Þ þ 10xÿ 3.

8.4 Another Look at the Safe Zone Defined by
Bounding Volumes

Here, we take a closer look at the structure of the safe zones
defined by spherical bounding volumes. In addition to
providing another proof why the safe zone is convex, it will

KEREN ET AL.: SHAPE SENSITIVE GEOMETRIC MONITORING 1531

Fig. 12. Same as Fig. 11, for a more complicated G. For the optimal convex decagon (bottom), 97.4 percent of the points were correctly classified,
and for the safe zone defined by the bounding volumes (top), 94.9 percent were correctly classified.

Fig. 11. Example of a convex subset of G as safe zone. The monitored function is xyÿ 196, so G is bounded by the hyperbolic curve and the
positive axes; data are depicted as green dots, and the reference point by an �. Depicted are the safe zone defined by spherical bounding
regions (top), outlined in blue. Data points correctly classified are marked in green, misclassified in red (note that points outside G and also
outside the safe zone are correctly classified). Bottom: a polygonal safe zone (also outlined in blue) which was derived by solving the
optimization problem that seeks the optimal convex hexagon contained in G. For the decagon, 94.6 percent of the points were correctly
classified, and for the safe zone defined by the bounding volumes, 92.5 percent were correctly classified.

allow to elucidate on its structure, and compare it to the
optimal convex subset defined in Sections 8.2 and 8.3.

Recall (we’ll follow here the notations used in the
beginning of Section 7) that for a given G and reference
vector r, the safe zone (denote itSðG; rÞ) equals all thepoints v
such thatBðr; vÞ � G. Clearly,SðG; rÞ ¼ fvjBðr; vÞ \G0 ¼ �g,
where G0 denotes the complement of G. Hence, SðG; rÞ ¼
\y2G0Ay, where Ay ¼4 fvjy 62 Bðr; vÞg. It is straightforward to
see that Ay is the half-plane passing through y and
perpendicular to the segment connecting r and y, and which
contains r (Fig. 13). It is also trivial that if y 62 G, then a vector
z 62 Gwhich satisfiesAz � Ay can be found by infinitesimally
translating y toward G. To conclude:

Theorem 4. SðG; rÞ equals the intersection of half-planes
supported by G’s boundary points, where for each boundary
point u the boundary of the respective half-plane passes
through u and is perpendicular to the segment connecting r
and u (note that the half-plane boundary is generally not

tangent to G’s boundary).

An example is presented in Fig. 13. It can be seen that,
while the intersection of the half-planes defined a convex set
(since a half-plane is convex and any intersection of convex
sets is convex), the convex subset of G thus defined is not
optimal, since the half-planes often cut “too much” from G.

8.5 Computation and Evaluation of Safe Zones

There are a few factors which influence the decision whether
to use a safe zone defined by bounding volumes or by
optimizing over convex subsets. The obvious advantage of
using the bounding volume approach is that it requires no
optimization. The convex subset approach, however, re-
quires to solve what may be a nontrivial optimization
problem, especially if the data reside in a high-dimensional
space. Another factor is the complexity of testingwhether the

local data vectors are inside their safe zones or not; for the
bounding volume approach, this requires testing whether a
sphere is inside G, and for the convex subset approach,
whether a point is inside it. To summarize, the choice of
which approach to use depends on the safe zones’ quality
(which ismeasured by the value of target function), difficulty
of the optimization problem, and complexity of testing
whether the local vectors are in their safe zones.

9 RUNNING TIMES

We now discuss running times and performance for both
algorithms. For the bounding volumes approach, checking
whether a local condition has been violated at a certain
node requires determining whether the sphere subtended
by the local data vector and the reference point is contained
in the set G ¼4 fxjfðxÞ � Tg, for the monitored function f
and threshold T (in case ellipsoidal bounding volumes are
used, G is transformed by the same transformation that
renders the ellipsoidal bounding regions spherical). There-
fore, the question is how distant a point (the sphere’s
center) is from G0s boundary. The running time for solving
this problem was addressed in previous work (see [33,
Section 7]). Here, we ran tests on additional data and
compared them to the approach applying an optimal
convex subset. The data used were air pollution measure-
ments [1]. We used data of up to four dimensions,
consisting of measurements of SO2, PM10, O3, and NO,
all in micrograms per cubic meter. Typical data for two of
the components are depicted in Fig. 14. The global function
monitored was a weighted sum of the pollutant concentra-
tion, which is used in estimating the AQI (air quality
index). The average running time for testing the local
conditions was 0.032 seconds for four-dimensional data,
0.021 seconds for three-dimensional data, and 0.0013 sec-
onds for two-dimensional data. These averages were
computed for 1,000 runs.

9.1 Comparison between the Two Algorithms

In terms of running time, there is a difference between the
two approaches presented here: the bounding volumes
approach requires no preprocessing, as its safe zone is
guaranteed to be correct, while the optimal convex subset

1532 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

Fig. 13. A sketch demonstrating Theorem 4. Depicted are G and a
reference point r. The three red lines represent the boundaries of three
half-planes, and their intersection is the dark triangle. The safe zone
equals the intersection of all half-planes supported by G’s boundary,
with their boundary perpendicular to the line segment between r and the
boundary point.

Fig. 14. Data for two of the air pollutants used in the experiments.

approach requires to first determine the safe zone. How-
ever, typically the running time for checking the local
conditions in the optimal convex subset approach is shorter,
as the definition of the subset is relatively simple (there is no
need to compute the distance of a point from G0s boundary,
as for the bounding volume method). A typical result is now
presented, for two-dimensional data consisting of the SO2
and NO pollutants from the database introduced in the
beginning of this section. G is an ellipse with a horizontal
axis of length 30 and a vertical axis of length 120, centered at
the data’s center of gravity. There were a total of 1,500 ob-
servations across the 235 nodes used, 178 of which yielded a
global violation. The bounding volume approach yielded a
total of 223 alerts (meaning that 45 of them were false
alarms). The optimal convex subset method was applied to
this data, with the safe zones, respectively, defined as
convex polygons with number of vertices ranging from 4 to
10. Results are presented in Table 1. While the preprocessing
time increases with the safe zone’s complexity, the richer
safe zones yield lower communication overhead. The time
for checking the local conditions in this case is negligible
(consisting of the time to test whether a point is inside a
convex polygon, which is logarithmic in the number of
vertices). Note that the preprocessing stage (whose running
time is provided in the table above) has to be performed
only once.

10 CONCLUSION AND FUTURE WORK

We presented geometric constraints that take advantage of
the distribution of the data vectors and the shape of the

threshold surface of the monitored function. Using these

constraints yields a typical improvement of two orders of

magnitude in comparison to the results achieved with

previously used constraints. In all cases, the new constraints

drastically reduced the gap between previous results and

those achieved when using theoretic optimal constraints.

We also defined a more general concept of safe zones, based

on convex subsets of the function’s allowable region. While

this approach requires preprocessing in order to determine

the safe zone, it can yield lower communication overhead.
Future research will attempt to devise new types of

geometric constraints. We also plan to explore methods for

resolving constraint violations, and study cases in which the

data distributions greatly vary between nodes.

APPENDIX

COMMON NOTATIONS

Table 2 summarizes the most common notations of three

anonymous reviewers.

ACKNOWLEDGMENTS

This submission greatly benefited from the remarks of three

anonymous reviewers. The preliminary version of this work

appeared in PODS 2008. Research partially supported by

the European Commission under ICT-FP7-LIFT-255951

(Local Inference in Massively Distributed Systems).

KEREN ET AL.: SHAPE SENSITIVE GEOMETRIC MONITORING 1533

TABLE 1

TABLE 2

REFERENCES

[1] The European Air Quality Database, http://dataservice.eea.
europa.eu/dataservice/metadetails.asp?id=1079, 2012.

[2] Y. Gordon, M. Meyer, and S. Reisner, “Constructing a Polytope to
Approximate a Convex Body,” Geometriae Dedicata, vol. 57,
pp. 217-222, 1995.

[3] S. Agrawal, S. Deb, K.V.M. Naidu, and R. Rastogi, “Efficient
Detection of Distributed Constraint Violations,” Proc. IEEE 23rd
Int’l Conf. Data Eng. (ICDE ’07), pp. 1320-1324, 2007.

[4] N. Alon, Y. Matias, and M. Szegedy, “The Space Complexity of
Approximating the Frequency Moments,” Proc. 28th Ann. ACM
Symp. Theory of Computing (STOC ’96), pp. 20-29, 2006.

[5] http://archive.ics.uci.edu/ml/datasets/El+Nino, 2012.
[6] A. Arasu and G.S. Manku, “Approximate Counts and Quantiles

over Sliding Windows,” Proc. ACM Symp. Principles of Database
Systems (PODS ’04), pp. 286-296, 2004.

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and Issues in Data Stream Systems,” Proc. ACM Symp.
Principles of Database Systems (PODS ’02), pp. 1-16, 2002.

[8] B. Babcock and C. Olston, “Distributed Top-K Monitoring,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’03),
pp. 28-39, 2003.

[9] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G.
Seidman, M. Stonebraker, N. Tatbul, and S.B. Zdonik, “Monitoring
Streams - A New Class of Data Management Applications,” Proc.
28th Int’l Conf. Very Large Databases (VLDB ’02), pp. 215-226, 2002.

[10] A. Chakrabarti, G. Cormode, and A. McGregor, “A Near-
Optimal Algorithm for Computing the Entropy of a Stream,”
Proc. 18th Ann.ACM-SIAM Symp. Discrete Algorithms (SODA ’07),
2007.

[11] M. Charikar, K. Chen, and M. Farach-Colton, “Finding Frequent
Items in Data Streams,” Proc. Int’l Colloquium Automata, Languages
and Programming (ICALP ’02), pp. 693-703, 2002.

[12] E. Cohen and M.J. Strauss, “Maintaining Time-Decaying Stream
Aggregates,” J. Algorithms, vol. 59, no. 1, pp. 19-36, 2006.

[13] G. Cormode, R. Keralapura, and J. Ramimirtham, “Communica-
tion-Efficient Distributed Monitoring of Thresholded Counts,”
Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’06),
2006.

[14] G. Cormode and M. Garofalakis, “Sketching Streams through the
Net: Distributed Approximate Query Tracking,” Proc. Int’l Conf.
Very Large Databases (VLDB ’05), pp. 13-24, 2005.

[15] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi,
“Holistic Aggregates in a Networked World: Distributed Tracking
of Approximate Quantiles,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’05), pp. 25-36, 2005.

[16] G. Cormode, S. Muthukrishnan, and W. Zhuang, “Conquering the
Divide: Continuous Clustering of Distributed Data Streams,” Proc.
IEEE 23rd Int’l Conf. Data Eng. (ICDE ’07), pp. 1036-1045, 2007.

[17] G. Cormode, S. Muthukrishnan, and W. Zhuang, “What’s
Different: Distributed, Continuous Monitoring of Duplicate-
Resilient Aggregates on Data Streams,” Proc. 22nd Int’l Conf. Data
Eng. (ICDE ’06), p. 57, 2006.

[18] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi, “Distributed
Set-Expression Cardinality Estimation,” Proc. Int’l Conf. Very Large
Databases (VLDB ’04), pp. 312-323, 2004.

[19] M. Data, A. Gionis, P. Indyk, and R. Motwani, “Maintaining
Stream Statistics over Sliding Windows: (Extended Abstract),”
Proc. 13th Ann. ACM-SIAM Symp. Discrete Algorithms (SODA ’02),
pp. 635-644, 2002.

[20] M. Dilman and D. Raz, “Efficient Reactive Monitoring,” Proc. IEEE
INFOCOM ’01, pp. 1012-1019, 2001.

[21] G. Frahling, P. Indyk, and C. Sohler, “Sampling in Dynamic Data
Streams and Applications,” Proc. 21st Ann. Symp. Computational
Geometry (SCG ’05), pp. 142-149, 2005.

[22] L. Huang, M. Garofalakis, J. Hellerstein, A. Joseph, and N. Taft,
“Toward Sophisticated Detection with Distributed Triggers,” Proc.
SIGCOMM Workshop Mining Network Data (MineNet ’06), pp. 311-
316, 2006.

[23] L. Huang, X. Nguyen, M.N. Garofalakis, J.M. Hellerstein, M.I.
Jordan, A.D. Joseph, and N. Taft, “Communication-Efficient
Online Detection of Network-Wide Anomalies,” Proc. IEEE
INFOCOM ’07, pp. 134-142, 2007.

[24] A. Jain, J.M. Hellerstein, S. Ratnasamy, and D. Wetherall, “A
Wakeup Call for Internet Monitoring Systems: The Case for
Distributed Triggers,” Proc. Third ACM SIGCOMM Workshop Hot
Topics in Networks (HotNets), 2004.

[25] D.D. Lewis, Y. Yang, T.G. Rose, and F. Li., “Rcv1: A New
Benchmark Collection for Text Categorization Research,”
J. Machine Learning Research, vol. 5, pp. 361-397, 2004.

[26] S. Madden and M.J. Franklin, “Fjording the Stream: An
Architecture for Queries over Streaming Sensor Data,” Proc. 18th
Int’l Conf. Data Eng. (ICDE ’02), p. 555, 2002.

[27] S. Madden, M. Shah, J.M. Hellerstein, and V. Raman, “Con-
tinuously Adaptive Continuous Queries over Streams,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’02),
pp. 49-60, 2002.

[28] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston,
“Finding (Recently) Frequent Items in Distributed Data Streams,”
Proc. 21st Int’l Conf. Data Eng. (ICDE ’05), pp. 767-778, 2005.

[29] G.S. Manku and R. Motwani, “Approximate Frequency Counts
over Data Streams,” Proc. Int’l Conf. Very Large Databases (VLDB
’02), pp. 346-357, 2002.

[30] C. Olston, J. Jiang, and J. Widom, “Adaptive Filters for
Continuous Queries over Distributed Data Streams,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’03), pp. 563-
574, 2003.

[31] P.A. Parrilo, “Semidefinite Programming Relaxations for Semi-
algebraic Problems,” Math. Programming, vol. 96, no. 2, pp. 293-
320, 2003.

[32] T.G. Rose, M. Stevenson, and M. Whitehead, “The Reuters Corpus
Volume 1—From Yesterday’s News to Tomorrow’s Language
Resources,” Proc. Third Int’l Conf. Language Resources and Evalua-
tion (LREC ’02), pp. 827-832, 2002.

[33] I. Sharfman, A. Schuster, and D. Keren, “A Geometric Approach
to Monitoring Threshold Functions over Distributed Data
Streams,” ACM Trans. Database Systems, vol. 32, no. 4, article 23,
2007.

[34] I. Sharfman, A. Schuster, and D. Keren, “A Geometric Approach
to Monitoring Threshold Functions over Distributed Data
Streams,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’06), pp. 301-312, 2006.

[35] Y. Yang and J.O. Pedersen, “A Comparative Study on Feature
Selection in Text Categorization,” Proc. 14th Int’l Conf. Machine
Learning (ICML ’97), pp. 412-420, 1997.

[36] B.K. Yi, N. Sidiropoulos, T. Johnson, H.V. Jagadish, C. Faloutsos,
and A. Biliris, “Online Data Mining for Co-Evolving Time
Sequences,” Proc. 16th Int’l Conf. Data Eng. (ICDE ’00), p. 13, 2000.

[37] Y.J. Zhao, R. Govindan, and D. Estrin, “Computing Aggregates for
Monitoring Wireless Sensor Networks,” Proc. IEEE First Int’l
Workshop Sensor Networks and Protocols (SNPA ’03), 2003.

[38] Y. Zhu and D. Shasha, “Statstream: Statistical Monitoring of
Thousands of Data Streams in Real Time,” Proc. 28th Int’l Conf.
Very Large Databases (VLDB ’02), pp. 358-369, 2002.

[39] G. Sagy, D. Keren, I. Sharfman, and A. Schuster, “Distributed
Threshold Querying of General Functions by a Difference of
Monotonic Representation,” Proc. VLDB Endowment, vol. 4, no. 2,
pp. 46-57, 2010.

[40] G. Cormode, S. Muthukrishnan, and K. Yi, “Algorithms for
Distributed Functional Monitoring,” Proc. 19th Ann. ACM-SIAM
Symp. Discrete Algorithms (SODA), pp. 1076-1085, 2008.

[41] K. Yi and Q. Zhang, “Optimal Tracking of Distributed Heavy
Hitters and Quantiles,” Proc. 28th ACM SIGMOD-SIGACT-
SIGART Symp. Principles of Database Systems (PODS), pp. 167-
174, 2009.

[42] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang, “Optimal
Sampling from Distributed Streams,” Proc. 29th ACM SIGMOD-
SIGACT-SIGART Symp. Principles of Database Systems (PODS ’10),
pp. 77-86, 2010.

[43] B.V.K Vijaya Kumar, A. Mahalanobis, and R.D. Juday, Correlation
Pattern Recognition. Cambridge Univ. Press, 2010.

1534 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

Daniel Keren received the PhD degree in 1991 from Hebrew
University in Jerusalem. He is with the Computer Science Department
at Haifa University, Haifa, Israel. His main fields of research are
geometry and probability. He has published mostly in computer vision
journals and conferences. Since 2003, he has been working closely
with Professor Assaf Schuster’s group at the Technion, in the area of
distributed monitoring. His main contribution is in the mathematical
aspects of the research such as object modeling, learning, optimiza-
tion, and probability. A main novelty of the joint research is the
incorporation of such mathematical tools into the research paradigm;
this allowed the development of new methodologies, based on
geometry, to monitor general functions. For more information, visit
http://cs.haifa.ac.il/~dkeren/.

Izchak Sharfman recently received the PhD degree from the Computer
Science Faculty, the Technion. His main area of research is distributed
algorithms and geometric methods for stream processing.

Assaf Schuster received the PhD degree in 1991 from Hebrew
University in Jerusalem. He has established and is managing DSL, the
Distributed Systems Laboratory (http://dsl.cs.technion.ac.il). Several
CS faculty members see DSL as the main scope hosting their applied
and systems research, with about 35 graduate and hundreds of
undergraduate students working in the lab during the academic year.
DSL is supported by Intel, Microsoft, Sun, IBM, and other interested
partners. He is well known in the area of parallel, distributed, high
performance, and grid computing. He published more then 160 papers
in those areas in high-quality conferences and journals. He regularly
participates in program committees for conferences on parallel and
distributed computing. He consults the hi-tech industry on related
issues and holds seven patents. He serves as an associate editor of
the Journal of Parallel and Distributed Computing and IEEE Transac-
tions on Computers. He supervises seven PhD students and 10 MSc
students, and takes part in large national and EU projects as an expert
on grid and distributed computing. For more information, visit http://
www.cs.technion.ac.il/~assaf.

Avishay Livne received the MSc degree from
the Computer Science Faculty, the Technion. He
is currently a graduate student at the University
of Michigan, Ann Arbor.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KEREN ET AL.: SHAPE SENSITIVE GEOMETRIC MONITORING 1535

