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Abstract

Classification based on decision trees is one of the important problems in data mining and has

applications in many fields. In recent years, database systems have become highly distributed, and dis-

tributed system paradigms such as federated and peer-to-peer databases are being adopted. In this paper,

we consider the problem of inducing decision trees in a large distributed network of genomic databases.

Our work is motivated by the existence of distributed databases in healthcare and in bioinformatics,

and by the emergence of systems which automatically analyze these databases, and by expectancy that

these databases will soon contain large amounts of highly dimensional genomic data. Current decision

tree algorithms require high communication bandwidth when executed on such data, which large-scale

distributed systems. We present an algorithm that sharply reduces the communication overhead by

sending just a fraction of the statistical data. A fraction which is nevertheless sufficient to derive the

exact same decision tree learned by a sequential learner on all the data in the network. Extensive

experiments using standard synthetic SNP data show that the algorithm utilizes the high dependency

among attributes, typical to genomic data, to reduce communication overhead by up to 99%. Scalability

tests show that the algorithm scales well with both the size of the dataset, the dimensionality of the

data, and the size of the distributed system.

Index Terms
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APPENDIX I

PROOFS OF BOUNDS

Lemma 1: For any GiniIndex(P1), GiniIndex(P2), n1, n2, an upper bound on GiniIndex(P )

is given by:

Upper bound =
n1GiniIndex(P1) + n2GiniIndex(P2)

n1 + n2
(1)

Proof: Following the previous notations, GiniIndex(P ) is given by:

GiniIndex(P ) =

(a11+b11)2+(a12+b12)2

a11+a12+b11+b12
+ (a21+b21)2+(a22+b22)2

a21+a22+b21+b22

a11 + a12 + a21 + a22 + b11 + b12 + b21 + b22

while the upper bound provided in this lemma is given by:

Upper bound =

(a11)2+(a12)2

a11+a12
+ (b11)2+(b12)2

b11+b12
+ (a21)2+(a22)2

a21+a22
+ (b21)2+(b22)2

b21+b22

a11 + a12 + a21 + a22 + b11 + b12 + b21 + b22

Now, to prove that Upper bound − GiniIndex(P ) ≥ 0, it is enough for the following

inequalities to hold:

1 :
(a11)

2 + (a12)
2

a11 + a12
+

(b11)
2 + (b12)

2

b11 + b12
−

(a11 + b11)
2 + (a12 + b12)

2

a11 + a12 + b11 + b12
≥ 0

2 :
(a21)

2 + (a22)
2

a21 + a22
+

(b21)
2 + (b22)

2

b21 + b22
−

(a21 + b21)
2 + (a22 + b22)

2

a21 + a22 + b21 + b22
≥ 0

It is straightforward to verify that inequality 1 is equivalent to:

(a11b12 − a12b11)
2

(a11 + a12 + b11 + b12)(a11 + a12)(b11 + b12)
≥ 0

The above inequality is always satisfied, since both the numerator and denominator are always

positive (all variables are non-negative). Inequality 2 is handled in the same manner.

Lemma 2: Let P1, P2, n1, n2 be given. Furthermore, let the candidate binary split decision

divide P1 into two subsets, P
left
1 and P

right
1 , with sizes of n

left
1 and n

right
1 (n1 = n

left
1 + n

right
1 )

respectively. Then a lower bound on GiniIndex(P ) is given by:

Lower Bound =
GiniIndex(P1)h

1 + n2

n1

i »
1 + max


n2

n
left
1

, n2

n
right
1

ff– (2)

Proof: Recall that GiniIndex(P ) is given by:

GiniIndex(P ) =

(a11+b11)2+(a12+b12)2

a11+a12+b11+b12
+ (a21+b21)2+(a22+b22)2

a21+a22+b21+b22

a11 + a12 + a21 + a22 + b11 + b12 + b21 + b22
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since all entries are positive, the above expression is bounded from below by (recall that

n1 = a11 + a12 + a21 + a22, n2 = b11 + b12 + b21 + b22):

1

1 + n2

n1

(a11)2+(a12)2

(a11+a12)
h
1+

b11+b12
a11+a12

i + (a21)2+(a22)2

(a21+a22)
h
1+

b21+b22
a21+a22

i

n1

But this expression is clearly bounded from below by

1

1 + n2

n1

(a11)2+(a12)2

a11+a12
+

(a21)2+(a22)2

a21+a22

n1

1 + max
{

n
left
2

n
left
1

,
n

right
2

n
right
1

} =

1

1 + n2

n1

GiniIndex(P1)

1 + max
{

n
left
2

n
left
1

,
n

right
2

n
right
1

}

and the proof follows immediately by noting that n2 ≥ n
left
2 , n

right
2 . Note that n

left
2 , n

right
2

don’t need to be known – only the total size n2.

We note here that, in general, it is impossible to derive a lower bound on the Gini index of

a union; this is possible only if one population is quite smaller than the other, in which case

a bound can be derived from the relative sizes and the Gini index of the larger population.

Nevertheless, as we show in our experiments the lower bound becomes especially useful when

outliers occur in the data. In such cases small populations report attributes which are entirely

different from those reported by the majority of the population. By using the lower bound the

algorithm can overcome small amounts of missing data (about the attributes reported by the

majority) and by that avoid the need for additional communication.

A. Information Gain Function

Lemma 3: For any InfoGain(P1), InfoGain(P2), n1, n2, an upper bound on InfoGain(P )

is given by

n1InfoGain(P1) + n2InfoGain(P2)

n1 + n2

(3)

Proof: Recall that InfoGain(P ) equals

InfoGain(P ) =

(a11 + b11) log((A + B)11) + (a12 + b12) log((A + B)12)

n1 + n2
+

(a21 + b21) log((A + B)21) + (a22 + b22) log((A + B)22)

n1 + n2
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where the following definitions have been adopted for brevity:

A11 =
a11

a11 + a12

, A12 =
a12

a11 + a12

,

A21 =
a21

a21 + a22

, A22 =
a22

a21 + a22

Similar notations are used for B and A + B, e.g., (A + B)11 = a11+b11
a11+b11+a12+b12

).

Similarly, InfoGain(P1) and InfoGain(P2) are given by

InfoGain(P1) =

a11 log(A11) + a12 log(A12) + a21 log(A21) + a22 log(A22)

n1

InfoGain(P2) =

b11 log(B11) + b12 log(B12) + b21 log(B21) + b22 log(B22)

n2

We now define the auxiliary variables

λ1 =
a11 + a12

a11 + a12 + b11 + b12

, λ2 =
a21 + a22

a21 + a22 + b21 + b22

Clearly

(A + B)11 = λ1A11 + (1 − λ1)B11,

(A + B)12 = λ1A12 + (1 − λ1)B12

(A + B)21 = λ2A21 + (1 − λ2)B21,

(A + B)22 = λ2A22 + (1 − λ2)B22

In order to make the notations less cumbersome, let us bound one summand of InfoGain(P )

(the other summands are handled similarly):

(a11 + b11) log((A + B)11) =

a11 + b11

(A + B)11
(A + B)11 log((A + B)11) =

a11 + b11

(A + B)11
(λ1A11 + (1 − λ1)B11) log(λ1A11 + (1 − λ1)B11)

Since the function x log(x) is convex, the last expression is bounded from above by

a11 + b11

(A + B)11
(λ1A11 log(A11) + (1 − λ1)B11 log(B11)) =

a11 log(A11) + b11 log(B11)
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Hence InfoGain(P ) is bounded from above by

(a11 log(A11) + a12 log(A12) + a21 log(A21) + a22 log(A22) +

b11 log(B11) + b12 log(B12) + b21 log(B21) + b22 log(B22))/(n1 + n2) =

n1InfoGain(P1) + n2InfoGain(P2)

n1 + n2
.

Lemma 4: Let P1, n1, n2 be given. Furthermore, let the candidate split decision divide P1 into

two subsets, P
left
1 and P

right
1 , with size n

left
1 and n

right
1 respectively. Then a lower bound on

InfoGain(P ) is given by:2
4 1

1 + n2

min{n
left
1

,n
right
1

}

·
1

1 + n2

n1

3
5 InfoGain(P1) (4)

Proof: Following the proof of Lemma 3, let us now bound (a11 + b11) log((A + B)11) =

(a11+b11) log(λ1A11+(1−λ1)B11) from below. Since log(x) is concave, (a11+b11) log(λ1A11+

(1−λ1)B11) is bounded from below by (a11+b11)(λ1 log(A11)+(1−λ1) log(B11)), which (since

log(A11), log(B11) are negative and b11 is positive) is bounded from below by λ1a11 log(a11).

Continuing in much the same way as in the previous proof, we obtain:

InfoGain(P ) ≥

"
1

1 + n2

min{a11+a12,a21+a22}

·
1

1 + n2

n1

#
InfoGain(P1)

Recall that a11 + a12 = n
left
1 and a21 + a22 = n

right
1 , thus proving the lemma.

We summarize our results with the following theorems:

Theorem 1: Let P be a population of size n, and {P1, P2, ..., Pk} a partition of P into k

subpopulations of sizes n1, n2, ..., nk respectively. Let G() denote the gain function (information

gain or Gini index). Then an upper bound on G(P ) is given by:

G(P ) ≤

Pk

i=1 niG(Pi)Pk

i=1 ni

.

Note that above theorem is a trivial generalization of lemmas 1 and 3.

Theorem 2: Let P be a population of size n, and {P1, P2} a partition of P into two subpopu-

lations of sizes n1, n2 respectively. Assume that the candidate split divides P1 into two subsets,

P
left
1 and P

right
1 , with sizes n

left
1 and n

right
1 respectively. Let G() denote the gain function

(information gain or Gini index). Then, lower bounds on G(P ) is given by:

G(P ) ≥
G(P1)h

1 + n2

n1

i »
1 + n2

min{n
left
1

,n
right
1

}

–
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