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Abstract

This paper presents a new robust low-computational-cost
system for recognizing freeform objects in 3D range data or
in 2D curve data in the image plane. Objects are repre-
sented by implicit polynomials (i.e., 3D algebraic surfaces
or 2D algebraic curves) of degrees greater than 2, and are
recognized by computing and matching vectors of their al-
gebraic invariants (which are functions of their coefficients
that are invariant to translations, rotations, and general lin-
ear transformations). Implicit polynomials of 4th degree can
represent complicated asymmetric free-form shapes. This
paper deals with the design of Bayesian (i.e., mini prob-
ability of error) recognizers for these models and their in-
varsants that results in low computational cost recognizers
that are robust to noise, partial occlusion, and other pertur-
bations of the data sets. This work extends the work in [5]
by developing and using new invariants for 3D surface poly-
nomials and applying the Bayesian recognizer to operating
on invariants.

1 Introduction

The simplest 2D or 3D recognition problem is that
a boundary model is stored in a database for each of
L rigid objects. (By an object boundary, we mean the
3D gbject. surface, and external and internal boundary
curves for a 2D object.) Data along the entire boundary
or over a portion of the boundary of an object to be rec-
ognized is collected from a sensor. Object recognition
i8 to be realized by determining the stored boundary
model that fits the sensed data the best. By best, we
mean in the sense of minimum mean squared distance
from the data points to a boundary model. This should
produce the recognizer functioning with the highest rel-
ative frequency of correct recognition. What are the
drawbacks to this approach? There are two, both com-
putational. First is that, if there are N data points,
order of NL computations must be made for checking
on the mean square fits of L stored object boundaries
to N data points. This can be considerable if L is
large. Second is that the position of the object being
sensed will be different than the position of the object
in the database and the sensed data may also have un-
dergone a general linear transformation, due, e.g., to
the viewing of a target boundary on the ground from
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an arbitrary aerial viewing direction. Hence, an ob-

ject in the database has to be rotated and translated

in checking its match to the sensed data. This usually
means checking a boundary model fit to the data for
the boundary model moved to many different positions
and linearly transformed, thus incurring a huge amount
of computation. The approach presented in this paper
avoids both these dra.w%acks.

2 Recognition Approach

The approach in this paper is to model 3D and 2D
objects of interest by algebraic surfaces or curves, re-
spectively, i.e., by the zero sets of implicit polynomials.
The zero set is the set of points (z,y) in 2D (or (z,y, 2)
in 3D) for which the polynomial function f(z,y) on 2D
(or f(z,y,2) on 3D) is zero. Then, a stored model is
simply the set of coefficients for the polynomial model.
These are global 3D models, unlike explicit polynomi-
als where z is given as an explicit function of z and y
as in a depth map. Most of t?le early work on implicit
polynomial curves and surfaces was hmited to quadrics,
thus dealing with representations that had modest ex-
pressive power. Implicit polynomials of degree greater
than 2, on the other hang, have great modeling power
for complicated objects and can be fit to data very
well. In [8] there is presented a very well organized and
understandable introduction to these polynomials and
some of their properties, and very effective approaches
to low computational cost algorithms for fitting these
polynomials. Hence we can now use these high degree
implicit polynomials for representing complicated ob-
jects. In addition, we have developed a technique for
fitting polynomials with bounded zero sets, which re-
?u]lts in better and more stable description of objects
4]

For an implicit polynomial model, checking the fit of
a stored surface or curve to data involves fitting an im-
plicit polynomial to the data, and then comparing the
resulting polynomial coefficients with the L coefficient
vectors (one for each object) stored in the database.
Unfortunately however, there are two problems that
need to be solved. This paper presents tﬁe solutions to
them and the resulting recognizer.

The first problem is that if the object to be recog-
nized is in a different position than the object in the
database, the coefficients for the best fitting polyno-
mial to the data will be different than the coefficients



for the same object in the database, and hence, one can-
not compare the set of coefficients for the best fitting
implicit polynomial to the data set with the stored co-
efficient vectors. Our solution to this problem is to use
a vector of algebraic invariants for the recognizer. An
algebraic invariant is a function of the implicit poly-
nomial coefficients that is invariant to rotations and
translations for 3D surfaces and is invariant to transla-
rions and general linear transformations for 2D curves.
Thus, the recognizer compares the vector of invariants
for the best fitting polynomial to the data set with the
stored vectors of invariants. The additional computa-
tion for computing the invariants is negligible compared
to the time required for fitting the implicit polynomial.

For an extensive survey of invariants in computer

vision, see (1, 9]. Here we concentrate on finding al-
gebraic invartants, which are related to the description
of objects as the zero sets of implicit polynomials [6,
4, 8]. In order to use invariants in the Bayesian based
recognition system described in this paper, it was nec-
essary to have invariants that are expressed as sim-
ple ezplicit functions of the all the coefficients [7]. In
this paper, we describe a new symbolic method that is
bound to find all the invariants of the type it is looking
for. We know of no other method which can accom-
plish this. More generally, the only other method we
are aware of for finding new algebraic invariants of all
the coeflicients of high degree 1mplicit polynomials is

that of [9].

The second problem that had to be solved is that
small changes in a data set often result in large changes
in the coeéicients of the best fitted polynomial, and,
hence, large changes in the algebraic invariants. The
reason for this variability is due to the fact that the data
used in fitting the polynomials provides constraints
among the coefficients of a fitted polynomial, but the
data may be insufficient to uniquely determine the coef-
ficients. Hence, since the fitted curve and stored curve
coefficients may differ greatly, we cannot compare the
curves over the local region oty interest based on their co-
efficients or the invariants, which are functions of these
coeflicients. Our solution to this problem is to treat
recognition as Bayesian statistical recognition in the
presence of noisy data, and to use certaln asymptotic
results which permit a computationally low cost rec-
ognizer. The resulting recognizer involves comparison
of the measured vector of invariants, but not using the
Euclidean distance. Rather, the error measure requires
the use of a weighting matriz which is a function of the
specific data set being recognized. The required compu-
tation for computing this matrix is of the order of the
number of data points, and hence, modest and suitable
for real time recognition. The beauty of this approach is
that even though it uses global models — implicit poly-
nomials and coefficient vectors — it behaves as though
recognition is based on the matching of a local data
set to a boundary model. Hence, if works ezxcellently
even if the data set is over only a portion of the object
boundary, which will be the case due to self occlusion if
range data is taken for a 8D object from one direction,
or which may be the case if one or more objects are
partially occluding the object to be recognized.
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3 Using Symbolic Computation to find

Invariants
Formally, let a polynomial be denoted by f(z,y) =

Z aijz'y’ . Let z and y be subjected to some kind
0<i<jis<n
of transformation (u,v)' = T(z,y)!. Because of space
limitations, we address only the case of T' = rotation by
6. f(z,y) transforms into a polynomial g(u,v), where
g’s coefficients, b;;, are functions of the a;;’s and 6.
From here on, it will be more convenient to look at the
coeflicients a;; and b;; as being indexed by a single vari-
able. So let us revise the notations as follows: f(z,y)
is determined by the coefficients {a;}:=, and g(u,v)
by the coefficients {b;}i=), where each ¥; is a function
of the a;’s and 6, and N = 3(d + 1)(d + 2), where d is
the degree of f(z,y).

Now, we guess for an invariant I, of a high de
gree implicit polynomial curve, which is a homogeneous
polynomial (or form) ® in the a;’s, e.g. of second de-
gree, g0 I = Z ®;;a;a;, which has to be equal to

0<i<i<N

D bbb
0<i<j<N

Let us denote the relation between the a;’s and @
and the b;’s by A. Formally,

A:RxRY RN

Here A(6,a) = b, where @ is the rotation angle, a
the vector of coefficients of the polynomial f(z,y), and
b the vector of coefficients of g(u, v).

The following has to hold for every coefficient vector
a and every angle 6:

Z <I>,-ja,-a] =

0<i<i<N

&(a) = D @ijbib; = B(b)

0<i<i<N

Theorem 1 For the above to hold - e.g., for the form
D to define an invariant - it ts necessary and sufficient
that for every a,

0
(5 2(A @, @)])e=0 =0 (1)
Proof : [3, 5).

The following is a simple program written in the
Mathematica language [10] to find invariants under ro-
tation for a second degree form. Similar programs for
finding more general invariants of higher degree poly-
nomials consist of thousands of lines and were written
using a lexical analyzer [3, 5]..

1) a20z? + allzy + a02y?

2) %f.x— > u—vx*z (% means “previous ezpression’’).
3) Bfy—>vtuxrz

(/. means “substitute”, here “substitute v + u x z for y).
4) ezpl = Ezpand[%)

5; b20 = Dlezpl, {u, 2}]/2

6) 002 = D[expl,{v,2}]/2



7) b11 = Dleapl, {u,1}, {v,1}]

8) erp2 = Expand[A+b20® + B+b11%2 + Cb02% + D xb20+
511 4 E * 520 # 502 4 F + b11 * 502]

9) ezxp3 = Axa20> + Bxall®> +C +a02%> + D+ a20 % all +
E % a20 xa02 + F + all % a02

10) ezp4 = Ezpand[ezp2 — exp3]

11) D1 = Ezpand[D[ezp4, {a20,2}]]

12) D2 = Ezpand[Dlexp4, {all,2}

13) D3 = Ezpand|Dlezp4, {a02, 2}

14% D4 = Ezpand|Dlezp4, {a20,1}, {all, lﬂ}
15) D5 = Ezpand[Dlezp4,{a20,1}, {a02,1
16) D6 = Ezpand[Dlezp4, {all,1}, {a02,1}]
17§ eql = (Coef ficient[D1,2z,1] == 0)

18) eq2 = (Coef ficient[D2,2,1] == 0)

19) eq3 = (Coef ficient[D3,z,1] == 0)

20) eg4 = (Coef ficient[D4,2z,1] == 0)

21) eg5 = (Coef ficient{D5,z,1] ==

22) egb = (Coef ficient|D6,z,1] == 0)

23) Solve[{eql,eq2, eq3, eq4, eq5, eq6}, {A, B,C, D, E, F}]

First, the original form is given (line 1). Then, z and y
are replaced by u and v, which are the first order Tay-
lor approximation of the rotated r, y coordinate system
(these are enough, as we need to compute only the first
derivative at zero). The angle of rotation is denoted by
z. In Lines 4-7, the coefficients of the new form are com-
puted. In lines 8-9, we guess for invariants which are
second degree forms in the coefficients; their difference
- denoted ezp4 - has to be zero. Next, the coefficients
of z are isolated by differentiating exp4 first by the p; ;s
and then by z (lines 11-22). Equating these coefficients
to zero gives a set of equations which is solved in line
23; the result Mathematica outputs is the following:

{A—»C,B—»%-%D—.O,F—»O}

which correspond to the invariants p3, + $p?; + p?,

and paopoz — §p?;. The great advantage of this method
is that it is bound to find all invariants of the type it
is looking for. In [3, 5], we generalize this approach to
finding Euclidean and affine invariants that are higher
degree polynomials in the coefficients.

4 Asymptotic parameter distribution

and Bayesian Recognition

Let a denote the vector of coefficients of the polyno-
mial f(z,y, z) that describes the given object. We as-
sume that the range data points Z;, Z,, ..., Z, are sta-
tistically independent, noisy Gaussian measurements of
the object surface in the direction perpendicular to the
boundary at its closest point. This model is introduced
and discussed in [2, 7, 5]. Thus, the joint probability of
the data points, Z” = (Z1,2,,...,2,), is

1 ¢ (%
exp[—ﬁz I (Z
i=1

)
=7 el (2
I v £(Z:) |2
Being able to write this joint probability for a data set
in terms of a complicated curve or surface is an im-
portant result and permits the application of a large
range of tools from statistics and probability theory.

PE" @) = oy
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The maximum likelihood estimate &, of a given the
data points is the value of a that maximizes (2). A
very useful tool for solving the problems of object
recognition and parameter estimation is an asymp-
totic approximation to the joint likelihood function, (2),

which can be shown to have a Gaussian shape in o [2,
7, ie.,

P(Z" | &) =
[P(Z" | &n)] exp{-—%(a —@n)'¥pn(a — @n)}

where ¥, is the second derivative matrix having i, jth
component “W%‘leﬂ p(Z" | o) lg=a,- Hence, all
the useful information about « is summarized in the
quadratic form in the exponent of equation (3). If ¥,,
is not singular, then it is the inverse covariance matrix
of &, . The matrix ¥, is called the Fisher Information
matrix of &,,. Various extremely useful generalizations
of (3) are developed in [7].

The asymptotic approximation (3) gives an under-
standing of the extent to which the data constrains the
coefficients of the best fitting polynomial [5]. The next
section deals with using this approximation for design-
ing a metric based on the geometric invariants for com-
paring two polynomial zero sets over the region where
the data exists.

4.1 Mahalanobis distance between two
sets of Invariants

The scenario for recognition that we consider in this
paper is one where we have a set of objects labeled
1=1,2,...,L in the database, all modeled by polyno-
mials of the same degree. Let G; denote the vector of
invariants for the polynomial describing object I. Then,
given a set of range data points, Z" Z1,29,...,2n},
the optimum recognition rule is 'choose ! for whic
p(Z" | Gi) is maximum’. Thus, the recognition prob-
lem reduces to computing the likelihood of the data
given G. In [7], we have shown that

3)

-4
2

§(Z | Q) [p(2" | &) (2m) T [wHE
exp{~}(G - G,)'¥F(G - G,.))

(4)

where \IIG and_‘l’,l;l are the Information matrices of the
vector of invariants and a vector of nuisance parame-
ters, respectively, and dpg is the number of nuisance

parameters. The matrix \Il? is given by
¥F = (DG aeg, ¥(DG) |gzq,

where t implies pseudo-inverse and D(G) is the Jaco-
bian of the transformation from a to G.

Using (4) for the simplest case of recognition, the
optimum recognition rule becomes — ’Choose [ for which
the Mahalanobis distance, (G; — G,,)‘\IIS'(GI - Gyp),
is minimum.” This is because, the only part of (4) that
is a function of I is exp{—3(Gq — Gn)‘W,?(G; -G}

The beauty of this recognizer is that the computa-
tional cost is negligible, but the recognizer is equivalent



to checking how well the data fits the models stored in
the database for different linear transformations of the
models for which the computational cost is enormous.

In summary, object recognition using invariants is
done as follows.

1. Fit the best polynomial to the data set.

2. Compute the invariants G, which are functions of
the coefficients of the polynomial.

. Compute the
G, )G G| —
and pic'l( (t.he l

Mahalanobis distance, (G; —

G..) to each object in the database
for which it is a minimum.

The computational cost for steps 1-3 is linear in the
number of data points. The computation of the Maha-
lanobis distance for 200 points and a 4th degree curve is
a fraction of a second on a SPARC 10 and can be sped
up by orders of magnitude with parallel architectures.

5 Experimental Results

The experiments illustrate the use of the Maha-
lanobis distance in the space of invariants for recog-
nizing 2D and 3D objects from real data that may be
partial and that is noisy. The experiments also i{lus—
trate the fact that the Mahalanobis distance has better
discriminatory power than does the Euclidean distance.

The first set of experiments illustrate the perfor-
mance of the recognizer for 3D objects. The objects
in this experiment are keyboard mice. Figure 1 shows
the four mice used in this experiment. Figures 2(a)-
{d) are the data sets and the polynomial fits for the
mice in standard position. (The polynomial fits were
obtained using our approach for fitting bounded poly-
nomials). The data sets were obtained using the Brown
and Sharpe Microval Manual coordinate measuring ma-
chine. All the data sets are well fit by fourth degree
polynomials in z, y, z. These are the four objects in
the database.

Figures 3(a)-(d) are the data sets and polynomial fits
for the rotated and translated versions of the mice in
the database. We used 7 invariants for a fourth degree
polynomial in x, y, z. All of them are listed in [3]. The
goal in this experiment is to recognize the mice in Fig-
ures 3(a)-(d) using the Mahalanobis distance measure
and compare the results with those using the Euclidean
distance.

Tables 1 and 2 show the Mahalanobis and the Eu-
clidean distances, respectively, between the vector of
invariants for the polynomial fits to the rotated mice in
Figure 3 and the vectors of invariants for the four mice
in the database. The Mahalanobis distance measure
does a great job of discriminating between the right
object and the rest. Also, the Mahalanobis distance
has much better discriminatory power than does the
Euclidean distance.

The next experiment illustrates the use of the Ma-
halanobis distance for recognizing 2D and 3D objects
from partial data.

Figure 4 shows the partial data (with the polyno-
mial fit superimposed) for the mouse in Figure 2(a).
The partial data in this experiment is what a stereo
sensor would see when looking at the mouse from a
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point near the bottom left corner. The Mahalanobis
and Euclidean distances between the vector of invari-
ants for the polynomial fit to the occluded object and
the stored vectors of invariants are :

Mahalanobis distance:

Mousel : 1.0 Mouse2 : 1065

Mouse3 : 30.31 Mouse4 : 1.004

Euclidean distance:

Mousel : 1.0 Mouse2 : 18.39

Moused : 1.619 Moused : 0.901

The Mahalanobis distance to Mousel is the small-
est. However, the Mahalanobis distance to Mouse4 is
almost the same as that to Mousel. This is because the
occluded data does not contain the curved front part
of Mousel, and since that is the part that really distin-
guishes Mousel from Mouse4, it is hard to distinguish

etween them based on the partial data. The distances
to Mouse2 and Mouse3 are large compared to those
to Mousel and Mouse4. The Euclidean distance does
not give good recognition results with partial data. In
fact, the E.Euclidean distance from the occluded object
to Mouse4 is smaller than that to Mousel. Recogni-
tion based on the Mahalanobis distance using invariants
should produce good recognition whenever the sensed
data points fit the correct stored model significantly
better than the other stored models.

The data sets for the 2D examples are handwrit-
ten characters. The objects in the database are the
handwritten characters, ‘a’, ‘q’, ‘g’ and ‘w’, shown in
Figures 5(a)-(d). The data sets are well fit by fourth
degree polynomials in z, y. Figure 6(a) is another in-
stance of the handwritten character ‘w’ that is a ro-
tated, translated, occluded and noisy version of the one
in the database. We fit a fourth degree polynomial to
the occluded object in order to compare its invariants
with those for the unoccluded database objects. Figure
6(b) is the fourth degree polynomial fit to the data set
in 6(a). Three invariants for a fourth degree polynomial
in z,y obtained using our approach are

1. 3a2;—8ap4aza+2a13a3;+3a3; —32a40a04—8azza40,
2. 3a?4 -+ 2604022 + a13a31 + 2ap4a40 + 2a3a40 + 3a,,

3. a%z - 3013031 -+ 12(1[)4&40,

Since the invariants should be independent of multi-
lication of the coefficients by a constant, these three
unctions yield only two invariants. One set of two in-

variants is 4 and £. Thus, for object recognition,

3 3

we use the Mahalanobis distance between the ratios of
invariants. The Mahalanobis distance from the letter
in Figure 6(a) to the letters ‘a’, ‘g’, ‘q’ and ‘w’ in the
database are :

‘a’21.00 ‘q’:12.9 ‘g’:12.2 ‘w’:4.81

(The distance to ‘a’ in the database is normalized to
have value 1.0.) The distance to ‘w’ is minimum. How-
ever, the distance is small to ‘a’ and ‘q’. Thisis because,
the data set in 6(a) also fits the model for ‘a’ and ‘q’
as shown in Figures 6(c) and 6(d). The experiment il-
lustrates that even under a large amount of occlusion,
the recognizer comes up with tﬁe best possible results.
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