
Decision Tree Induction in High Dimensional,

Hierarchically Distributed Databases

Amir Bar-Or, Assaf Schuster, Ran Wolff Daniel Keren

Faculty of Computer Science Department of Computer Science

Technion, Israel Haifa University, Israel

{abaror, assaf, ranw}@cs.technion.ac.il dkeren@cs.haifa.ac.il

Abstract

Classification based on decision trees is one of the impor-

tant problems in data mining and has applications in many

fields. In recent years, database systems have become highly

distributed, and distributed system paradigms such as fed-

erated and peer-to-peer databases are being adopted. In

this paper, we consider the problem of inducing decision

trees in a large distributed network of high dimensional

databases. Our work is motivated by the existence of dis-

tributed databases in healthcare and in bioinformatics, and

by the vision that these database are soon to contain large

amounts of genomic data, characterized by its high dimen-

sionality. Current decision tree algorithms would require

high communication bandwidth when executed on such data,

which is not likely to exist in large-scale distributed systems.

We present an algorithm that sharply reduces the communi-

cation overhead by sending just a fraction of the statistical

data. A fraction which is nevertheless sufficient to derive

the exact same decision tree learned by a sequential learner

on all the data in the network. Extensive experiments us-

ing standard synthetic SNP data show that the algorithm

utilizes the high dependency among attributes, typical to

genomic data, to reduce communication overhead by up to

99%. Scalability tests show that the algorithm scales well

with both the size of the dataset, the dimensionality of the

data, and the size of the distributed system.

Keywords: data mining, distributed algorithms,
decision trees, classification, high dimension data.

1 Introduction

The analysis of large databases requires automation.
Data mining tools have been shown to be useful for
this task, in a variety of domains and architectures.
It has recently been shown that data mining tools are
extremely useful for the analysis of genomic data as
well [12]. Since the number of genomic databases and
the amount of data in them increases rapidly, there is a
dire need for data mining tools designed specifically to

target genomic data specifically.
Classification, the separation of data records into

distinct classes, is apparently the most common data
mining task, and decision tree classifiers are perhaps
the most popular classification technique. Some recent
works have shown that classification can be used to an-
alyze the effect of genomic, clinical, environmental, and
demographic factors on diseases, response to treatment,
and the risk of side effects [9]. Providing efficient deci-
sion tree induction algorithms suitable for genomic data
is therefore an important goal.

One interesting aspect of genomic databases is that
they are often distributed over many locations. The
main reason for this is that they are produced by a vari-
ety of independent institutions. While these institutions
often allow a second party to browse their databases,
they will rarely allow this party to copy them. There
could be a number of reasons for this: the need to retain
the privacy of personal data recorded in the database,
through questions regarding its ownership, or even be-
cause the sheer size of the data makes copying non-
permissively costly in CPU, disk I/O or network band-
width.

Our lead example in this paper is the task of
mining genomically enriched electronic medical records
(EMRs). Within a few years it is expected that each
patient’s medical record will contain a genomic finger-
print. This fingerprint will be used mainly to optimize
treatment and predict side effects. Existing genomic fin-
gerprinting techniques, such as single nucleotide poly-
morphisms (SNPs) and Gene Expression Microarrays,
yield records with tens of thousands of entries that are
usually interpreted as binary (normal/abnormal allele
or active/inactive gen, respectively). It is common per-
ception that an illness or treatment side effect can many
times relate to just single SNPs or to the expression of
few genes.

Data mining of genomically enriched EMRs would
be needed for the identification of unknown correlations



and for the development of new drugs. It would best be
performed on a national scale, using EMRs gathered
by many different health maintenance organizations
(HMOs). This would naturally extend the functionality
of systems such as RODS and NRDM [13] which already
collect and analyze health data at a regional (RODS)
and national (NRDM) scale. RODS, for example,
accesses the database of tens of hospitals using the HL7
protocol to retrieve statistical information and detect
disease outbreaks. Nevertheless, it is unlikely that an
HMO would allow systems such as RODS to download
its entire database. Hence, the need for distributed
algorithms.

A distributed decision tree induction algorithm is
one that executes on several computers, each with its
own database partition. The outcome of the distributed
algorithm is a decision tree which is the same as, or at
least comparable with, a tree that would be induced
were the different partitions collected to a central place
and processed using a sequential decision tree induction
algorithm. Since decision tree induction poses modest
CPU requirements, the performance of the algorithm
would usually be dictated by its communication require-
ments.

Previous work on distributed decision tree induction
usually focused on tight clusters of computers, or even
on shared memory machines [4–6, 10, 11]. When a
wide area distributed scenario was considered, all these
algorithms become impractical because they use too
much communication and synchronization. A kind of
decision tree induction algorithm which is more efficient
in a wide area system employs meta-learning. However,
these produce a heuristic approximation rather than the
optimal result produced by the former algorithms and,
thus, are not considered in this paper. Because genomic
databases contain many (thousands) attributes for each
data instance and can be expected to be distributed over
many distant locations, current distributed decision tree
induction algorithms are ill-fit for them.

In this paper we describe a new distributed decision
tree algorithm, Distributed Hierarchical Decision Tree
(DHDT). DHDT is executed by a collection of agents
which correlate with the natural hierarchy of a national
virtual organization. For instance, the leaf level agents
may correspond to different HMOs (or clinics within an
HMO) while upper levels correspond to regional, state
and national levels of the organization. DHDT focuses
on reducing the volume of data sent from each level to
the next while preserving perfect accuracy (i.e., the re-
sulting decision tree is not an approximation). When
tested on genomic SNP data with one thousand SNPs
in each data record, DHDT usually collects data about
only about a dozen of the SNPs – a 99% decrease in

bandwidth requirements. The algorithm is suitable for
any high dimention data, provided that the correlations
in it are sparse as they are in genomic data. Both the hi-
erarchic organization and the communication efficiency
of DHDT give it excellent scalability at no decrease in
accuracy.

2 Sequential Decision Tree Induction

The decision tree model was first introduced by Hunt et
al. [3], and the first sequential algorithm was presented
by Quinlan [7]. This basic algorithm used by most of
the existing decision tree algorithms is given here.

Given a training set of examples, each tagged with
a class label, the goal of an induction algorithm is to
build a decision tree model that can predict with high
accuracy the class label of future unlabeled examples.
A decision tree is composed of nodes, where each node
contains a test on an attribute, each branch from a node
corresponds to a possible outcome of the test, and each
leaf contains a class prediction. Attributes can be either
numerical or categorical. In this paper, we deal only
with categorical attributes. Numerical attributes can
be discretisized and treated as categorical attributes;
however, the discretization process is outside the scope
of this paper.

A decision tree is usually built in two phases: A
growth phase and a pruning phase. The tree is grown by
recursively replacing the leaves by test nodes, starting at
the root. The attribute to be tested at a node is chosen
by comparing all the available attributes and greedily
selecting the attribute that maximizes some heuristic
measure, denoted as the gain function. The minimal
and sufficient information for computing most of the
gain functions is usually contained in a two-dimensional
matrix called the crosstable of attribute i. The [v, c]
entry of the crosstable contains the number of examples
for which the value of the attribute is v and the value
of the class attribute is c.

The decision tree built in the growth phase can
”overfit” the learning data. As the goal of classification
is to accurately predict new cases, the pruning phase
generalizes the tree by removing sub-trees correspond-
ing to statistical noise or variation that may be particu-
lar only to the training data. This phase requires much
less statistical information than the growth phase; thus
it is by far less expensive. Our algorithm integrates a
tree generalization technique suggested in PUBLIC [8],
which combines the growing and pruning stages while
providing the same accuracy as the post-pruning phase.
In this paper, we focus on the costly growth phase.

2.1 Gain Functions The most popular gain func-
tions are information gain [7], which is used by Quin-



lan’s ID3 algorithm, and the Gini Index, which is used
by Brieman’s Cart algorithm, among others.

Consider a set of examples S that is partitioned
into M disjoint subsets (classes) C1, C2, ..., CM such

that S =
⋃M

i=1 Ci and Ci

⋂

Cj = ∅ for every i 6=
j. The estimated probability that a randomly chosen

instance s ∈ S belongs to class Cj is pj =
|Cj |
|S| , where

|X | denotes the cardinality of the set X . With this
estimated probability, two measures of impurity are
defined: entropy(S) = −

∑

j pj logpj , and Gini(S) =
∑

j p2
j .

Given one of the impurity measures defined above,
the gain function measures the reduction in the impurity
of the set S when it is partitioned by an attribute A as

follows: GainA(S) =
∑

v∈V alues(A)
|Sv|
|S| Imp(Sv), where

V alues(A) is the set of all possible values for attribute
A, Sv is the subset of S for which attribute A has the
value v, and Imp(S) can be entropy(S) or Gini(S).

3 Bounds on the Gain Functions

The bounds given in this section bound the gain func-
tion of a population that is the union of several dis-
joint subpopulations on which only partial information
is available. By using them we can avoid collecting the
crosstables of many of the attributes whose gain, as indi-
cated by the bounds, cannot be large enough to change
the result.

3.1 Notations The bounds given below are defined
for a single attribute of a single decision tree leaf
node. Therefore, we simplify the notations by removing
references to the attribute and the decision tree node.
Let P be a population of size n and let {P1, P2}
be a partition of P into two subpopulations of sizes
n1, n2 respectively. Let the crosstables of populations
P1, P2, P be defined as:

−→
P1(value, class) =

(

a11 a12

a21 a22

)

,

−→
P2(value, class) =

(

b11 b12

b21 b22

)

,

−→
P (value, class) =

(

a11 + b11 a12 + b12

a21 + b21 a22 + b22

)

respec-

tively.
Here, ai,j and bi,j denote the number of learning

examples with value i and class j in
−→
P1 and

−→
P2,

respectively.
In the algorithm described here we rely on the

following two bounds, the proof of which is omitted due
to space considerations:

Theorem 3.1. Let P be a population of size n, and
{P1, P2, ..., Pk} a partition of P into k subpopulations

of sizes n1, n2, ..., nk respectively. Let G() denote the
gain function (information gain or Gini index). Then
an upper bound on G(P ) is given by:

G(P ) ≤

P

k

i=1
niG(Pi)

P

k

i=1
ni

.

Theorem 3.2. Let P be a population of size n, and
{P1, P2} a partition of P into two subpopulations of
sizes n1, n2 respectively. Assume that the candidate split
divides P1 into two subsets, P

left
1 and P

right
1 , with sizes

n
left
1 and n

right
1 respectively. Let G() denote the gain

function (information gain or Gini index). Then, lower
bounds on G(P ) is given by:

G(P ) ≥
G(P1)

[

1 + n2

n1

] [

1 + n2

min{n
left
1

,n
right
1

}

]

4 Distributed Hierarchical Decision Tree

The distributed hierarchical decision tree (DHDT) algo-
rithm runs on a group of computers, connected through
a wide-area network such as the Internet. Each com-
puter has its own local database. The goal of DHDT
is to derive exactly the same decision tree learned by
a sequential decision tree learner on the collection of
all data in the network. We assume a homogeneous
database schema for all databases, which can be pro-
vided transparently, if required, by ordinary federated
system services. The algorithm relies on a (possibly
overlay) communication tree that spans all computers
in the group. The communication tree can be main-
tained by a spanning tree algorithm or can utilize the
natural hierarchy of the network. For reasons of local-
ity, communication between nodes in the lower levels of
the spanning tree is often cheaper than communication
between nodes in the upper levels. Thus, a ”good” algo-
rithm will use more communication at the bottom than
at the top of the tree. We further assume that during
the growth phase of the decision tree, the databases and
the communication tree remain static.

Every computer in the group employs an entity
called Agent that is in charge of computing the required
statistics from the local database and participates in the
distributed algorithm. Agents collect statistical data
from their children agents and from the local database
and send it to their parent agent at its request.

The root agent is responsible for developing the
decision tree and making the split decisions for the
new decision tree leaves. First, the root agent decides
whether a decision tree leaf has to be split according to
one or more stopping conditions (e.g., if the dominance
of the majority class has already reached a certain
threshold) or according to the PUBLIC method [8],
which avoids splitting a leaf once it knows it may
be pruned eventually. The class distribution vector,



which holds the number of examples that belong to
each distinct class in the population, is sufficient for
computing these functions, and thus it is aggregated
by the agents over the communication tree to the root
agent.

Definitions

D1. border= maximal lower bound of all attributes which
were not sent to the parent
D2. borderAttribute= the attribute whose lower bound
defines the border
D3. If agent is root then
D4. ExtraCondition = There is only a single attribute
Ai where UpperBound(Ai) ≥ border or
. maxi(UpperBound(Ai)) = border

D5. Else
D6. ExtraCondition = Gi

u < border for all children
Algorithm

Phase 1: Starts when a new leaf is born

01. Receive information from all children
02. While (not (border defines a clear separation and
ExtraCondition)) do
03. If (Gi

u > border) then
04. request childi to lower its border and send new
information
05. Else if (border does not define a clear separation and
. crosstable of borderAttribute has only partial
information)
06. request information for borderAttribute from
children who did not send complete information
07. Else
08. request information for all attributes that cross
the border

09. End if
10. Receive information from all children
11. End while
12. Return attributes Ai where LowerBound(Ai) ≥ border

Phase 2: Starts when an agent receives a request for

more information from its parent

01. If (parent requires more information for attribute attri)
then
02. If (crosstable of attri was not sent to parent) then
03. Send parent the crosstable of attri

04. Else
05. request information for attri from children who
sent partial information regarding attri

06. Else (the case where parent requests that the border be
lowered)
07. Update border and borderAttribute and start phase
1.
08. Endif

Algorithm 1: DESAR Algorithm

Recall that if a decision tree leaf has to be split, the
split must be done by the attribute with the highest gain
in the combined database of the entire network. All that
is required to decide on the splitting attribute is thus an

agreement as to which attribute has the maximal gain;
the actual gain of each attribute does not need to be
computed. To reach agreement, the agents participate
in a distributed algorithm called DESAR (Distributed
Efficient Splitting Attribute Resolver). For each new
leaf that has to be developed, DHDT starts a new
instance of DESAR to find the best splitting attribute.
We proceed to describe the DESAR algorithm.

4.1 Distributed Efficient Splitting Attribute

Resolver To find the best splitting attribute while
minimizing communication complexity, DESAR aggre-
gates only a subset of the attribute crosstables over the
communication tree to the root agent. The algorithm
starts when the agents receive a message that is broad-
cast down the communication tree (initiated by the root
and transmitted by each agent to all its children), ask-
ing for the development of a new leaf in the decision
tree. Then, each agent waits for messages from its chil-
dren. When messages are received from all children, the
agent combines the received crosstables with its own lo-
cal crosstables, picks the most promising attributes on
the basis of its aggregated data, and sends the corre-
sponding crosstables to its parent agent.

Algorithm 1 describes DESAR pseudocode, uni-
formly executed by all agents. For space considerations,
we only provide pseudo-code here.

5 Experimental Evaluation

The DHDT algorithm is designed to run on datasets
with a large number of attributes, such as the genomi-
cally enriched EMR. However, such data is not yet avail-
able for large-scale data mining. Therefore, we adopted
an approach common in bioinformatics studies on the
association of phenotype with SNP data. In this ap-
proach, synthetic SNP data is generated by a theoreti-
cal model, and then one SNP serves as the phenotype
we wish to classify. Since some diseases are correlated
strongly with a single SNP variation, learning a model
which predicts an SNP’s allele is equivalent to learning
a model which predicts one of these diseases. We syn-
thesized the SNP data using two data generators ( [1,2])
with typical parameters to generate two datasets, where
each of the generators uses a different theoretical model.

Each dataset contains 250,000 examples describing
a single population. A single SNP is described by a
binary attribute where ’0’ denotes the most common
allele. An example is composed of 1000 SNPs. An
arbitrary SNP is designated the class attribute. The
experiments were performed on a simulation of a com-
munication tree that spans all agents in the system. At
the beginning of each experiment, each agent builds its
local database by sampling a small fraction of the simu-



lated dataset, thus emulating a specific subpopulation.
Unless otherwise stated, experiments have been run

assuming a spanning communication tree of degree three
and height six, totaling in 1093 Agents. Each agent
has a database (population) of 5000 samples and 1000
attributes (alleles) per sample. The average resulting
decision tree had 25 nodes and a misclassification rate
of 3%.

5.1 Experiments Our first experiment measures the
average communication overhead of a single split de-
cision (i.e., a single run of the DESAR algorithm) in
terms of the number of messages and the number of
sent crosstables. These results are compared with pre-
vious distributed decision tree algorithms which collect
and aggregate the crosstables of all attributes.

Our algorithm demonstrates an average reduction
of more than 99% in the number of transmitted bytes,
with only a small increase in the average number of sent
messages (1.2 per Agent per decision tree node). These
results are summarized in Fig. 1.

Additional experiments have proved the algorithm
is scalable with respect to the size of the network, the
number of total attributes, and the size of the local
databases. For space considerations, we only present
results for network size scalability (Fig. 2).

Figure 1: Average communication overhead, comparing
to [11] which sends 1000 attributes in a single message

References

[1] G. Greenspan and D. Geiger. Model-based inference of
haplotype block variation. RECOMB, pages 131–137,
2003.

[2] R. R. Hudson. Generating samples under a Wright-
Fisher neutral model of genetic variation. Bioinfor-
matics, 18:337–338, 2002.

[3] E. B. Hunt, J. Marin, and P. T. Stone. Experiments in
Induction. Academic Press, 1966.

Figure 2: Scalability in network size. The above fig-
ure show the distribution of the average communication
overhead over the network tree levels for different net-
work sizes (Gini index).

[4] R. Jin and G. Agrawal. Communication and memory
efficient parallel decision tree construction. In Proc. of
the 3rd (SDM), 2003.

[5] M. V. Joshi, G. Karypis, and V. Kumar. A new
scalable and efficient parallel classification algorithm
for mining large datasets. In Proc. of International
Parallel Processing Symposium, 1998.

[6] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast
scalable classifier for data mining. In Proc. of the Fifth
Int’l Conference on Extending Database Technology,
Avignon, France, 1996.

[7] J. R. Quinlan. Induction of decision trees. Machine
Learning, 1:81–106, 1986.

[8] Rajeev Rastogi and Kyuseok Shim. PUBLIC: A deci-
sion tree classifier that integrates building and pruning.
Data Mining and Knowledge Discovery, 4(4):315–344,
2000.

[9] N. J. Risch. Searching for genetic determinants in the
new millennium. In Nature 405, pages 847–856, 2000.

[10] J. C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A
scalable parallel classifier for data mining. In Proc. of
the 22nd VLDB Conf., 1996.

[11] A. Srivastava, E.-H. (S.) Han, V. Kumar, and V. Singh.
Parallel formulations of decision-tree classification al-
gorithms. Data Mining and Knowledge Discovery: An
International Journal, 3:237–261, 1999.

[12] W. Sthlinger, O. Hogl, H. Stoyan, and M. Muller. In-
telligent data mining for medical quality management.
In the Fifth Workshop on Intelligent Data Analysis in
Medicine and Pharmacology (IDAMAP-2000), Work-
shop Notes of the 14th European Conference on Artifi-
cial Intelligence (ECAI-2000), pp. 55-67, 2000.

[13] M. M. Wagner, J. M. Robinson, F.-C. Tsui, J. U.
Espino, and W. R. Hogan. Design of a national retail
data monitor for public health surveillance. Journal of
the American Medical Informatics Association JAMIA,
10(5):409–418, Sep/Oct 2003.


