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Abstract—A canonical problem in computer vision is category recognition (e.g., find all instances of human faces, cars etc., in an

image). Typically, the input for training a binary classifier is a relatively small sample of positive examples, and a huge sample of

negative examples, which can be very diverse, consisting of images from a large number of categories. The difficulty of the problem

sharply increases with the dimension and size of the negative example set. We propose to alleviate this problem by applying a “hybrid”

classifier, which replaces the negative samples by a prior, and then finds a hyperplane which separates the positive samples from this

prior. The method is extended to kernel space and to an ensemble-based approach. The resulting binary classifiers achieve an

identical or better classification rate than SVM, while requiring far smaller memory and lower computational complexity to train

and apply.

Index Terms—Object recognition, object detection, large scale learning

Ç

1 INTRODUCTION

ONE of the central problems in computer vision is recog-
nizing objects in realistic scenes. We deal with the clas-

sification problem, defined as predicting whether at least
one object of a given class is present in an image. The
basic recipe for this kind of problem has been 1) con-
structing a bag of visual words or spatial pyramids [29]
of multiple features, 2) vector quantization, 3) training
SVM classifiers with histogram intersection [29] or other
additive kernels [36], [39], and 4) integrating classifiers
using voting or MKL [11]. Recent work focused on devis-
ing new and better features and kernels (e.g., [47]), vari-
ous coding strategies (e.g., [17]), etc. Most of these
methods adopt a one-against-rest strategy for training
SVM classifiers, in which the positive class is composed
of samples from a single class and the negative class com-
prises samples from all remaining classes. When the num-
ber of classes is relatively small, the one-against-rest
training scheme was shown to be as good as multi-class
classifiers [40]. However, in real problems, the negative
class—i.e., the background—is often much richer and
includes all object categories except the positive class.
When the number of classes is large, the one-against-all
scheme faces two major problems: extremely unbalanced
training sets, and high computational complexity [39].

Unbalanced sets. It is a common knowledge that when
trained on unbalanced sets, the class boundary learned
by SVMs can be severely skewed towards the smaller
class, and it becomes very sensitive to noise [1]. Several
approaches have been proposed to solve this problem (a
review of previous work is provided in [1], [26]), includ-
ing setting different penalties for misclassifying the
positive class relative to the negative one, various weight-
ing techniques, undersampling the majority class or

oversampling the minority class, adjusting the class
boundary based on the spatial distribution of the support
vectors, and various combinations of the above. All these
methods, however, do not address the complexity issue.
Thus using weighted SVM or any other of these methods
as a one-against-rest classifier for a large data set is prob-
lematic, especially when a kernel classifier is applied,
since the number of support vectors linearly increases
with the number of training examples [49].

High computational complexity. Kernel SVM was shown to
be the most successful among one-against-rest classifiers for
object recognition tasks [13], [29], [55]. However, it cannot
be used in large-scale problems, because its training is slow
and requires large memory. Further, its prediction rule is
too expensive when the number of support vectors is large.
The running time of kernel SVM is proportional to the num-
ber of its support vectors, which tends to linearly increase
with the size of the training set [49]. There are several solu-
tions to this problem, such as kernel approximations (e.g.,
[46], [31], [21]), locally linear SVMs [27], pruning the sup-
port vectors (e.g., [7], [9]), etc. Alas, all these methods trade
accuracy for efficiency. Using an explicit mapping to the
feature space, followed by linear classification [39], [36], [53]
showed excellent accuracy, but is applicable only for certain
types of kernels.

To summarize, solutions for the case of unbalanced sets
exist, however they are computationally inefficient; there
are also solutions which efficiently approximate the kernel
classifier, but they are not designed for unbalanced sets.
Further, adding a new category requires retraining all the
one-against-rest classifiers, making the approach even more
problematic.

In current visual classification problems, the negative
class approaches the complement of the positive class and
thus it can be viewed as a general “background class”. In
this work we propose classifiers that are specifically
designed to separate a class from a rich background. By
“background” we mean all images except the category to be
recognized. Learning this background from samples is
highly problematic. We suggest replacing the background sam-
ples by a distribution. The idea is straightforward—instead of

� The authors are with the Computer Science Department, University of
Haifa. E-mail: {rita, dkeren}@cs.haifa.ac.il, dolev.raviv@gmail.com.

Manuscript received 14 June 2014; revised 3 Aug. 2015; accepted 4 Aug. 2015.
Date of publication 6 Aug. 2015; date of current version 11 Mar. 2016.
Recommended for acceptance by D. Ramanan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2015.2465910

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 4, APRIL 2016 759

0162-8828� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



minimizing the number of background samples in the clas-
sifier’s acceptance region, we minimize the probability vol-
ume of the background prior in the acceptance region.
This formulation eliminates the problem of unbalanced
training sets (since there are no negative samples) and the
high complexity due to the large number of “negative”
support vectors. From now on we shall refer to this type
of classifiers as hybrid. The notion of hybrid classifier we
use here characterizes the mixed input in the training
phase: samples from the positive class versus probability
distribution on the background.

The idea of a hybrid classifier was first introduced in [38],
but the solution proposed there was restricted to grey-level
images and applied a very simple prior, which is not robust
to illumination variation and image deformations. Further,
only a linear classifier was presented. Here we extend the
basic paradigm to realistic scenes and propose the following
contributions:

1. Although accurately modeling the background is
difficult, we observe that in classification tasks one
typically seeks to separate the values of the two
categories (or in this case, a single category and
the background) after they were projected (either
linearly, as in linear SVM, or by a more compli-
cated function, e.g., a kernel) into the real line. We
show that the projection of a complicated back-
ground can be well-approximated by a simple dis-
tribution (e.g., Gaussian). Thus, we suggest that as
the number of image categories in the background
class increases, the method described here will
become even more suitable.

2. We apply priors on robust features, such as Bag of
Words constructed from densely sampled SIFT fea-
tures [4], [34]. The prior assumed in [38] was based
on the observation that typical images are “smooth”,
that is, most of their energy is concentrated in the
low frequencies. Although BoW features obviously
do not posses this property, we show that they can
be successfully used with the hybrid classifiers, sug-
gesting that the basic paradigm is very general and
can be applied to other features and domains.

3. We develop a kernel version of the hybrid classifier,
which is much more efficient than kernel SVM in
both training and classification, while it enjoys an
even better classification accuracy.

4. We demonstrate that a hybrid linear classifier can be
used in an ensemble of linear classifiers, yielding bet-
ter performance than other linear classifiers, such as
linear SVM and LDA.

1.1 Modeling the Background Distribution

Compared to a single object class, the background distribu-
tion is so wide that it can be assumed to be approximately
equal to the distribution of all natural images, hence we can
use this distribution to model the background class (this
model will therefore be applicable to all single classes one
wishes to detect, thus drastically reducing training com-
plexity). Modeling the distribution of natural images is,
however, a challenging task. A number of energy-based
models have been proposed to learn this distribution from
examples (e.g., [41], [48], [54], [56]). These models attempt
to find a set of linear filters in order to decompose the image
into channels, as well as the corresponding energy func-
tions. Training most of these models is very long, which is
not a burden if it is computed once and then used for an
application that employs a fixed prior. We are interested in
determining a suitable prior on natural images and apply-
ing it to classification. In light of this we need to evaluate,
during training, the probability of background images to be
accepted by the classifier; this probability reflects the per-
centage of false positives, which the classifier seeks to mini-
mize. Such an evaluation is performed for each choice of
parameters for the candidate classifier.

Since the final step in classification consists of threshold-
ing a scalar-valued function, we are interested in modeling
the projections or outputs of scalar-valued functions applied
on the space of natural images.Modeling projections of natu-
ral images has also been studied in low-level vision. The
most striking difference between the functions applied to
features commonly used in object recognition and the linear
filters applied to grey-levels in low-level vision [54] is the
form of the distribution they produce. Applying linear filters,
such as derivative-like filters, wavelets etc. to natural images,
represented by grey-levels, produces outputs whose distri-
bution is highly non-Gaussian—it is peaked at zero and has
heavy tails [48] (Fig. 1). We are interested in non-linear func-
tions of grey-levels, such as Bag of Words [4], constructed
from SIFT features [34]. Our experiments suggest that projec-
tions of these representations are Gaussian-like (Fig. 1). As
elaborated in Section 2, this allows to efficiently approximate
the distribution of the projections of the background class.
Gaussian modeling of the negative set was also used in [15]
and showed close to state-of-the-art detection results.

1.2 Incorporating the Prior in a Classifier

There are different ways of incorporating a prior into a
model or classifier. In [32] a Bayesian approach is employed,
in which the prior information about object categories is
learned from previously observed models or unrelated cate-
gories and is incorporated as a probability density function

Fig. 1. Examples of 1D random projections of the background class. The two histograms on the left correspond to grey-level with 8� 8 filter
size (as common in work on natural image statistics). The projections are clearly non-Gaussian. The other two histograms correspond to BoW
of SIFT features (the blue solid line). The projections are very close to Gaussians (dashed red line).
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of the parameters of the generative model. Here, we con-
sider the problem of object recognition against a general
background, and the prior we use is on the background
class. We don’t have any prior on the object class, thus an
application of the Bayesian method is not straightforward.

Using a prior on the marginal distribution, or using unla-
beled images, is the essence of semi-supervised or transduc-
tive learning [2]. In these techniques, a classifier is trained on
labeled samples from both classes and the prior is incorpo-
rated by the assumption that pðxÞ influences pðyjxÞ (where x
is the data and y represents the labels). The relation between
the two depends on the method. In our method we not only
assume an influence of pðxÞ on pðyjxÞ, but also use the much
stronger assumption that the marginal distribution is
approximately equal to the background distribution.

The Fisher kernel [18] allows incorporating prior knowl-
edge about the data distribution into a discriminative frame-
work. This is done by comparing the gradient of the log-
likelihood of the data item with respect to the model with a
given set of parameters. This is very different from our
approach, as in our casewemodel the distribution of the back-
ground using a generative model and learn a discriminative
model between the positive examples and that distribution.

Using a Gaussian approximation of the negative set for
object detection was also suggested in [15], as part of an
LDA model, which was trained to separate a single positive
example (or a cluster of similar positive examples) from the
background. Similarly to our proposed method, they
learned a Gaussian model of the background only once,
using images of all classes. This model was used to train
exemplar LDA, achieving detection results comparable to
exemplar SVM [35], but at much lower training complexity.
The same model was used to whiten a HOG representation
of images, in order to cluster them in more coherent clusters
than those obtained by using euclidean distance. Training
linear classifiers for clusters rather than for each positive
example allowed to reduce detection time.

While there is some similarity between our work and [15]
in the Gaussian approximation of the background, the idea
of using a simple Gaussian model of the image space as a
background approximation in training linear classifiers was
introduces earlier, in [38]. Also, the motivation of using a
prior instead of examples in our case has a probabilistic
meaning: we minimize the overall probability volume of the
background prior in the acceptance region. In [15], the posi-
tive examples are approximated by their mean, which is
inaccurate in the presence of even moderate inner class vari-
ation. Our experiments show (see Section 4) that the pro-
posed hybrid linear classifier consistently outperforms the
model proposed in [15] when applied to clusters obtained
using whitened features. Finally, in this paper, we extend
the hybrid formulation to kernel, which performs substan-
tially better than linear classifiers.

2 HYBRID CLASSIFIERS

We propose to incorporate the background prior in a hybrid
classifier fðxÞ, which is trained to attain positive scores on

the samples of the target class and for which
R
H PrðzÞdz is

very small, where PrðzÞ represents the background distribu-
tion, and H is the acceptance region of fðxÞ (i.e., all x for

which fðxÞ � 0). Thus the standard constraints of excluding
background samples are replaced by a single constraint of
excluding a large volume of background probability. One
can see some resemblance between the hybrid classifier and
one class SVMs [42], [51]. These, however, implicitly assume
that the background is isotropically distributed, while here
we don’t make that assumption.

2.1 Linear Classifier

We search for a separating hyperplane ðw; bÞ which yields a
maximum margin between itself and the positive samples,
under the constraint that the integral of the probability den-
sity of the background (natural images) in its acceptance
region, H ¼ fxjw � x � bg, is small. We bound the probabil-
ity of natural images to fall in the acceptance region:
Prðw � x � bÞ < d, where the constant d is close to zero.
Diaconis and Freedman [5] showed that if high-dimensional
data consists of independent and identically distributed
random vectors, then its projections are almost surely close
to Gaussian. We empirically demonstrate that this proposi-
tion holds for one-dimensional random projections applied
to two diverse sets of images: Caltech-256 [14] and Scenes-15
[29]. We used all 30,607 images of 256 categories from Cal-
tech-256 and 3,000 images of 15 scenes from Scene-15. Images
in Caltech-256 are quite diverse and objects appear in various
scales and orientations; images in Scenes-15 contain many
objects. Thus, these sets can serve as an approximation to the
set of natural images. We used the BoW representation pro-
vided in [11] 1 for Caltech-256, and three-level pyramids of
BoW [29] for Scenes-15. We tested hundreds of random pro-
jections for both sets, and all of them are well-approximated
by one-dimensional Gaussians (Fig. 1, the two histograms on
the right). We show in Appendix A the KL divergence of an
average random projection from normal as the function of
number of categories in the background class. This experi-
ment shows that the KL divergence drops rapidly and then
saturates, reaching very low values for a larger number of
categories. The first two images in Table 1 show that the dis-
tribution of the projections which correspond to the learned
classifiers is quite similar to the distribution of random pro-
jections, which supports the Gaussian assumption. Our
experiments show that the Gaussian approximation of the
projections bounds the background probability in the accep-
tance region of the learned classifiers in all tests conducted
(see Section 4).

In order to obtain a closed-form, general expression for
the distribution of the projections, we first estimate the
mean and covariance matrix of the high-dimensional distri-
bution, denoted �x and Sx respectively. Then, the projection
defined by taking a scalar projection with a vector w is a

random variable with mean wT�x and variance wTSxw. Fol-
lowing the previous discussion, we approximate this vari-
able by a Gaussian; thus the probability of a background
image to be accepted by the classifier is

Prðw � x � bÞ ¼ 1

2
1� erf

1ffiffiffi
2

p b�wT�xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTSxw

p
 !" #

: (1)

1. http://www.vision.ee.ethz.ch/�pgehler/projects/iccv09/index.
html
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For the approximation to be valid, the real (empirical)
probability of a background image to lie in a certain half-
space should be close to the one derived from the prior (or
the “theoretical probability”). The empirical probability can
be estimated by testing many randomly chosen background
images, while the theoretical probability can be computed
(as in Eq. (1)). We tested the similarity between the two
probabilities on Caltech-256 and Scenes-15; results are pre-
sented in Fig. 2. We used disjoint sets to estimate the mean
and covariance of x and the probability that a natural image
falls in the “positive” (acceptance) half-space. We randomly

chose w, constraining its norm to be 1, and a value for b in
the range [-0.5, 0,5]. For each choice of ðw; bÞ we computed
the expression in Eq. (1) and used it as the x-coordinate of a
point in the scatter plot in Fig. 2. The y-coordinate repre-
sents the empirical probability, and it is computed as the
actual percentage of the images that fall in the positive half-
space. The scatter plot supports the validity of the proposed
approximation. A similar relation has been shown in [38]
for the class of natural images represented in the frequency
domain. This suggests that such relations hold for different
features and data sets.

Based on the above observations, the constraint on the
probability of background misclassification is given by:

Prðw � x � bÞ ¼ 1

2
1� erf

1ffiffiffi
2

p b�wT�xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTSxw

p
 !" #

� d: (2)

Since we seek to minimize Prðw � x � bÞ, we assume that

d < 1=2, and thus g ,
ffiffiffi
2

p
erf�1ð1� 2dÞ > 0. By formulating

the constraint in Eq. (2) in terms of g, and rearranging, we
obtain a convex constraint:

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTSxw

p
þwT�x� b � 0: (3)

A more general argument, which does not require the
Gaussian approximation assumption, can be applied to jus-
tify the constraint in Eq. (3). To show this we apply a result
from [28], which states that for a half space S ¼ fw � y � bg,
and all distributions y with expectation �y and covariance
matrix Sy:

sup
y�ð�y;SyÞ

Prðw � y � bÞ ¼ 1

1þ d2
; d2 ¼ ðb�wt�yÞ2

wtSyw
: (4)

TABLE 1
Examples of 1D Projections of Test Images on Separating Hyperplanes Corresponding to Different Hybrid Classifiers:

The First Four Distributions Correspond to Classifiers Trained on Different Categories from Caltech-256, the
First Two—Linear Classifier, the Third and Fourth—SPM Kernel Classifiers; the Last Two Correspond to

SPM Kernel Trained on Two Different Categories from Scene-15

Fig. 2. Relation between the percentage of natural images in the accep-
tance region (a half-space) and the Gaussian approximation in Eq. (1),
tested on the Caltech-256 and Scenes-15 data sets. The plot is zoomed
on the [0, 0.3] interval of the probability, which is more relevant to our
purpose, as the probability volume of the background in the acceptance
region should be small.
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Now, instead of constraining the probability, we constrain
its supremum over all distributions for x having mean �x
and covariance Sx. Using Eq. (4) we obtain:

ffiffiffiffiffiffiffiffiffiffiffi
1� d

d

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTSxw

p
þwT�x� b � 0 (5)

which turns out to be the same as Eq. (3) with g ¼
ffiffiffiffiffiffi
1�d
d

q
.

We now define the linear hybrid classifier as the solution
to the following optimization problem: given a set fxigni¼1 of

positive examples, minimize kwk2, subject to w � xi � b � 1
(i ¼ 1; . . . ; n) and the probability constraint in Eq. (3). This
formulation resembles the usual SVM algorithm, but with
the many constraints on the negative examples replaced by
one constraint on the probability. Note that the background
slackness is controlled by the parameter d. Adding slacks to
the positive samples could be done similar to SVM:

minimize
w;b;�

kwk2 þ C
Xn
i¼1

�i

subject to w � xi � b � 1� �i;

�i � 0;

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTSxw

p
þwT�x� b � 0:

(6)

g is a parameter that controls the probability volume of the
negative class in the positive side of the classifier and can be
found using cross-validation.

2.2 Kernel Classifier

We use a standard kernel decision function:

fðxÞ ¼ sign
Xl
i¼1

aiKðsi; xÞ � b

 !
;

where ai, si, and b are the model parameters. The si’s are
chosen from a set of unlabeled training examples, as
described later.

To compute the probability

Pr
Xl
i¼1

aiKðsi; xÞ � b

 !

on the background class, we define a random variable in
kernel space, z ¼ ½z1; . . . ; zl	t, where zi , Kðsi; xÞ ði ¼ 1; . . . ; lÞ,
(x is a random variable in input space, representing the back-
ground). Then, wewrite the probability constraint as

Pr
Xl
i¼1

aizi � b

 !
� d: (7)

This constraint has the same form as in our linear classifier.
Similarly, we can apply the Gaussian approximation and
obtain the same expression as in Eq. (3), with the only differ-
ence that x is replaced by z, which is obtained by applying a
non-linear functionKðsi; xÞ. Thus the constraint is

g
ffiffiffiffiffiffiffiffiffiffiffiffi
atSza

p
þ atmz � b � 0; (8)

where mz is the mean and Sz the covariance matrix of z.
Next, we check the validity of the proposed approxi-

mation for several kernels commonly used in object rec-
ognition: the histogram intersection, x2, and the spatial
pyramid match (SPM) [29] kernels. Fig. 3 shows examples
of outputs of these kernels. To create random projections
in kernel space we randomly chose 1,000 samples as
si; i ¼ 1 . . . 1;000, and 1,000 scalars as ai; i ¼ 1 . . . 1;000,
and evaluated, using a diverse collection of images x, the
value of

P
aiKðsi; xÞ (where KðÞ are the above-mentioned

kernels). Table 1 (images 3-6) depicts examples of projec-
tions on learned classifiers. These distributions do not dif-
fer much from the random projections, which supports
the Gaussian assumption.

The result from [28] can be applied to the kernel classifier
as well (here we consider the supremum over all distribu-
tions for z having mean mz and covariance Sz), which leads
to the following constraint:

ffiffiffiffiffiffiffiffiffiffiffi
1� d

d

r ffiffiffiffiffiffiffiffiffiffiffiffi
atSza

p
þ atmz � b � 0 (9)

which has the same form as Eq. (8).
We now formulate the following convex optimization

problem to learn the hybrid kernel classifiers. Given a set
fxjgnj¼1 of positive examples:

minimize
a

Xl
i¼1

Xl
j¼1

aiajKðsi; sjÞ þ C
Xn
k¼1

�k

subject to
Xl
i¼1

aiKðsi; xjÞ � b � 1� �j 8j ¼ 1; . . . ; n;

g
ffiffiffiffiffiffiffiffiffiffiffiffi
atSza

p
þ atmz � b � 0:

(10)

Here we use a standard kernel regularizer as an objective
function (Eq. (10)).

We next address the question of choosing the si’s which
define the classifier fðxÞ ¼Pi aiKðsi; xÞ. For a standard ker-
nel SVM, the si’s are automatically chosen from the sam-
ples; we, however, do not use negative samples, so the si
have to be determined in advance. The basic idea is to find a
family fsig such that the span of Kðsi; xÞ approximates all
the functions Kðs; xÞ, where s ranges over the sample space.

Fig. 3. Histograms of values of the histogram intersection ( left), x2 (middle), and SPM (left) kernels with randomly selected parameters, applied to
many background samples represented by a BoW of SIFT features on Caltech-256.
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A similar problem has been addressed in [46]: find a subset
of indices I ¼ fi1; . . . ; img 
 ½t	 (where t is the size of the full

kernel matrix K) such that ~Ki ¼
Pm

j¼1 KijTji, where Ki are

the columns of the kernel matrix, T is an m� t matrix con-
taining the expansion coefficients for an approximation of
the columns of K. I and T are chosen to minimize the Fro-

benius norm k ~K �KkFrob. A greedy, probabilistic algorithm
from [46] chooses I in OðmtÞ time complexity per index.
Here we define K to be the kernel matrix of the unlabeled

training samples and si ¼ ~Ki; then we apply the algorithm

from [46] for finding ~Ki.
In our formulation, si’s represent the background, and

are chosen prior to the training of the classifiers. Thus we
will refer to this set as the “common” si’s. To learn the clas-
sifier for a specific class, we add its positive examples to the
common si’s and run the optimization in Eq. (10). This is
much faster than training kernel SVM, as far less parameters
need to be optimized over. Our experiments also suggest
that the number of common si’s required to represent a rich
background is small, and does not increases as the number
of background categories increases.

2.3 Complexity

Standard SVM training requires OðN3Þ time and OðN2Þ
space complexities, whereN is the training set size. Gradient
based methods can train linear SVM in OðNÞ [20]. The SGD
solver PEGASOS [43] does not even depend on the size of
the training set, and was used to learn linear classifiers in
large-scale vision applications [39], [50]. However, linear
SVMs have been reported to be inferior to non-linear SVMs
on BoW [39]. Directly applying non-linear SVMs is impracti-
cal for very large image collections. Kernel approximation
methods enjoy a lower computational complexity than ker-
nel SVM [22]. While these methods consider balanced prob-
lems, the main computational burden in one-against-all
training is due to the negative (“rest”) class. The hybrid clas-
sifiers proposed here significantly reduce the amount of
computations, since they replace the constraints on the nega-
tive examples with a single probability constraint and do not
use negative examples in the training stage.

The training of hybrid classifiers consists of two steps.
The first is performed only once and includes the selection
of si’s (only for the kernel classifier) and the estimation of
the background covariance matrix. The second step is the
actual training of the classifier, which is done per object
class and thus repeated a number of times equal to the num-
ber of classes one wishes to recognize. Hereafter we denote
by n the number of positive examples per category, by m
the number of common si’s, by p the number of unlabeled
samples for selecting si’s, and by C the number of categories
comprising the background class in the one-against-rest
training phase. The complexities of the proposed classifiers
are studied next.

2.3.1 Linear

a) Estimation of the background covariance matrix. Even though
an accurate estimation of the covariance matrix of a high-
dimensional random variable requires many samples,
here we are only interested in its 1D projections, thus an

approximation of the covariance matrix suffices. We
observed that the number of background samples
required to derive this approximation is relatively small:
in the Caltech 256 experiments, increasing the number of
samples beyond five per category had a negligible effect
on the projection’s parameters as well as on the perfor-
mance. Note that the background covariance matrix has
to be estimated only once, and then it is applied for train-
ing classifiers for all classes.

b) Training a classifier per category. Our optimization has
only nþ 1 constraints (n positive examples and one proba-
bility constraint), while the number of constraints in one-
against-all SVM training is nC. Another important advan-
tage is that we do not need to keep a huge number of nega-
tive examples in memory, which allows using off-the-shelf
solvers for convex optimization, even for a large scale classi-
fication problems. The classification process is the same as
for linear SVM.

2.3.2 Kernel

a) Choosing si’s. To find the common si’s we use the algo-
rithm from [46], which runs in OðmpÞ per vector, thus the

entire process runs in Oðm2pÞ. The selection is performed
only once, and even for a very rich background, the size of
the basism is small (about 200). (Section 4.1.4).

b) Estimation of the background covariance matrix. The size
of the covariance matrix is ðmþ nÞ2, of which the block of
size m�m is identical for all classes (since the common si’s
do not depend on the class one wishes to recognize), and
the block including the class-specific si of size n� ðmþ nÞ,
which must be estimated for each class. Typically both n
andm are quite small (see Section 4.1.4), thus estimating the
covariance matrix is not a burden.

c) Training a category classifier. We optimize over mþ n
parameters, compared to nC in kernel SVM trained in one-
against-rest manner. Similarly to the linear case, our formu-
lation has nþ 1 constraints. The space complexity is

Oðmþ nÞ2, compared to OðC2n2Þ in SVM.
d) Classification using kernel classifier. In kernel SVM, the

number of kernel evaluations required to classify an input
image is equal to the number of support vectors, which is
linear in the size of the training set [49]. The number of ker-
nel evaluations when applying the kernel hybrid classifier
is (mþ n), which is typically small and independent of the
number of categories one wished to recognize (Section 4
provides an empirical study, showing that beyond a small
number of categories the number of si’s does not increase).

3 USING HYBRID CLASSIFIERS IN AN ENSEMBLE

Several recent papers [15], [24], [33], [35] proposed using an
ensemble of linear hyperplanes for object recognition. In
ensemble methods, the key property of the individual clas-
sifiers from which an ensemble is formed is diversity [6].
Diversity is achieved by partitioning the input space either
spatially or by using different types of features. A more for-
mal definition of diversity is statistical independence. Inde-
pendent linear classifiers were first introduced in [24], and
it was shown empirically that the number of false positives
produced by a cascade of these classifiers decreases
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exponentially in the number of classifiers. A similar idea
was used in [33] for constructing a minimum correlation
ensemble of SVM classifiers, providing improvement over
boosting SVM classifiers trained on different subsets of
the data.

In [15], [35] diversity was achieved by partitioning the
positive examples into small subsets, while keeping the neg-
ative class intact: [35] built an ensemble of linear SVMs, each
of which is trained with a single positive example; [15] used
an ensemble of LDA classifiers, trained for clusters of exam-
ples from the same class. Next, we briefly discuss these
methods and show the advantages of using the hybrid lin-
ear classifier instead of SVM or LDA.

3.1 Minimum Correlation Ensemble

In the minimum correlation ensemble [33], the basic classi-
fiers are computed sequentially, using an SVM-like formu-
lation with an additional term which measures the
correlation of the current classifier with the previous ones.
Then, these classifiers are applied to a validation set and
their outputs are stacked, forming a new feature vector;
these vectors are used to train a strong classifier using
GentleBoost [10] over decision stumps. Thus in the first
stage, the directions of the classifiers are defined by the
SVMs satisfying the minimum correlation requirement, and
in the second stage, optimal thresholds for each SVM are
computed. The minimum correlation requirement in [33] is
formulated in terms of training examples:

r ¼
X

j2fp;ng

hwT
i ðXj � �XjÞ;wT

k ðXj � �XjÞi
kwT

i ðXj � �XjÞkkwT
k ðXj � �XjÞk

� �2

; (11)

where wi are the previously computed classifiers (i ¼
1; . . . ; k� 1), wk is the current classifier, and Xj are matrices
consisting of samples, where p and n refer to positive and
negative examples correspondingly.

Adding the minimum correlation term (Eq. (11)) makes
the loss function non-convex. To solve this problem, it was
suggested in [33] to remove kwT

k ðXj � �XjÞk from the expres-
sion in Eq. (11), and add the remaining convex part to the
SVM objective function with a multiplicative parameter. In
order to maintain the desired level of correlation, the multi-
plicative parameter was increased when the resulting classi-
fier’s correlation with the previous ones was higher than a
certain threshold (which was set as a parameter). A general-
ization bound on the individual classifiers was provided,
and the resulting classifier was demonstrated to work well
on several data sets, although training SVM with the mini-
mal correlation requirement a number of times (when the
requirement is not satisfied) renders the training slow.

Eq. (11) can also be written in terms of the covariance
matrix of the feature space. Let X represent a matrix of
examples sampled from the feature space (shifted to obtain
a zero average). The minimum correlation requirement for
the classifiers trained on these samples is:

r ¼ ðwT
i XXTwkÞ2

ðwT
i XXTwiÞðwT

k XXTwkÞ ¼
ðwT

i SwkÞ2
ðwT

i SwiÞðwT
kSwkÞ < �;

(12)

where S is a covariance matrix approximation of the feature
space. Let us denote the convex part of the constraint as

vj ¼ wT
i Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
i Swi

p :

Next, we suggest to replace the linear SVM with a linear
hybrid classifier and incorporate the minimum correlation
constraint from Eq. (12) in the same way it was derived in
[33]. The training starts by constructing a linear hybrid clas-
sifier as the first classifier in the ensemble, using the optimi-
zation in Eq. (6). The subsequent classifiers are trained by
running the following optimization with g 0 ¼ 10g (which
means that we allow a larger probabilistic volume of the
background on the positive side of the hyperplane than for
the first classifier):

minimize
w;b;�

kwkk2 þ C
Xn
i¼1

�i þ
Xk�1

j¼1

hjðvjwkÞ2

subject to wk � xi � b � 1� �i;

�i � 0;

g 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

kSxw
q

þwT
k �x� b � 0;

(13)

where hj is a parameter controlling the correlation term.
After findingwk, we check if it satisfies the minimal correla-
tion constraint in Eq. (12). If not, we return to the optimiza-
tion in Eq. (13) with hj ¼ 2hj.

This procedure is essentially the same as in [33], but
training the hybrid classifier is much faster than training
SVM, and the independence constraint is simpler.

3.2 Ensemble of Exemplar Models

It was shown in [15] that using an LDA classifier instead of
linear SVM as an exemplar model [35] significantly reduces
training time, since constructing an LDA classifier that sepa-
rates a single positive example from the background can be
solved in simple closed form. In LDA-based classification it
is assumed that all classes follow the Gaussian distribution.
Using the same covariance matrix for all classes is a com-
mon regularization technique, which was adopted in [15];
specifically, they learned the covariance matrix of the fea-
ture space once using images from all classes and used the
same covariance matrix in training all LDA classifiers.

Let m and S denote the mean and covariance matrix of
the feature space. The LDA classifier for a single positive x
has the following form:

w ¼ S
�1ðx� mÞ: (14)

Next we show that the formulation in Eq. (14) can be
obtained using the same probabilistic approach we used to
derive the hybrid classifier. A linear classifier that passes
through a point xp and minimizes the probability of the
background in its positive hyper-plane is defined as follows:

min
w

1

2
1� erf

1ffiffiffi
2

p b�wTmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTSxw

p
 !" #

subject to wTxp � b ¼ 0:
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This problem is equivalent to the following maximization
problem

max
w

b�wTmffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTSw

p

subject to wTxp ¼ b

which can be written as

max
w

wT ðxp � mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTSw

p : (15)

It is easy to show that the solution of the problem in Eq. (15)
is given by

w / S
�1ðxp � mÞ;

which is the same as Eq. (14) (since w defines the direction
of the discriminative projection and thus its norm is not
important).

To reduce the running time of the exemplar model, it was
suggested in [15] to train an exemplar model for a cluster of
similar positive examples, instead of a single example. It
was also assumed [15] that the positive and negative classes
have different means (mp—the mean of the cluster and
m—the mean of the feature space), but the same covariance
S. Under these assumptions, the LDA solution reduces to

w / S�1ðmp � mÞ:

However, these assumptions are clearly limiting. We
suggest to use a hybrid linear classifier as an exemplar
model, trained on a cluster of positive examples. We expect
it to perform better than LDA, as it is more expressive (the
separation boundary depends on all positive examples and
not only on their mean) and it does not require estimating
the covariance matrix of the positive examples. Our experi-
ments show that hybrid classifiers provide better exemplar
model than LDA.

4 EXPERIMENTS

The hybrid classifier is a binary classifier. Its most natural
application is object detection, in which the background
class is not limited to a predefined number of categories
and can be very diverse. Thus the model for a general back-
ground, which we handle, is very useful in object detection.
Using a binary classifier in one-against-all or other multi-
class problems is another potential application of binary
classifiers. Unfortunately, it is a heuristic which results in
poor performance when the number of classes is large. This
was apparent in early experiments on ImageNet. Since SVM
did not perform well in one-against-all multi-class setting
when the number of classes is large, we do not expect
impressive results from the hybrid classifier either. Thus
our experiments include only binary tests on multi-class
data sets and a full object detection system on PASCAL
VOC 2007 [8].

We first show that the linear and kernel hybrid classifiers
achieve results comparable with SVM, but at much lower
computational complexity when applied to binary imbal-
anced classification problems. Then we demonstrate that

linear hybrid classifiers can successfully be used in ensem-
ble models. Finally, we incorporate a linear hybrid classifier
in an object detection system and show that it achieves com-
parable to R-CNN [12] performance at a fraction of the
training cost.

4.1 Single Classifier

Our goal is to recognize a given class against a very rich
background. The Caltech 256 [14] data set contains images
from 256 diverse classes and thus approximates the set of all
natural images quite well. The Scene-15 data set [29] con-
tains far fewer classes, but its images are richer than the
images containing objects (as in the Caltech dataset), thus it,
too, provides an approximation of a rich background. We
tested hybrid classifiers on all classes from these data sets,
with the following results:

4.1.1 Accuracy

For the Caltech 256 data set, we used the image representa-
tion provided in [11] for a codebook with 1,000 words. We
compared the performance of linear and kernel hybrid clas-
sifiers to linear and kernel SVMs and their weighted ver-
sions, trained in one-against-rest manner. We used an SPM
kernel [29] in the kernel classifiers. We provide the results
of LDA classifier with the constant background covariance
matrix for completeness.

We used 30 images per class as a positive sample. In
SVM the negative class consequently contained the rest of
the classes, resulting in 7,650 samples. For hybrid classifiers
we used 1,280 samples from the same domain to estimate
the mean and covariance matrix of the background (these
images were excluded from the test set).

For each classifier we computed the EER of the binary
classification in which the positive class contained 25 test
samples of the corresponding category and the negative class
comprised 25 test images per category for all the other cate-
gories (in total 6,350 negative examples). We performed
training and testing 10 times with random splits into training
and test sets and averaged the results. To train the hybrid
classifiers we used the CVX optimization package;2 SVM
was trained using the C-SVC option in LIBSVM.3 Slack, ker-
nel, and probability parameters have been chosen using
cross validation. The results are shown in Table 2. The hybrid
classifiers outperformed SVM in both the linear and kernel
cases, and their accuracy is similar to that of weighted SVM,
but the classification and training of the hybrid classifiers
enjoysmuch lower time and space complexities.

The Scenes data set contains only 15 categories. We
followed the same test protocol as in the Caltech

TABLE 2
Average EER

SVM weighted SVM hybrid LDA

linear 71% 73.9% 73.8% 68.06%
kernel 83.4% 83.6% 84.0% –

Each number in the table corresponds to the average EER of 256 binary classi-
fiers, produced on a test set constructed from the 256 categories of Caltech 256.

2. http://cvxr.com/cvx/download/
3. http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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256 experiment, with 30 training and 30 test samples per
category, and used the SPM kernel. The average EER rate
of the kernel hybrid classifier was 89.36 percent and for
kernel SVM it was 89.16 percent.

4.1.2 Probabilistic Model Validation

We tested the validity of the probability constraint for the
linear (Eq. (3)) and kernel classifiers (Eq. (8)) by projecting
the test set on the separating boundaries corresponding to
learned classifiers (we used random splits of data to create
different classifiers), and measuring the empirical probabil-
ity of the background class in their acceptance regions. The
histograms of the resulting probabilities are shown in Fig. 4.
The value of the probability bound in the training was 0.006
for linear classifiers on Caltech-256, 0.004 for kernel classi-
fiers on Caltech-256 and 0.0032 for kernel classifiers on
Scenes-15. As these plots show, the values of the sought
probability bound are indeed obtained.

4.1.3 Complexity

In Table 3 the computational and memory requirements
of hybrid and SVM kernel classifiers are compared on 256
classes, showing a clear advantage of the proposed method.
In our experiments, training kernel SVM using LIBSVM
took about four times longer than training the kernel hybrid
classifier using CVX. The improvement factor of hybrid ver-
sus SVM can be significantly increased by replacing CVX
with an optimized package for constrained optimization.

The number of support vectors and of common si’s on
the much smaller Scenes set was very similar, about 200.
The training time of the hybrid classifiers was still faster.

4.1.4 Scalability of the Kernel Hybrid Classifier

To check the scalability of the classifier versus the diversity
of the background class, we investigate how the number
of si’s increases as a function of the number of categories
from which the background class is composed. To this
end, we used background classes with increasing num-
bers of categories from the Caltech 256 data set. For each
size of the background class (the x-axis) we found the
number of vectors required to reach a fixed reconstruc-
tion error (the y-axis); here the reconstruction error was
set to 0.005 (i.e., on the average the error in approximat-
ing a vector was 0.005 of its norm); other error thresh-
olds yielded similar behavior. The plot in Fig. 5 depicts
the resulting dependency. The number of vectors is large
for a small number of categories and then decreases, and
remains nearly constant as the number of categories
increases. This behavior—which suggests that the complex-
ity of training and classification does not increase beyond a
certain number of categories—can be explained by the fact
that we restrict the basis to be a subset of the vectors which
need to be approximated. When the background set contains
a small number of categories, its diversity is restricted, thus
we have to usemany vectors to well-approximate the sample
set. When the number of categories is large, we can choose
fewer—but much better—vectors to approximate the set. At
some point the sample is rich enough to allow finding vec-
tors that approximate the entire background class, hence
adding more categories does not necessitate increasing the
basis. A somewhat similar behavior can be observed when
looking at the effective dimension of PCA (defined as a
number of eigenvalues that contain the 99 percent of the

Fig. 4. Histograms of the background empirical probability values in the
acceptance region of the hybrid classifiers.

TABLE 3
Comparison of the Computational and Memory Resources for
Kernel SVM versus Kernel Hybrid Classifiers for Caltech 256

SVM (weighted) hybrid

number of kernel evaluations 600-1,000 230
number of parameters in optimization 7,680 230
number of constraints in optimization 7,680 31
memory usage 450 M 4.5 M

Fig. 5. Left: the relation between the number of vectors required for approximation (with a constant reconstruction error) of unlabeled samples
(y-axis) versus the number of categories these samples were taken from (x-axis). Right: the relation between the effective PCA dimension of a set of
unlabeled samples (y-axis) versus the number of categories these samples were taken from (x-axis).
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energy of all eigenvectors) as a function of the number of
categories (Fig. 5).

To summarize, our experiments show that hybrid classi-
fiers are comparable to SVM when the background set com-
prises a small number of categories, but as the number of
categories increases, the kernel hybrid classifiers becomes
much more efficient than kernel SVM. The training of
hybrid classifiers is significantly more efficient than training
an SVM for any problem size. This is achieved while main-
taining classification accuracy better than that of standard
SVM, and comparable to that of weighted SVM.

4.2 Ensemble Classifier

We show empirically that linear hybrid classifiers can be
incorporated in an ensemble,and that it performs better
than an ensemble of other linear classifiers.

4.2.1 Hybrid versus LDA as an Exemplar Model

The ensemble model, proposed in [15], combines LDA clas-
sifiers for object detection. Each LDA classifier was trained
to separate a subset of images from one category against a
general background (estimated using images from all cate-
gories). An object category was partitioned into clusters by
running normalized cuts [45] on WHO features (whitened
HOG) using the cosine of the angle between the feature vec-
tors as an affinity measure. We followed the experimental
protocol from [15], which compared different classifiers by
training each type of classifier for each cluster and testing
them on the test set of PASCAL VOC 2007 [8]. The ground
truth for each cluster included all objects of that category.

For each category (20 in total) we used images from the
training set and cropped windows corresponding to the
object bounding boxes. We represented the cropped image
using the Dalal-Triggs variant of HOG features [3] with a
fixed number of cells, resulting in fixed length descriptors.
The background distribution parameters were learned
using windows from all categories. For each category, we

performed clustering of feature vectors representing the
positive windows with the number of clusters varying from
one to ten, removing the clusters with less than three sam-
ples. We constructed LDA [16] and Hybrid classifiers (See
Section 3.2) for each cluster in the category, and used win-
dows from the validation set for tuning the parameters. We
tested the linear classifiers on the test set, in which all
windows of that category were labeled as positive and win-
dows from other categories as negatives. Fig. 6 compares
the performance of the classifiers trained for each cluster.
Each point in Fig. 6 represents a cluster; its x-coordinate
corresponds to the AUC of the LDA classifier and its y-coor-
dinate to the AUC of the hybrid classifier. The distribution
of the points is above the diagonal line, which shows a clear
advantage of the hybrid classifier.

4.2.2 Hybrid versus SVM in a Minimum

Correlation Ensemble

In the following tests we compared theminimum correlation
ensemble of hybrid classifiers, introduced in Section 3.1,
with the minimum correlation ensemble proposed in [33].
We also tested single linear and kernel hybrid classifiers and
single linear and kernel SVM for a baseline.

The tests were performed on a data set of letters from
the UCI Machine Learning Repository [37], which included
16-dimensional feature vectors (statistical moments and edge
counts which are scaled to fit into a range of integer values
from 0 to 15) for the 26 letters in the English alphabet. The let-
ter images are based on 20 different fonts and each letter
within these 20 fonts was randomly distorted to produce
20,000 samples. For each letter, we used 100 samples for train-
ing, 250 for validation, and the rest for testing (about 400 sam-
ples per letter). Since the test set includes 25 times more
negatives than positives, which leads to about 96 percent clas-
sification rate by just classifying all inputs as negative, we
used EER as a more faithful measure of performance (thus
our results are not directly comparable to those reported in
[33]). Table 4 shows the average classification performance of
the tested binary classifiers and Fig. 7 compares Minimum
Correlation Ensemble of the linear hybrid classifiers with that
of linear SVMclassifier andwith a single hybrid classifier.

4.3 Detection System Using CNN Features

The most natural application of hybrid classifier is object
detection, in which the background class is not limited to a
predefined number of categories and can be very diverse.
Thus the negative class can be modeled once using many
windows from general background (either by using a large
number of images from an arbitrary source or by using sub-

Fig. 6. Comparison of the classifiers which were trained on clusters.
Each point represents one cluster, the x-coordinate correspond to the
AUC of LDA classifier, and the y-coordinate to the AUC of a hybrid
linear classifier, trained on the same cluster and tested on the all
windows from the test set (all object of the category, to which the
cluster belongs to, are labeled as positive). The clusters are obtained
by partitioning each of 20 categories from PASCAL VOC 2007 into
varying number of clusters.

TABLE 4
Classification Rate Measured as EER, Averaged over 26 Letters

Method Classification

Min. Corr. Ensemble of linear Hybrid Cl. 91.29%
Min. Corr. Ensemble of linear SVM Cl. 87.21%
Hybrid linear 89.32%
Linear SVM 84.87%
Hybrid RBF kernel 96.02%
RBF kernel SVM 96.47%
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widows of the real background from the training images, as
was done in most detection systems) and used for any target
class. Recent work, R-CNN [12] showed excellent detection
results on PASCAL-VOC. The main boost in performance
was achieved by using features obtained by deep CNN [25],
[30], for example, R-CNN which used the final layer of
CNN—fc7 [25] as features achieved a mean average preci-
sion (mAP) of 54.2 percent on PASCAL VOC 2007, while
the previous best result on this set was 34.3 percent [44].

The CNN was first trained on ILSVRC2012 classification
data set using image-level annotations only and then fine-
tuned (FT) using domain specific data, by replacing the
1,000 outputs to the number of outputs in the domain. The
system consists of three steps: first, it extracts around 2,000
bottom-up region proposals using Selective Search [52];
then it computes features for each proposal using a large
convolutional neural network (CNN) (using the Caffe [19]
implementation of the CNN described in [25]), and finally it
classifies each region using class-specific linear SVMs.

We took the R-CNN system with the fc7 features and no
bounding-box regression as the test bed for our experiments
and replaced the class-specific binary linear SVMs with the

hybrid linear classifiers. The rest of the system remained
exactly the same. Since the negative class in object detection
is very rich and requires many images for training, regular
SVM does not perform well due to unbalanced sets. Thus
R-CNN ran an iterative process of model refinement, in
which training is done several times with the same positive
examples and different selection of negative examples. The
first model is trained with all negative sub-windows from
the first training image, then tested on the second image,
and the false positives are included in the negative set. This
continues, in the same fashion, for all images in the training
set. Obviously, this process requires many rounds of SVM
retraining with increasing number of negative examples, a
long and tedious process. Instead, we estimated the mean
and covariance matrix of the background model using all
images and then used them to train hybrid linear classifier
for all classes. Table 5 compares the results. We achieve
comparable to R-CNN performance at the fraction of the
training cost, by removing the need for many rounds of
retraining, and also enjoying the faster training of the
hybrid classifier. We also tested a hypothesis that the gap in
the detection rate between the SVM and hybrid in R-CNN is

TABLE 5
Detection Average Precision (%) on VOC 2007 Test

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

R-CNN FT - fc7

SVM [12]

64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

DPM HSC [44] 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3

R-CNN FT - fc7 SVM

random negative

sample

57.8 68.4 47.9 35.4 30.7 59.4 68.5 53.5 29.8 55.3 49.9 48.8 54.4 63.7 49.9 28.9 50.9 47.8 51.1 62.9 50.8

R-CNN FT fc7 -

HYBRID(1)

57.8 68.1 47.6 36.1 30.8 62.5 68.7 54.2 33.4 55.7 50.4 50.1 58.6 63.3 49.6 28.5 53.9 44.8 51.6 63.0 51.4

R-CNN FT fc7 -

HYBRID(2)

58.2 67.5 47.6 36.7 31.2 63.2 68.6 56.2 32.4 55.7 50.2 51.8 57.6 63.4 50.4 28.7 54.0 43.3 53.0 63.6 51.7

The first row shows the results of R-CNN with SVM using hard negative mining on features obtained by CNN pre-trained on ILSVRC 2012 and then fine-tuned
on VOC 2007 trainval. The second row presents the best DPMmethod as a strong baseline. The third row shows the same system as the first row but with the ran-
dom sample of negatives (background) instead of hard negatives. The last two rows show the results of R-CNN using a hybrid classifier instead of SVM. Row 4
shows the results with constant parameters (C = 0.001, g = 9) trained using positive samples from trainval set. Row 5 shows the results of R-CNN with hybrid
classifier, trained on training set and validated on validation set using different parameters C={0.01, 0.001} and g between 8 and 14. The model which scored
highest was chosen for the test set.

Fig. 7. Comparison of the classification performance on 26 letters, obtained by a minimum correlation ensemble of linear hybrid classifiers with that
of minimum correlation ensemble of linear SVM [33] on the left, and of linear hybrid on the right. Each corresponds to 1-EER of single letter.
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due to hard negative mining, and the training cost could
be improved significantly by training SVM with random
sampling of negative class for each target object. To this end
we sampled 25,000 negative sub-windows from the nega-
tive examples (about five sub-windows per image) and
trained a single model per object. The mAP of this classifier
(row 3 in Table 5) dropped below hybrid classifier, while
the cost of training remained higher than hybrid, due to
25,000 negative constraints and larger memory require-
ments in SVM training.

5 CONCLUSIONS

We propose to address the problems arising when train-
ing SVM classifiers in a one-against-rest manner, by
replacing the negative samples with a distribution repre-
senting them. In real visual classification problems, the
negative class becomes so rich that it can be viewed as a
“background” class and it approaches the distribution of
all images. We introduced “hybrid” classifiers, which
determine a separating hyperplane between positive
samples and this probability distribution, and showed
that modeling this distribution is simple, as we are only
interested in its projections. Further, we estimate the dis-
tribution of the background only once, and then use the
same model in training the classifiers for all visual clas-
ses. This significantly reduced training complexity, com-
pared to SVM.

We tested the proposed approach in binary classification
problems in which the negative class comprises many cate-
gories and is much larger than the positive class. In addition
to performing well, hybrid classifiers proved to be faster to
train and apply than SVM.

Future work will concentrate on alternative models for
the background, generalizing the proposed formulation to
the multi-class problem, and application to other domains,
such as text and video classification.

APPENDIX A

We tested the validity of the assumption that the distribu-
tion of 1D projections of a background comprising many
different classes can be approximated by a Gaussian. Fig. 8
shows the KL divergence of an average random projection

of the background class from normal distribution as a func-
tion of a number of categories in the background. In both
linear and kernel projections the KL divergence drops rap-
idly and then saturates, reaching very low values for a large
number of categories.
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