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Abstract
We explore a novel approach to upper bound
the misclassification error for problems with data
comprising a small number of positive samples
and a large number of negative samples. We as-
sign the hinge-loss to upper bound the misclas-
sification error of the positive examples and use
the minimax risk to upper bound the misclassifi-
cation error with respect to the worst case distri-
bution that generates the negative examples. This
approach is computationally appealing since the
majority of training examples (belonging to the
negative class) are represented by the statistics
of their distribution, in contrast to kernel SVM
which produces a very large number of support
vectors in such settings. We derive empirical
risk bounds for linear and non-linear classifica-
tion and show that they are dimensionally inde-
pendent and decay as 1/

√
m for m samples. We

propose an efficient algorithm for training an in-
tersection of finite number of hyperplanes and
demonstrate its effectiveness on real data, includ-
ing letter and scene recognition.

1. Introduction
Linear classifiers are the cornerstone of several appli-
cations in machine learning. The generalization ability
of linear classifiers has been long studied in the context
of support vector machines (SVMs), e.g., using VC di-
mension, covering numbers, and Rademacher complexity
(Vapnik, 2000; Zhang, 2002; Bartlett & Mendelson, 2003;
Bousquet et al., 2004; Kakade et al., 2009). SVMs upper
bound the misclassification loss of the linear classifier us-
ing the hinge-loss. This setting is computationally appeal-
ing when there are fairly small number of support vectors.
Alternatively, the minimax risk upper bounds the distri-
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bution that generates the instances-labels examples in the
world (Lanckriet et al., 2003; Honorio & Jaakkola, 2014).
This approach is computationally appealing when there are
(infinitely) many training examples since it only utilizes
their statistical properties, such as mean and covariance.
In our work we consider real-life data that consists of a
small number of positive data points and a large number
of negative data points, a setting that is prominent in ma-
chine learning applications, e.g., in computer vision, such
as object detection, and in security, such as fraud or mali-
cious attack detection. We suggest to combine the hinge-
risk with the minimax risk to enjoy the best of both worlds.
The idea of combining minimax for the negative class and
svm-like formulation for the positive samples was intro-
duced in (Osadchy et al., 2012) for training a single hyper-
plane. No generalization bounds have been shown in that
work. Here we derive an empirical mixed-risk bound, that
uses the Rademacher complexities to bound the hinge-risk
and vector Bernstein’s inequalities to bound the minimax
risk. Recently, (Honorio & Jaakkola, 2014) derived a gen-
eralization bound for the minimax risk using PAC-Bayesian
approach, a setting that bounds the expected loss with re-
spect to a posterior distribution over all possible classifiers.
Our work differs as we use stronger assumptions - that the
norm of the data points is bounded, an assumption that is
natural in many applications. Thus we are able to avoid
the variance while computing the expected loss of PAC-
Bayesian bounds.

Our work mainly considers non-linear classifiers. Non-
linear classifiers are usually attained by applying ker-
nel methods. Unfortunately, the computational complex-
ity of kernel methods increases linearly with the size
of the training sample (Steinwart, 2003). Instead we
apply non-linearity by using intersection of hyperplanes
(Klivans & Servedio, 2004; Arriaga & Vempala, 1999).
Unfortunately, the proposed algorithms for intersection of
hyperplanes are computationally costly when considering
large sets of negative data points. To deal with this compu-
tational difficulty we extend the minimax risk to deal with
intersection of hyperplanes over (infinitely many) negative
examples. As this risk bound is loose when there are few



K-hyperplane Hinge-Minimax Classifier

data points, as we have in the positive examples, we apply
the sum-of-hinge-loss to the positive examples. We also de-
rive a generalization bound that mixes these two risks for
intersection of hyperplanes setting. Our Rademacher com-
plexity bound for classifying by intersection of hyperplanes
extends the contraction lemma (cf. (Bartlett & Mendelson,
2003)) to vectors. This may be used to simplify recent
multi-class generalization bounds using Rademacher com-
plexity (Cortes et al., 2013).

We propose an algorithm for training an intersection of
hyperplanes that efficiently minimizes the minimax-hinge
risk. We show empirically on two real sets with very dif-
fering characteristics, that this algorithm substantially im-
proves over linear classifiers; further, it is on par with the
classification rate of ensemble methods (comprising more
than a 100 simple classifiers compared to 2-4 hyperplanes
in the hinge-minimax classifier) and it even approached the
classification performance of kernel SVM, but is orders of
magnitude faster.

2. Background
Let (x, y) ∼ D, where x ∈ Rd and y ∈ {−1, 1}. Let
yw(x) = sign(wTx) denote a linear classifier. For sim-
plicity, we assume that b = 0 (or absorbed by w). A zero-
one risk for the yw(x) is defined as follows:

L
0/1
D (w) = ED[1[yw(x) ̸= y]]

The zero-one loss is non-convex. In SVMs the zero-one
loss is upper bounded by the hinge loss: 1[yw(x) ̸= y] ≤
max{0, 1− ywTx}. Thus the hinge risk upper bounds the
zero-one risk:

L
0/1
D (w) ≤ ED[max{0, 1− ywTx}] , LH

D(w).

Alternatively, one can upper bound the zero-one risk by the
minimax risk (Lanckriet et al., 2003; Honorio & Jaakkola,
2014). There, instead of upper bounding the zero-one
loss function, one upper bounds the distribution that gen-
erated the data. Denote µ = E(x,y)∼D[yx] and Σ =
E(x,y)∼D[(yx− µ)(yx− µ)T ]. Denote by Z(µ,Σ) the set
of all distributions with mean µ and covariance Σ.

L
0/1
D (w) ≤ sup

yx∼Z(µ,Σ)

Pr(wT yx ≤ 0) , LM
µ,Σ(w)

It was shown in (Lanckriet et al., 2003;
Honorio & Jaakkola, 2014) that

sup
z∼Z(µ,Σ)

Pr(wtz ≤ 0) =
1

1 + (wTµ)2

wTΣw

.

In our work, we consider non-linear classification with K
hyperplanes. Let wi, i = 1, ..,K denote K hyperplanes.

Let W be a matrix with wi as its ith column. We define
a non-linear classifier fW (x) as an intersection of these K
hyperplanes:

fW (x) =

{
1 if WTx ≥ 0
−1 otherwise (1)

where 0 denotes a vector of zeros.

3. Minimax-Hinge Risk
We are interested in a classification problem in which the
positive class corresponds to a single concept and the nega-
tive class is its complement. We assume that the sample of
the positive class is relatively small while the negative sam-
ple is very large (it can be represented by an unlabeled data
as well, thus is easy to collect). When the sample is small,
the regularized hinge loss has been shown to be very effec-
tive. The minimax bound is tight for the Gaussian distribu-
tion, thus it will become tight for sample size approaching
infinity. Due to the specifics of the problem we propose to
use a mixed risk, namely, we use hinge risk for the positive
class and minimax risk for the negative. Next, we formu-
late the mixed risk for the non-linear classifier in eq. 1.

LMH
D (W ) = LH,1

D + LM,−1
µ(Dneg),Σ(Dneg)

(2)

where W is the matrix of K hyperplanes, D is a joint distri-
bution of the samples and labels, Dneg is a marginal distri-
bution of samples over the negative labels, and µ(Dneg)
amd Σ(Dneg) are its mean and covariance respectively.
LH,1
D and LM,−1

µ(Dneg),Σ(Dneg)
are defined below.

LH,1
D = ED[LH(W,x, y)1[y = 1]]

where LH(W,x, 1) =
∑

i max{0, 1− wTx}

3.1. The Expected Risk of the Negative Class

Since LM,−1
µ(Dneg),Σ(Dneg)

is the risk of a negative sample
falling into the intersection of K hyperplanes, which is a
convex set, we can use the theorem due to Marshall and
Olkin (Marshall & Olkin, 1960) to derive the risk for the
negative class.

Theorem 1
Let Z(µ,Σ) 1 be all distributions with known mean µ and
covariance Σ. For K fixed hypeplanes wi (i = 1, ..,K),
we have

sup
z∼Z(µ,Σ)

Pr(WT z > 0) =
1

1 + d2

with d2 = µT W̃ (W̃TΣW̃ )−1W̃Tµ, where W̃ is a matrix
with columns that satisfy wT z∗ = 0, where

1for notational simplicity, we drop Dneg and denote µ =
µ(Dneg) and Σ = Σ(Dneg).
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z∗ = argminz(z − µ)TΣ−1(z − µ).

Proof. Following the result of Marshall and
Olkin (Marshall & Olkin, 1960) for a convex set, we
obtain:

sup
z∼Z(µ,Σ)

Pr(WT z ≥ 0) =
1

1 + d2
,

with d2 = infWT z≥0(z − µ)TΣ−1(z − µ) Next, we want
to derive a closed-form expression for d2. We seek the so-
lution for the primal problem

min
z

(z − µ)TΣ−1(z − µ)

s.t. wT
i z ≥ 0 for i = 1, ..,K. We construct the Lagrangian:

L(z, λi) = (z − µ)TΣ−1(z − µ) +
∑
i

λiw
T
i z, λi ≥ 0.

The optimality condition:

∂L

∂z
= 2Σ−1z − 2Σ−1µ+

∑
i

λiwi = 0,

gives us z∗ = µ − 1
2

∑
i λiΣwi. The Lagrange dual func-

tion is as follows,

L(z∗, λ) = (
1

2

∑
i

λiΣwi)
TΣ−1(

1

2

∑
j

λjΣwj) (3)

+
∑
i

λiw
t
i(µ− 1

2

∑
j

λjΣwj)

The optimality conditions are:

∂L(z∗, λ)

∂λk
= −1

2

∑
i

λiw
T
k Σwi + wT

k µ = 0

for k such that λk > 0.

The function is optimized at

λ∗ = 2(W̃ΣW̃ )−1W̃Tµ, (4)

W̃ is formed by a subset of columns of W for which λk >
0, and thus wT

k z
∗ = 0.

For the last step we substitute the optimal λ, given in eq.
4 into the dual function in eq. 3 and after simple algebraic
manipulations we get:

d2 = max
λ≥0

(L(z∗, λ∗)) = µT W̃ (W̃TΣW̃ )−1W̃Tµ

4. Bound
In the following we bound the risk by its finite sample. In
what follows we show that the discrepancy between the risk
LMH
D (W ) and its empirical estimation LMH

S (W ) decays

at the rate of c
√

log(1/δ)
m where δ is the confidence over the

samples of the training data and m is the training data size.
The main difficulty arises from mixing the hinge-risk for
the positive examples and the minimax risk for the negative
examples. For this purpose we divide the risk to its posi-
tive and negative cases, and for each we derive a uniform
generalization bound.

4.1. Uniform generalization bound for the empirical
minimax risk

The minimax risk upper bounds the zero-one risk over
the negative examples. To derive a uniform generalization
bound for this setting we bound each of its components dif-
ferently using a finite sample of training examples. In view
of eq. 2 we bound the relative size of the negative set by its
empirical average. We also bound the minimax risk itself,
by its training sample estimation.

For the sake of clarity we begin with deriving a generaliza-
tion bound for a single hyperplane, followed by a general-
ization bound for the intersection of hyperplanes. Recall
that Dneg is the distribution of the negative data points. We
abbreviate its mean and covariance by µ , µ(Dneg) and
Σ , Σ(Dneg) respectively. Let µ̂ and Σ̂ be the mean and
covariance estimates from the training data points that are
associated with negative labels. The minimax generaliza-
tion bound LM,−1

D(µ,Σ)(w) is dominated by the discrepancy

∆ =
1

1 + (w⊤µ)2

w⊤Σw

− 1

1 + (w⊤µ̂)2

w⊤Σ̂w

Some algebraic manipulations yield a simpler form of the
discrepancy:

∆ =
w⊤Σw · (w⊤µ̂)2 − w⊤Σ̂w · (w⊤µ)2(

w⊤Σw + (w⊤µ)2
)
·
(
w⊤Σ̂w + (w⊤µ̂)2

) (5)

To provide uniform generalization bound to the minimax
risk, we show that the discrepancy ∆ decreases when the
size of the training sample increases. Therefore we repre-
sent the discrepancy with ∥µ̂ − µ∥ and ∥Σ̂ − Σ∥ that de-
crease as a function of the training sample. By adding and
subtracting (w⊤µ)2 · w⊤Σw to the numerator we are able
to represent the discrepancy with these diminishing quanti-
ties. ∆ =

w⊤Σw ·
(
(w⊤µ̂)2 − (w⊤µ)2

)
+ (w⊤µ)2 · w⊤(Σ− Σ̂)w(

w⊤Σw + (w⊤µ)2
)
·
(
w⊤Σ̂w + (w⊤µ̂)2

)
(6)
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The sampled quantity ∥µ̂− µ∥ diminishes with high prob-
ability as the training size increases. This controls the first
term of the minimax discrepancy, as described by the fol-
lowing lemma:

Lemma 1
Assume x ∼ Dneg is a distribution over data points x with
negative labels such that ∥x∥ ≤ 1 holds with probability
1. Denote by µ its mean by Σ its covariance. Let Sneg

training sample of size m̂ and let µ̂ = 1
m̂

∑
x∈Sneg

x be its

sampled mean and Σ̂ = 1
m̂

∑
x∈Sneg

(x − µ̂)(x − µ̂)⊤ be
its sampled covariance. Define

∆1 =
w⊤Σw ·

(
(w⊤µ̂)2 − (w⊤µ)2

)(
w⊤Σw + (w⊤µ)2

)
·
(
w⊤Σ̂w + (w⊤µ̂)2

) .
Assume that the minimal eigenvalue of Σ, Σ̂ is lower
bounded by α. Then, with probability at least 1 − δ over
the draws of the training set Sneg the following holds uni-
formly for all w

∆1 ≤ 2

α

√
32 log(1/δ) + 1/4

m̂

Proof. First, we upper bound ∆1 while decreasing the de-
nominator, by omitting (w⊤µ)2 and (w⊤µ̂)2. Using the
identity a2 − b2 = (a + b)(a − b) with a = w⊤µ̂ and
b = w⊤µ we obtain:

∆1 ≤ w⊤(µ̂− µ) · w⊤(µ̂+ µ)

w⊤Σ̂w.

Next, we applying the Cauchy-Schwarz inequality to the
numerator a⊤b ≤ ∥a∥∥b∥ and the lower bound w⊤Σ̂w ≥
α∥w∥2 to the denominator

∆1 ≤ ∥µ̂− µ∥ · ∥µ̂+ µ∥
α

.

Finally, since ∥x∥ ≤ 1 then ∥µ̂ + µ∥ ≤ 2. More-
over, Bernstein inequality for vectors (cf. (Gross, 2011)
Theorem 11, (Candes & Plan, 2011) Theorem 2.6) implies
P [∥µ̂− µ∥ ≥ t] ≤ exp(−m̂t2/32 + 1/4) for any t ≤ 2m̂.
The result follows when setting λ = exp(−m̂t2/32+1/4),

or equivalently t =
√

32(log(1/δ)+1/4)
m̂ .

We turn to handle the second term of the minimax discrep-
ancy in eq. 5. The quantity ∥Σ̂ − Σ∥ diminishes in high
probability as the training size increases.

Lemma 2
Under the conditions of Lemma 1, define

∆2 =
(w⊤µ)2 · w⊤(Σ− Σ̂)w(

w⊤Σw + (w⊤µ)2
)
·
(
w⊤Σ̂w + (w⊤µ̂)2

) .

Assume that the minimal eigenvalues of Σ, Σ̂ are lower
bounded by α. Then, with probability at least 1 − δ over
the draws of the training set Sneg the following holds uni-
formly for all w

∆2 ≤ 1

α2

√
128(log(1/δ) + 1/4)

m̂

Proof. First, we lower bound the denominator by α2∥w∥2
(when omitting (w⊤µ)2 and (w⊤µ̂)2) thus upper bound-
ing ∆2. Noting the w⊤Aw = a⊤b where a is a vector-
ization of A and b is a vectorization of ww⊤, we use the
Cauchy-Schwarz inequality to upper bound the numerator
by ∥µ∥2∥w∥2 · ∥a∥∥b∥. Since ∥b∥ = ∥w∥2 and ∥µ∥ ≤ 1
we obtain the bound

∆2 ≤ ∥Σ− Σ̂∥/α2.

We consider the norm ∥Σ−Σ̂∥ as the norm of its vectorized
form. Using the Bernstein inequality for vectors we obtain
that P [∥Σ− Σ̂∥ ≥ t] ≤ exp(−mt2/128+1/4) for any t ≤
4m̂. The result follows when setting δ = exp(−mt2/128+

1/4) or equivalently t =
√

128(log(1/δ)+1/4)
m̂ .

Bounds on the discrepancy between the minimax risk and
its empirical risk that are uniform for any w guarantee gen-
eralization. The above lemmas suggest that the penalty of
observing a finite sample space decreases as 1/m̂. This is
summarized in the following theorem.

Theorem 2
Suppose that D is a distribution over X×Y such that Y =
{−1,+1} and X = {x : ∥x∥ ≤ 1}. Let LM,−1

µ,Σ (w) be the
minimax risk over the negative labels, where µ,Σ are the
mean and covariance of the marginal distribution of x over
the negative labels. Consider a training sample S of size
m which m̂ of them have negative label and let LSneg (w)
be the empirical minimax risk over the negative labels

LSneg (w) =
m̂

m
· sup
z∈Z(Σ̂,µ̂)

P [w⊤z ≥ 0]

where µ̂, Σ̂ are the empirical mean and covariance esti-
mation of the marginal distribution of x over the negative
training labels. Then, for any δ ∈ (, 1] with probabil-
ity at least 1 − 3δ over the i.i.d. sample of size m holds
LM,−1
µ,Σ (w) ≤

LM,−1

µ̂,Σ̂
(w) + c1

√
log(1/δ)

m̂
+ c2

√
log(1/δ) + 1/4

m̂
.

c1 = 1/
√
2 and c2 =

√
128(1/α + 1/α2) and α is the

minimal eigenvalue of Σ, Σ̂.
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Proof. We estimate ρ = E(x,y)∼D

[
1[y = −1]

]
by its

empirical mean m̂/m. From the Hoeffding inequality,
P [ m̂m − ρ ≥ t] ≤ exp(−2mt2). Setting δ = exp(−2mt2)

we derive the confidence interval t =
√

log(1/δ)/2m.
Thus combining the above lemmas, with error probability
of 3δ the minimax risk is upper bounded by(m̂

m
+

√
log(1/δ)

2m

)( 1

1 + (w⊤µ̂)2

w⊤Σ̂w

+

√
c

m̂

)
.

c = 2
√
32(log(1/δ) + 1/4) +

√
128(log(1/δ) + 1/4).

We conclude the proof by using m̂/m ≤ 1 and
1

1+
(w⊤µ̂)2

w⊤Σ̂w

≤ 1.

The same type of bound holds for classification by any fi-
nite number of hyperplanes, i.e., W⊤x ≥ 0. We omit its
derivation as it is tedious and follows the same derivations
as above.

Theorem 3
Consider the setting of Theorem 2 and let

LM,−1
µ,Σ (W ) = E(x,y)∼D

[
1[y = −1]

]
· sup
z∈Z(Σ,µ)

P [W⊤z ≥ 0]

where W is a matrix whose columns consist of k different
hyperplanes. Then, for any δ ∈ (0, 1] with probability at
least 1 − δ over the i.i.d. sample of size m there holds
uniformly for all W :

LM,−1
µ,Σ (W ) ≤ LM,−1

µ̂,Σ̂
(W ) + c

√
log(1/δ) + 1/4

m̂
.

c = 1/
√
2 +

√
128k(1/α + 1/α2) and α is the minimal

eigenvalue of Σ, Σ̂.

In our setting, it is important to assume that the eigenvalues
of Σ are lower bounded by α. This assumption implies that
the eigenvalues of Σ̂ are also bounded from below when-
ever m̂ ≫ d. Using Cauchy-Schwartz inequality for any w
of a unit norm there holds |w⊤Σw − w⊤Σ̂w| ≤ ∥Σ− Σ̂∥.
Using the Bernstein inequality for vectors we obtain that
P [∥Σ − Σ̂∥ ≥ t] ≤ exp(−mt2/128 + 1/4) for any
t ≤ 4m̂. Thus with high probability (that decays expo-
nentially with m̂) we obtain that for any w of unit norm
holds w⊤Σ̂w ≥ w⊤Σw − t. Since the eigenvalues of Σ
are lower bounded by α we have that w⊤Σw ≥ α then the
eigenvalues of Σ̂ are also lower bounded away from zero
whenever t < α.

4.2. Uniform generalization bound for the empirical
risk of the hinge-loss

The risk of the hinge-loss upper bounds the zero-one risk
over the positive examples. Using Rademacher com-
plexities we derive a uniform generalization bound for

k−hyperplanes classification W⊤x ≥ 0, i.e., w⊤
i x ≥ 0

for each i = 1, ..., k. The Rademacher complexity of a
bounded set A ⊂ Rk is

R(A) =
1

m
Eσ[max

a∈A

m∑
i=1

σiai],

while σi ∈ {−1,+1} are i.i.d. and equally probable ran-
dom variables. The set A describes the loss of the pre-
dictors W over a training sample (x1, y1), ..., (xm, ym),
namely A = {L(W⊤xj , yj)}j=1,...,m. Whenever the loss
is Lipschitz with respect to k−hyperplanes predictions, the
Rademacher complexity is bounded by

√
k/m.

Theorem 4
Consider a k−hyperplanes loss function L(W⊤x, y) for
which each hyperplane satisfies ∥wi∥ ≤ 1 and each data
point satisfies ∥x∥ ≤ 1. Assume that the loss is Lips-
chitz for every y, i.e., |L(α, y) − L(β, y)| ≤

∑k
i=1 |αi −

βi|. Then its Rademacher complexity is bounded by
R({L(W⊤xj , yj)}j=1,...,m) ≤

√
k/m.

Proof. First we prove the decompositional lemma (cf.
(Kakade et al., 2009)) for the k−hyperplane setting:

R({L(W⊤xj , yj)}j=1,...,m) ≤ R({w⊤
i xj}i=1,...,k,j=1,...,m).

For notational convenience, we prove it for m = 1
and the general case follows by induction over m. By
definition, R(W,x1, y1) = Eσ[maxW σL(W,x1, y1)]
and for simplicity, we denote this Rademacher com-
plexity by R. Since P [σ = −1] = P [σ =
1] = 0.5 there holds, R = 0.5maxW L(W,x1, y1) +
0.5maxW −L(W,x1, y1). By duplicating the hyperplanes
to W,W ′ we are able to maximize both cases jointly,
R = 0.5 ∗maxW,Ŵ

(
L(W,x1, y1) − L(Ŵ , x1, y1)]

)
. By

the Lipschitz condition L(W,x1, y1) − L(Ŵ , x1, y1) ≤∑
i |w⊤

i x1 − ŵ⊤
i x1|. Since wi and −wi have the same

norm, taking the maximum over ∥wi∥ ≤ 1 may generate
the absolute value, therefore

∀σ̂i ∈ {−1, 1} R ≤ 0.5max
W,Ŵ

(∑
i

σ̂i(w
⊤
i x1 − ŵ⊤

i x1)
)
.

Thus we are able to take the expectation with respect to σ̂i

while maintaining the inequality. Also, we separate the two
maximizations while noting that σ̂i and −σ̂i have the same
distribution to obtain the result:

R ≤ Eσ̂ max
W

(∑
i

σ̂iw
⊤
i x1

)
.

For general m we get by induction:

mR(L(W,xj , yj)) ≤ Eσi,j max
∥wi∥≤1

(∑
i,j

σi,jw
⊤
i xj).
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Algorithm 1 Intersection of K hyperplanes classifier
Input: {xi}, i = 1, .., Np a set of positive examples;
{zi}, i = 1, .., Nu a set of negative examples.
Output: W (K hyperplanes)
{The initial greedy step}
Estimate µ and Σ using {zi}Nu

i

Find w1 using eq.8 with µ and Σ.
for k=2 to K do

Estimate µk and Σk using {zi | wT
j zi > 0, j =

1, .., k − 1}
Find wk using eq.8 with µk and Σk.

end for
{The refinement iterations}
Let Pk be the probability Pr(WT z > 0) in iteration k
while (Pk−1 − Pk > ϵ) do

Estimate µk and Σk using {zi | wT
j zi > 0, j =

1, ..,K; j ̸= k}.
Find wk using eq.8 with µk and Σk.

end while

Standard Rademacher type arguments, e.g.
(Bartlett & Mendelson, 2003) derive the bound
mR(L(W,xj , yj)) ≤

√
km.

The above theorem generalizes the standard decomposi-
tion lemma (also known as the contraction lemma) to
k−hyperplanes with any Lipschitz loss. In our setting we
consider the sum of hinge loss functions over the positive
examples

L(W,x, y) = 1[y = 1] ·
k∑

i=1

max{0, 1− w⊤
i xy}

Since this function satisfies the conditions of the theorem
above, we may use the standard Rademacher uniform gen-
eralization bound. Let LH,1

D (W ) = E(x,y)∼D

[
L(W,x, y)

]
be the risk, and let LH,1

S (W ) = 1
m

∑m
i=1 L(W,xi, yi) be

the empirical risk over a training sample of size m. Then,
for any δ ∈ (0, 1] with probability at least 1 − δ over the
i.i.d. sample of size m there holds simultaneously for all
∥w1∥, ..., ∥wk∥ ≤ 1 whenever ∥x∥ ≤ 1:

LH,1
D (W ) ≤ LH,1

S (W ) +

√
4k

m
+

√
2 log(2/δ)

m

5. Algorithm
We aim to minimize the risk in eq. 2. To this end, we
minimize the empirical risk regularized by the sum of L2

norms of the K hyperplanes:

C

2

∑
i

∥wi∥2 + LM,1
S (W ) + LH,−1

S (W ) (7)

This empirical risk is a non convex and non smooth func-
tion, hence a gradient based optimization of it is difficult.
However, for a single hyperplane, we can write an equiva-
lent optimization problem:

minimize
w

C

2
∥w∥2 +

∑
i

max{0, 1− wTxi}

subject to γ
√
wTΣw + wTµ ≤ 0.

(8)

where γ is a constant, controlling the probability in the pos-
itive half space, namely γ ,

√
2erf−1(1 − 2δ) 2, where

Pr(wT z) ≤ δ. Since we seek to minimize this probability,
we can assume that δ < 1/2, and thus γ > 0. The con-
straint in the optimization problem 8 is convex for γ > 0,
and then the entire problem in 8 is convex.

We propose an iterative algorithm (Algorithm 1) that ap-
proximates the solution to the problem in eq. 7. It
starts by training K hyperplanes in a greedy manner and
then iteratively adjusts each hyperplanes to minimize the
Pr(WT z ≥ 0).

Lemma 3
Algorithm 1 minimizes Pr(WT z ≥ 0) at each iteration.

Proof. We show the proof for two hyperplanes; the same
proof holds for K hyperplanes. Let W = [w1w2]. We can
write

Pr(WT z ≥ 0) = Pr(wT
1 z ≥ 0)

∧
Pr(wT

2 z ≥ 0)

= Pr(wT
1 z ≥ 0)Pr(wT

2 z ≥ 0|wT
1 z ≥ 0)

First, w1 optimizes Pr(wT
1 z ≥ 0). Second, the opti-

mization in eq.8 seeks a w2 that minimizes Pr(wT
2 z ≥

0|wT
1 z ≥ 0).

Let wi
1 and wi

2 be the two hyperplanes after i iterations
and α = Pr(wi

1
T
z ≥ 0)

∧
Pr(wi

2
T
z ≥ 0) be the cur-

rent probability of the negative error in the intersection.
The algorithm seeks a hyperplane wi+1

1 that minimizes
Pr(wi+1

1

T
z ≥ 0|wi

2
T
z ≥ 0), thus

Pr(wi+1
1

T
z ≥ 0)

∧
Pr(wi

2

T
z ≥ 0)

= Pr(wi+1
1

T
z ≥ 0|wi

2

T
z ≥ 0)Pr(wi

2

T
z ≥ 0) ≤ α.

Therefor Algorithm 1 decreases the Pr(WT z ≥ 0) in each
iteration.

The empirical risk of the intersection of K hyperplanes is
the sum of hinge losses. In each iteration the algorithm
minimizes the hinge loss of one hyperlane, while keeping
the rest fixed, thus the algorithm decreases the hinge risk at

2the supremum of the minimax risk is attained for the Gaus-
sian distribution
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each iteration. Since the empirical risk is the sum of hinge
and minimax risks, it follows from Lemma 1 and the above
discussion that Algorithm 1 minimizes the empirical risk in
each iteration and thus converges.

6. Experiments
To test the proposed K-hyperplane hinge-minimax classi-
fier, we ran experiments in three different scenarios: syn-
thetic 2D data, letter recognition, and large scale scene clas-
sification.

During classification, the K-hyperplane classifier incurs
only K times the computational complexity of a linear clas-
sifier (just K inner products), hence its “natural competi-
tors” are linear classifiers, and we choose linear SVM for
the benchmark.

We have also compared the hinge-minimax classifiers to
kernel SVM and ensemble-based methods, which incur
far longer running times (this is especially true for kernel
SVM). The classification rates of the hinge-minimax clas-
sifier in all our experiments were comparable to ensemble
classifiers which required 100-170 basic classifiers in order
to reach similar performance. In experiments with high-
dimensional data, the hinge-minimax classifiers preformed
as well as kernel SVM.

The SVM classifiers were trained using C-SVC in LIB-
SVM 3. We used the CVX optimization package 4 to find a
single hyperplane in Algorithm 1. The ensemble classifiers
were trained using the Matlab Statistic toolbox.

6.1. Synthetic Data Example

We construct the hinge-minimax classifier for 2D data to
illustrate Algorithm 1. We samples 5000 data points from
two highly overlapping Gaussians (see Figure 1) with vary-
ing ratio of positive (shown in red) and negative (shown in
blue) examples. Each class was equally partitioned into
training, validation, and test sets. We estimated the mean
and covariance from the training data and tuned the param-
eters (C and γ) and the bias using the validation set. Table
1 shows the AUC for the different ratios of positive and
negative examples using an intersection of 5 hyperplanes.
These results demonstrate the robustness of the algorithm
to unbalanced sets.

Positive 0.01 0.1 0.2 0.3 0.4 0.5
fraction

AUC 94.68 94.91 95.07 94.96 94.89 95.83

Table 1. AUC for different size partitions of positive and negative
classes

3http : //www.csie.ntu.edu.tw/cjlin/libsvm/
4http : //cvxr.com/cvx/download/

The first five plots in Figure 1 show the result of the ini-
tial greedy step for the first, second, third, forth, and fifth
hyperplanes respectively. The contour lines in Figure 1 il-
lustrate the covariance of the negative distribution inside
the intersection, which is used to find the optimal separa-
tion hyperplane, depicted in black. The last plot in Figure
1 shows the final classifier after 25 iterations. It illustrates
that the approximation algorithm succeeds in separating the
positive set from the background, and that the refinement
iterations improve the separation boundary.

6.2. Letter Recognition

These tests were performed on a data set of letters from
the UCI Machine Learning Repository (Murphy & Aha,
1994), which includes 16-dimensional feature vectors for
the 26 letters in the English alphabet. The letter images
were based on 20 different fonts and each letter within these
20 fonts was randomly distorted to produce 20,000 sam-
ples. For each letter, we used 100 samples for training, 250
for validation, and the rest for test (about 400 samples per
letter). The parameters of all methods have been chosen
using the validation set. Since the test set includes 25 times
more negatives than positives, which leads to about 96%
classification rate by just classifying all inputs as negative,
we used EER as a more faithful measure of performance.
Table 2 shows the classification rate at EER , averaged over

Method Classification Classification
rate at EER time

hinge-minimax K = 1 89.32 5.6e-07
hinge-minimax K = 2 92.98 1.4e-06
hinge-minimax K = 3 93.93 1.5e-06
hinge-minimax K = 4 94.48 1.7e-06

Linear SVM 84.87 4.6e-07
RBF kernel SVM 96.47 1.7e-03

AdaBoost 92.26 1.0e-03

Table 2. Letter experiments. K corresponds to the number of hy-
perplanes used in the hinge-minimax classifier. The times are in
sec. AdaBoost uses 100 decision trees.

26 letters, and the average classification times of the tested
classifiers.

The hinge-minimax classifiers improves over the linear
SVM for all K, and for K > 1 outperforms Adaboost with
much shorter classification time. For this data set, kernel
SVM outperforms all methods. However, the 4-hyperplane
hinge-minimax classifier comes fairly close to the perfor-
mance of the kernel SVM, while its classification time is
three magnitudes faster.
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Figure 1. Illustration of hinge-minimax classifier construction on a toy example.The first 5 figures show the greedy initial step. The last
figure shows the final classifier after 25 iterations. The contour lines show the covariance matrix of the negative distribution inside the
intersection of hyperplane, which is used to find the optimal hyperplane, depicted in black.

6.3. Large Scale Scene Recognition

In this test we used 397 scene categories of the SUN
data base, which have at least 100 images per category
(Xiao et al., 2010). We represent the images as BOW of
dense HOG features with 300 words. We downloaded the
features from the SUN web page5, containing spatial pyra-
mid of BOWs, and used the bottom layer (the details of
the feature extraction can be found in (Xiao et al., 2010)).
The data is divided into 50 training and 50 test images in
10 folds. Training one-against-all classifiers for 397 cate-
gories with 50 training samples per category uses very un-
balanced training sets. Thus we defined different weights
for positive and negative samples in SVM training and
we used RUSBoost (Seiffert et al., 2008) as an ensemble
method (it is designed for skewed data and performed sig-
nificantly better than AdaBoost on this data set). Note
that the hinge-minimax classifier naturally handles unbal-
anced sets. Hinge-minimax classifier with more than two
hyperplanes didn’t improve the performance. Table 6.3
shows the average AUC which was used for evaluation in
(Xiao et al., 2010)) of the tested method and their running
times.

7. Conclusions and Future Work
We proposed an efficient method for learning an intersec-
tion of finite number of hyperplanes which combined the
hinge-risk (for the small number of positive data) with the

5http : //vision.cs.princeton.edu/projects/2010/SUN/

Method AUC classification
time

hinge-minimax, K = 1 88.89 9.8e-05
hinge-minimax, K = 2 90.99 1.34e-04

Linear SVM 88.20 8.6e-05
RBF kernel SVM 90.77 23.97

RUSBoost 90.76 0.08

Table 3. Scene classification with 300 dim. features. The classi-
fication time of RBF kernel SVM is very high, since it chooses
about 15,000 SVs from 19850 training examples. The RUSBoost
uses 100 decision trees.

minimax risk (for a large number of negative data points)
and derived a generalization bound for the mixed risk. We
show that the proposed classifier yields results comparable
to the popular non-linear classifiers, but at much lower (or-
der of magnitude) computational cost of classification.

Extension of this approach to multi-class learning for K
hyperplanes remains open. A one-vs-all heuristic is not di-
rectly applicable since K-hyperplane intersection yields bi-
nary output with no score. One can use the result of Theo-
rem 1 to find the closest distance to the intersection and use
it as a score. Another direction is to combine structured-
hinge and minimax risks.
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