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Abstract

We consider distributed online learning protocols that control the exchange of in-
formation between local learners in a round-based learning scenario. The learning
performance of such a protocol is intuitively optimal if approximately the same
loss is incurred as in a hypothetical serial setting. If a protocol accomplishes this,
it is inherently impossible to achieve a strong communication bound at the same
time. In the worst case, every input is essential for the learning performance, even
for the serial setting, and thus needs to be exchanged between the local learners.
However, it is reasonable to demand a bound that scales well with the hardness
of the serialized prediction problem, as measured by the loss received by a serial
online learning algorithm. We provide formal criteria based on this intuition and
show that they hold for a simplified version of a previously published protocol.

1 Introduction

We consider round-based learning scenarios on multiple connected dynamic data streams where a
real-time service is provided by a distributed online learning system of k ∈ N local learners. A
distributed online learning protocol controls the exchange of information between the learners
with the goal of providing a service quality—measured by a loss function—that is close to the one
of a hypothetical serial learner. Such an optimal predictive behavior can be trivially achieved by
centralizing all data but at the expense of a total communication cost in Ω(kT ) for a total time
horizon T ∈ N. This amount of communication in practice often exceeds network capacities or de-
lays the service beyond its time limits. No communication, on the other hand, leads to a significantly
higher loss that increases with the number of learners. Earlier research focused on static communica-
tion strategies that retain the service quality of a hypothetical centralized learner by communicating
periodically, thereby reducing communication by a fixed factor, but not changing the asymptotic
behavior. In this paper, we introduce the notion of an adaptive protocol that invests communication
only if it thereby significantly reduces its loss. As a consequence, the communication bound of an
adaptive protocol depends on the loss of the serial setting instead of the total time. We show for a
simplified version of dynamic averaging, a previously published protocol, that it satisfies this notion
of adaptivity while it retains the optimal predictive behavior of a serial learner.

2 Performance Bounds for Distributed Online Learning Protocols

In the following, we assume an online learning algorithm A = (W,ϕ, f) run on each local learner
l ∈ [k] in the distributed system to maintain a local model wt,l ∈ W . At each time point t ∈ N,
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each learner observes an input zt,l drawn independently from an input space Z from a time-variant
distribution Dt : Z → [0, 1]. Based on this input and the local model, the local learner provides a
service whose quality is measured by a loss function f : Z×W → R+. After providing the service,
the local learner updates its local model using an update rule ϕ : Z ×W → W . The performance
of A within a time horizon T ∈ N is measured by its cumulative loss

LA(T ) =

T∑
t=1

f(zt, wt) .

Performance guarantees for online learning algorithms are typically given by a loss bound LA(T ),
i.e., for all input sequences z1, ..., zT ∈ Z it holds that LA(T ) ≤ LA(T ). Loss bounds can be
defined with respect to a sequence of reference models, in which case they are referred to as regret
bounds. Such regret bounds are typically sub-linear in T , e.g., for scenarios with a static distri-
bution an optimal regret bound is in O(

√
T ) (see, e.g., Cesa-Bianchi and Lugosi [2006]), which

is achieved by many online learning algorithms, including stochastic gradient descent [Zinkevich
et al., 2010] and passive aggressive updates [Crammer et al., 2006]. A distributed online learning
protocol P = (A, σ) runs algorithm A on a distributed online learning system and interchanges
information between the local learners by synchronizing their local models wt,1, ..., wt,k using a
synchronization operator σ : W k → W k. The cumulative loss of a distributed online learning
protocol P is defined as

LP (T, k)

T∑
t=1

k∑
l=1

f(zt,l, wt,l) .

We measure the amount of communication of σ by its communication cost cσ : W k×N→ N, i.e.,
cσ(wt, t) is the number of bytes transmitted at time point t when σ is applied to the current model
configuration wt = wt,1, ..., wt,k. The communication cost depends on the system architecture, e.g.,
in a system with a designated coordinator node all models can be sent to the coordinator, processed
and the new models can be send back to the learners using 2k messages each containing one model
of fixed size, thus cσ(wt, t) ∈ Θ(k). We denote the cumulative amount of communication required
for synchronization by

CP (T, k) =

T∑
t=1

cσ(wt, t) .

There is a natural trade-off between communication and loss of a distributed online learning system.
A loss similar to a serial setting can be trivially achieved by permanent centralization. On the other
hand, communication can be entirely omitted. If the cumulative loss of an online learning algorithm
A is bounded by LA(T ), the loss of a distributed system with k local learners runningA without any
synchronization is bounded by Lnosync(T, k) = kLA(T ), whereas the communication isCP (T ) = 0.
Such a distributed system processes kT inputs. The loss of a permanently centralizing system on
the other hand is bounded by Lcentral(T, k) = LA(kT ), i.e., the loss bound of a serial online learning
algorithm processing kT inputs. For example in a static scenario with an optimal loss bound of
LA(kT ) ∈ O(

√
kT ), the loss bound of centralization is superior by a factor of

√
k. However, the

communication cost CP (T ) is in Θ(kT ). Current communication strategies that retain the service
quality of a hypothetical centralized learner are based on communicating periodically [Mcdonald
et al., 2009, Dekel et al., 2012] after a fixed number b ∈ N of data points have been processed,
thereby reducing communication by a fixed factor of 1/b, but the communication bound remains in
Θ(kT ). The communication bound of an adaptive protocol should only depend on LA(T ) and not
on T , while at the same time retaining the loss bound of the serial setting. In the following definition
we formalize this.
Definition 1. A distributed online learning protocol P = (A, σ) processing kT inputs is consistent
if it retains the loss bound of the serial online learning algorithm A processing kT inputs, i.e.,

LP (T, k) ∈ O (LA(kT )) .

The protocol is adaptive if its communication bound is linear in the number of local learners k and
the loss bound LA(kT, k) of the serial online learning algorithm, i.e.,

CP (T, k) ∈ O (kLA(kT )) .

An efficient protocol is adaptive and consistent at the same time. In the following we will present
such a protocol.
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3 An Adaptive and Consistent Distributed Online Learning Protocol

In Kamp et al. [2014] we presented a dynamic protocol, denoted dynamic averaging, that adapts its
communication to the loss incurred. For specific scenarios this protocol is consistent. In particular,
the protocol is consistent for an online learning scenario where each learner maintains a linear model,
i.e., W = Rn, using a specific type of update rules denoted f -proportional convex update rules for a
loss function f . That is, there exists a constant γ > 0, a closed convex set Γz ⊆ Rn, and τz ∈ (0, 1]
such that for all w ∈ Rn and z ∈ Z it holds that

(i) ‖w−ϕ(z, w)‖ ≥ γf(z, w), i.e., the update magnitude is a true fraction of the loss incurred,
and

(ii) ϕ(z, w) = w + τz (πΓ (w)− w) where πΓ (w) denotes the projection of w onto Γz , i.e.,
the update direction is identical to the direction of a convex projection that only depends
on the training example.

Examples of such update rules are stochastic gradient descend, as well as passive aggressive updates
and their regularized variants. For these update rules the update magnitude is bounded by a multiple
of the loss, i.e., there exists a constant C ∈ R+ such that for all inputs z ∈ Z it holds that ‖w −
ϕ(z, w)‖ ≤ Cf(z, w). This is true, e.g., for stochastic gradient descent with C = DZDW , whereD
denotes the diameter. In this setting dynamic averaging retains the regret bounds of static averaging,
i.e., synchronizing every b ∈ N rounds. In case of a fixed target distribution D it has been shown
by Dekel et al. [2012] that static averaging retains the optimality of stochastic gradient descent, i.e.,
it retains the regret bound of the serial online learning algorithm. Thus, both static and dynamic
averaging are consistent. However, static averaging has communication costs of Cstatic(T, k) =
ckdT/be and is thus not adaptive. In the following we will define dynamic averaging and provide a
communication bound in LA(kT ).

The dynamic averaging protocol P = (A, σ∆) synchronizes the local learners using a dy-
namic averaging operator σ∆. This operator only communicates when the model divergence
δ(wt) = 1/k

∑k
l=1 ‖wt,l −wt‖2 exceeds a divergence threshold ∆, where wt = 1/k

∑k
l=1 wt,l

denotes the average model. The dynamic averaging operator is defined as

σ∆(wt) =

{
(wt, . . . ,wt), if δ(wt) > ∆

wt, otherwise
.

In order to decide when to communicate, each local learner l ∈ [k] monitors the local condition
‖wt,l − rt‖2 ≤ ∆ for a reference vector rt ∈ W that is common among all learners (see Keren
et al. [2012], Sharfman et al. [2007], Gabel et al. [2014], Giatrakos et al. [2012] for a more gen-
eral description of this method). The local conditions guarantee that if none of them is violated the
divergence does not exceed the threshold ∆. If a local condition is violated, a synchronization is
triggered. We refer to the averaging of all models as full synchronization. Using an architecture
with k local learners and an additional coordinator node, a full synchronization can be performed
with communication linear in k, i.e., cσ∆(wt, t) = ck ∈ O(k). In order to further reduce com-
munication, instead of a full synchronization, the distributed system can try to resolve the violation
by averaging a small subset of local models so that the local conditions hold after this averaging.
We refer to this operation as partial synchronization. The subset is augmented by local models
until either all local conditions hold or a stop criterion of an appropriate hedging strategy is met.
The hedging strategy ensures that the communication in each time step cannot exceed ck. In the
following we show that dynamic averaging is adaptive.
Theorem 2. The communication CP (T, k) of a distributed online learning protocol us-
ing the dynamic averaging operator and an f -proportional convex update rule with
‖w − ϕ(z, w)‖ ≤ Cf(z, w) is bounded by

CP (T, k) = ck
C√
∆

LP (T, k)

where ck is an upper bound on the amount of communication per time point t.

Proof. The dynamic averaging protocol communicates only if a violation of a local condition
‖wt,l − rt‖2 ≤ ∆ occurs. At each time point with at least one violation dynamic averaging has
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communication costs of at most ck, i.e., the cost of a full synchronization. Thus, we can bound the
amount of communication by bounding the number of violations. That is, we derive a bound for
Vl(T ), the number of time points t ∈ [T ] where the local condition of learner l is violated. For that,
assume that at t = 1 all models are initialized with w1,1 = · · · = w1,k and r1 = W 1, i.e., for all
local conditions it holds that ‖w1,l−r1‖ = 0. A violation, i.e., ‖wt,l−r‖ >

√
∆, occurs if one local

learner drifts away from rt by more than
√

∆. After a violation a full synchronization is performed
and rt = W t, hence ‖wt,l − rt‖ = 0 and the situation is again similar to the initial setup for t = 1.
In the worst case, a local learner drifts continuously in one direction until a violation occurs. Hence,
we can bound the number of violations Vl(T ) by the sum of its drifts divided by

√
∆:

Vl(T ) ≤ 1√
∆

T∑
t=1

‖wt,l − wt+1,l‖ =
1√
∆

T∑
t=1

‖wt,l − ϕ(zt,l, wt,l)‖ ≤
1√
∆

T∑
t=1

Cf(zt,l, wt,l) .

To bound the communication we need to bound the number of time points t ∈ [T ] where at least one
learner l has a violation, denoted V (T ). In the worst case, all violations at all local learners occur at
different time points,so that we can upper bound V (T ) by the sum of local violations Vl(T ) which
is again upper bounded by the cumulative sum of drifts of all local models:

V (T ) ≤
k∑
l=1

Vl(T ) ≤ 1√
∆

T∑
t=1

k∑
l=1

Cf(zt,l, wt,l) =
C√
∆
LP (T, k) .

Since dynamic averaging has communication costs of at most ck per time point, the total amount of
communication is

CP (T, k) = ckV (T ) ≤ ck
C√
∆
LP (T, k) ≤ ck︸︷︷︸

∈O(k)

C√
∆

LP (T, k) ∈ O (kLP (T, k))

Since dynamic averaging is consistent in this setting, LP (T, k) ∈ O(LA(kT )) and we can follow
that CP (T, k) ∈ O (kLA(kT )), i.e., dynamic averaging is adaptive.

4 Conclusion

The analysis of the dynamic averaging protocol constitutes a first example of a relatively specific
setting in which adaptivity and consistency can be achieved at the same time. Central for the future is
to adapt dynamic averaging so that this holds also for more general settings. Moreover, tighter com-
munication bounds are desirable which could be achieved by taking into account the communication
reduction potential of partial synchronization and hedging strategies.

Acknowledgments

This research has been partially supported by the EU FP7-ICT-2013-11 under grant 619491 (FER-
ARI).

References
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