
Monitoring Distributed Data Streams

through Node Clustering

Maria Barouti, Daniel Keren, Jacob Kogan, and Yaakov Malinovsky

University of Maryland Baltimore County, USA and Haifa University, Haifa, Israel
{bmaria2,kogan,yaakovm}@umbc.edu,

dkeren@cs.haifa.ac.il

Abstract. Monitoring data streams in a distributed system is a chal-
lenging problem with profound applications. The task of feature selection
(e.g., by monitoring the information gain of various features) is an exam-
ple of an application that requires special techniques to avoid a very high
communication overhead when performed using straightforward central-
ized algorithms.

Motivated by recent contributions based on geometric ideas, we present
an alternative approach that combines system theory techniques and
clustering. The proposed approach enables monitoring values of an ar-
bitrary threshold function over distributed data streams through a set
of constraints applied independently on each stream and/or clusters
of streams. The clusters are designed to adapt themselves to the data
stream. A correct choice of clusters yields a reduction in communication
load. Unlike many clustering algorithms that attempt to collect together
similar data items, monitoring requires clusters with dissimilar vectors
canceling each other as much as possible. In particular, sub–clusters of
a good cluster do not have to be good. This novel type of clustering dic-
tated by the problem at hand requires development of new algorithms,
and the paper is a step in this direction.

We report experiments on real-world data that detect instances where
communication between nodes is required, and show that the clustering
approach reduces communication load.

Keywords: data streams, convex analysis, distributed system,
clustering.

1 Introduction

In many emerging applications one needs to process a continuous stream of data
in real time. Sensor networks [9], network monitoring [6], and real–time analysis
of financial data [16], [17] are examples of such applications. Monitoring queries
are a particular class of queries in the context of data streams. Previous work in
this area deals with monitoring simple aggregates [6], or term frequency occur-
rence in a set of distributed streams [15]. The current contribution is motivated
by results recently reported in [10], [11] where a more general type of monitoring
query is described as follows:

P. Perner (Ed.): MLDM 2014, LNAI 8556, pp. 149–162, 2014.
c© Springer International Publishing Switzerland 2014

150 M. Barouti et al.

Let S = {s1, . . . , sn} be a set of data streams collected at n nodes N =
{n1, . . . ,nn}. Let v1(t), . . . ,vn(t) be d-dimensional, real-valued, time varying
vectors derived from the streams. For a function f : Rd → R we would like to
monitor the inequality

f

(
v1(t) + . . .+ vn(t)

n

)
> 0 (1)

while minimizing communication between the nodes. Often the threshold might
be a constant r other than 0. In what follows, for notational convenience, we shall
always consider the inequality f > 0, and when one is interested in monitoring
the inequality f > r we will modify the threshold function and consider g =
f − r, so that the inequality g > 0 yields f > r. In e.g. [10,7,8,5] a few real-life
applications of this monitoring problem are described; see also Section 2 here.

The difference between monitoring problems involving linear and non-linear
functions f is discussed and illustrated by a simple example involving a quadratic
function f in [10]. The example demonstrates that, for a non-linear f , it is often
very difficult to determine from the values of f at the nodes whether its value
evaluated at the average vector is above the threshold or not. The present paper
deals with the information gain function (see Section 2 for details), and rather
than focus on the values of f we consider the location of the vectors vi(t) relative
to the boundary of the the subset of Rd where f is positive. We denote this set
by Z+(f) = {v : f(v) > 0}, and state (1) as

v(t) =
v1(t) + . . .+ vn(t)

n
∈ Z+(f). (2)

thus, the functional monitoring problem is transformed to the monitoring of a
geometric condition. As a simple illustration, consider the case of three scalar
functions v1(t), v2(t) and v3(t), and the identity function f (i.e. f(x) = x). We
would like to monitor the inequality

v(t) =
v1(t) + v2(t) + v3(t)

3
> 0

while keeping the nodes silent as long as possible. One strategy is to verify the

initial inequality v(t0) =
v1(t0) + v2(t0) + v3(t0)

3
> 0 and to keep the nodes

silent while
|vi(t)− vi(t0)| < δ = v(t0), t ≥ t0, i = 1, 2, 3.

The first time t when one of the functions, say v1(t), crosses the boundary of
the local constraint, i.e. |v1(t)− v1(t0)| ≥ δ the nodes communicate, t1 is set to
be t, the mean v(t1) is computed, the local constraint δ is updated and made
available to the nodes. The nodes are kept silent as long as the inequalities

|vi(t)− vi(t1)| < δ, t ≥ t1, i = 1, 2, 3

hold. This type of monitoring was suggested in [13] for a variety of vector norms.
The numerical experiments conducted in [13] with the dataset described in Sec-
tion 5 show that:

Monitoring Distributed Data Streams through Node Clustering 151

1. The number of time instances the mean violates (1) is a small fraction (< 1%)
of the number of time instances when the local constraint is violated at the
nodes.

2. The lion’s share of communications (about 75%) is required because of a
single node violation of the local constraint δ.

3. The smallest number of communications is required when one uses the l1
norm.

We note that if, for example, the local constraint is violated at n1, i.e. |v1(t) −
v1(t0)| ≥ δ, and at the same time

v1(t)− v1(t0) = −[v2(t)− v2(t0)],

while |v3(t) − v3(t0)| < δ then |v(t) − v(t0)| < δ, f(v(t)) > 0, and update of
the mean can be avoided. Separate monitoring of the two node cluster {n1,n2}
would require communication involving two nodes only, and could reduce com-
munication load. We aim to extend this idea to the general case – involving many
nodes, arbitrary functions, and high-dimensional data.

Clustering in general is a difficult problem, and many clustering problems
are known to be NP-complete [4]. Unlike standard clustering that attempts to
collect together similar data items [2], we are seeking clusters with dissimilar
data items, which cancel out each other as much as possible. While sub-clusters
of a “classical” good cluster are usually good, this may not be the case when
a cluster contains dissimilar objects. These observations indicate that common
clustering methods are not applicable to our problem.

A basic attempt to cluster nodes was suggested in [14] with results reported for
the dataset presented in Section 5. Clustering together just two nodes reported
in [14] reduces communication by about 10%.

In this paper we advance clustering approach to monitoring. The main con-
tribution of this work is twofold:

1. We suggest a specific clustering strategy, and report the communication
reduction achieved.

2. We apply the same clustering strategy with l1, l2, and l∞ norms and report
the results obtained.

The paper is organized as follows. In Section 2 we present a relevant Text Mining
application. Section 3 provides motivation for node clustering. A specific imple-
mentation of node clustering is presented in Section 4. Experimental results are
reported in Section 5. Section 6 concludes the paper and indicates new research
directions.

In the next section we provide a Text Mining related example that leads to a
non linear threshold function f .

2 Text Mining Application

Let T be a textual database (for example a collection of mail or news items).
We denote the size of the set T by |T|. We follow the methodology suggested

152 M. Barouti et al.

in [10] and assume that some of the documents are marked as “spam,” and a
“feature” (word or term for example) is selected. We will be concerned with two
subsets of T:

1. R–the set of “relevant” texts (e.g. texts not labeled as ”spam”),
2. F–the set of texts that contain a “feature.”

We denote complements of the sets byR, F respectively (i.e.R∪R = F∪F = T),
and consider the relative size of the four sets F ∩R, F ∩R, F ∩R, and F ∩R
associated with text collection and the “feature” as follows:

x11(T) =
|F ∩R|
|T| , x12(T) =

|F ∩R|
|T| ,

x21(T) =
|F ∩R|
|T| , x22(T) =

|F ∩R|
|T| .

(3)

Note that the non negative numbers xij depend on the “feature”,

0 ≤ xij ≤ 1, and x11 + x12 + x21 + x22 = 1.

The function f is defined on the simplex (i.e. xij ≥ 0,
∑

xij = 1), and given by

∑
i,j

xij log

(
xij

(xi1 + xi2)(x1j + x2j)

)
, (4)

where log x = log2 x throughout the paper. It is well-known that (4) provides
the information gain for the “feature” (see e.g. [1]).

As an example, we consider n agents installed on n different servers, and a
stream of texts arriving at the servers. Let Th = {th1, . . . , thw} be the last w

texts received at the hth server, with T =

n⋃
h=1

Th. Note that

xij(T) =

n∑
h=1

|Th|
|T| xij(Th),

i.e., entries of the global contingency table {xij(T)} are the weighted average of
the local contingency tables {xij(Th)}, h = 1, . . . , n.

To check that the given “feature” is sufficiently informative with respect to
the target relevance label r, one may want to monitor the inequality

f (x11(T), x12(T), x21(T), x22(T))− r > 0 (5)

with f given by (4) while minimizing communication between the servers.
In the next section we provide motivation to node clustering for monitoring

data streams.

Monitoring Distributed Data Streams through Node Clustering 153

3 Monitoring Threshold Functions through Clustering:
Motivation

In what follows we denote a norm of a vector v by ‖v‖. While the experiments
reported in this paper have been conducted with l1, l2, and l∞ norms, the pro-
posed monitoring and node clustering procedures can be applied with any norm.
The monitoring strategy proposed in [13] can be briefly described as follows:

Algorithm 31 Monitoring Threshold Function

– A node is designated as a root r.
– The root sets i = 0.
– Until end of stream

1. The root sends a request to each node n for the vectors vn(ti). The nodes
respond to the root. The root computes the distance δ between the mean
1

n

∑
n∈N

vn(ti) and the zero set Zf of the function f . The root transmits

δ to each node.
2. do for each n ∈ N

If ||vn(t)− vn(ti)|| < δ
the node n is silent

else
n notifies the root about violation of its local constraint δ
the root sets i = i+ 1
go to Step 1.

– Stop

An application of the above procedure to data streams generated from the
Reuters Corpus RCV1–V2 (see Section 5 for detailed description of the data
and experiments) leads to 4006 time instances in which the local constraints are
violated, and the root is updated. Results presented in Table 1 show that in
3034 out of 4006 time instances, communications with the root are triggered by
constraint violations at exactly one node.

The results immediately suggest to cluster nodes to further reduce com-
munication load. Indeed clustering together, for example, the “longest” vector
vnL(t) − vnL(ti) with the “shortest” vector vnS (t) − vnS (ti) may result in the
mean of the two vector cluster being shorter than δ. In such a case communica-
tion involving only two rather than all n nodes may prevent mean update for the
entire set of nodes in many of the 3034 instances listed in Table 1. Clustering to-
gether just two nodes as described above reported in [14] reduces communication
by about 10%.

Table 1. Number of local constraint violations simultaneously by k nodes, r = 0.0025,
l2 norm, the feature is “bosnia”

of nodes violators 1 2 3 4 5 6 7 8 9 10

of violation instances 3034 620 162 70 38 26 34 17 5 0

0004944
Highlight
Dear Author,Please provide us whether this is right information or shall we change this to "3.1"Thanks and Regards,Dhanasekar K

154 M. Barouti et al.

In this paper we advance the node clustering approach and demonstrate ad-
ditional communication savings. Each cluster will be equipped with a “coor-
dinator” c (one of the cluster’s nodes). If a cluster node n violates its local
constraint at time t, then the coordinator collects vectors vn(t)−vn(ti) from all
the nodes in the cluster, computes the mean of the vectors, and checks whether
the mean violates the coordinator constraint δ (at this point, node and coor-
dinator constraints are identical). We shall follow [10] and refer to this step as
“the balancing process.” If the coordinator constraint is violated, the coordina-
tor alerts the root, and the mean of the entire dataset is recomputed by the root
(for detailed description of the procedure see Section 4).

A standard clustering problem is often described as “. . . finding and describing
cohesive or homogeneous chunks in data, the clusters” (see e.g. [2]). For the
problem at hand we would like to partition the set of nodes N into k clusters
Π = {π1, . . . , πk} so that

N =

k⋃
i=1

πi, and πi

⋂
πj = ∅ if i
= j.

We denote the size of πi by |πi|. If for each cluster πi one has

1

|πi|

∣∣∣∣∣
∣∣∣∣∣
∑
n∈πi

[vn(t)− vn(tj)]

∣∣∣∣∣
∣∣∣∣∣ < δ, (6)

then, due to convexity of any norm, one has

∣∣∣∣∣
∣∣∣∣∣
1

n

∑
n∈N

vn(t)− 1

n

∑
n∈N

vn(tj)

∣∣∣∣∣
∣∣∣∣∣ ≤

k∑
i=1

|πi|
n

[
1

|πi|

∣∣∣∣∣
∣∣∣∣∣
∑
n∈πi

[vn(t)− vn(tj)]

∣∣∣∣∣
∣∣∣∣∣
]
< δ.

The inequality shows that the “new” mean
1

n

∑
n∈N

vn(t) belongs to Z+(f) if the

distance from the “old” mean
1

n

∑
n∈N

vn(tj) to the boundary of this set exceeds

δ, and (6) holds for each cluster. We therefore may attempt to define the quality
of a k cluster partition Π as

Q(Π) = max
i

{
1

|πi|

∣∣∣∣∣
∣∣∣∣∣
∑
n∈πi

[vn(t)− vn(tj)]

∣∣∣∣∣
∣∣∣∣∣ , i = 1, . . . , k

}
. (7)

Our aim is to identify k and a k cluster partition Πo that minimizes (7). Our
monitoring problem requires to assign nodes {ni1 , . . . ,nil} to the same cluster
π so that the total average change within cluster

∣∣∣∣∣
∣∣∣∣∣
1

|π|
∑
n∈π

[vn(t)− vn(tj)]

∣∣∣∣∣
∣∣∣∣∣ for t > tj

Monitoring Distributed Data Streams through Node Clustering 155

is minimized, i.e., nodes with different variations vn(t)−vn(tj) that cancel out
each other as much as possible are assigned to the same cluster. Hence, unlike
classical clustering procedures, this one needs to combine “dissimilar” nodes
together.

The proposed partition quality Q(Π) (see (7)) generates three immediate
problems:

1. Since the arithmetic mean a of a finite set of real numbers {a1, . . . , ak}
satisfies

min{a1, . . . , ak} ≤ a ≤ max {a1, . . . , ak}
the single cluster partition always minimizes Q(Π). Considering the entire
set of nodes as a single cluster with its own coordinator that communicates
with the root introduces an additional unnecessary “bureaucracy” layer that
only increases communications. We seek a trade-off which yields clusters with
”good” sizes (this is rigorously defined in Section 4).

2. Computation of Q(Π) involves future values vn(t), which are not available
at time tj when the clustering is performed.

3. Since the communication overhead of the balancing process is proportional to
the size of a cluster, the individual clusters’ sizes should affect the clustering
quality q(π) (see (8) below).

In the next section we address these problems.

4 Monitoring Threshold Functions through Clustering:
Implementation

We argue that in addition to the average magnitude of the variations vn(t) −
vn(tj) inside the cluster π, the cluster’s size also affects the frequency of updates,
and, as a result, the communication load. We therefore define the quality of the
cluster π by

q(π) =
1

|π|

∣∣∣∣∣
∣∣∣∣∣
∑
n∈π

[vn(t)− vn(tj)]

∣∣∣∣∣
∣∣∣∣∣+ α|π|, (8)

where α is a nonnegative scalar parameter. The quality of the partition Π =
{π1, . . . , πk} is defined by

Q(Π) = max
i∈{1,...,k}

q(πi), (9)

When α = 0 the partition that minimizes Q(Π) is a single cluster partition (that
we would like to avoid). When max

n
||vn(t)− vn(tj)|| ≤ α the optimal partition

is made up of n singleton clusters. In this paper we focus on

0 < α < max
n∈N

||vn(t)− vn(tj)|| . (10)

The constant α depends on t and tj , and below we show how to avoid this
dependence.

156 M. Barouti et al.

Computation ofQ(Π) required for the clustering procedure is described below.
In order to compute Q(Π) at time tj one needs to know vn(t) at future times
t = tj + 1, tj + 2, . . . which are not available (we recall that tj denotes time
instances when the mean of the entire data set is updated). While the future
behavior is not known, we shall use past values of vn(t) for prediction. For each
node n we build “history” vectors hn(tj) defined as follows:

1. hn(t0) = 0
2. if (hn(tj) is already available)

hn(tj+1) = hn(tj)
for t increasing from tj to tj+1 do

hn(tj+1) =
1

2
hn(tj+1) + [vn(t)− vn(tj)]

The vectors hn(tj) accumulate the history of changes, with older changes as-
signed smaller weights. In this paper we arbitrary use 1

2 as the the weight. It is
clear that other values can be used as weights, furthermore the weights do not
have to be constants, and may reflect known history of changes.

We shall use the vectors {hn(tj)} to generate a node partition at time tj .
We note that normalization of the vector set that should be clustered does not
change the induced optimal partitioning of the nodes. When the vector set is
normalized by the magnitude of the longest vector in the set, the range for α
conveniently shrinks to [0, 1]. In what follows we set h = max

n
||hn(tj)||, assume

that h > 0, and describe a “greedy” clustering procedure for the normalized
vector set

{a1, . . . , an}, ai = 1

h
hni(tj), i = 1, . . . , n.

We start with the n cluster partition Πn (each cluster is a singleton). If a k
cluster partition Πk, k > 2 is already available we

1. identify the partition cluster πj with maximal norm of its vectors’ mean, i.e.,

1

|πj |

∣∣∣∣∣∣

∣∣∣∣∣∣
∑
a∈πj

a

∣∣∣∣∣∣

∣∣∣∣∣∣ ≥
1

|πi|

∣∣∣∣∣
∣∣∣∣∣
∑
a∈πi

a

∣∣∣∣∣
∣∣∣∣∣ , i = 1, . . . , n.

2. identify cluster πi so that the merger of πi with πj produces a cluster of
smallest possible quality, i.e.,

q
(
πj

⋃
πi

)
≤ q

(
πj

⋃
πl

)
, l
= j,

where cluster’s quality is defined by (8).

The partition Πk−1 is obtained from Πk by merging clusters πj and πi. The
final partition is selected from the n−1 partitions {Π2, . . . , Πn} as the one that
minimizes Q.

Note that node constraints δ do not have to be equal. Taking into account the
distribution of the data streams at each node can further reduce communication.

Monitoring Distributed Data Streams through Node Clustering 157

We illustrate this statement by a simple example involving two nodes. If, for
example, there is reason to believe that the inequality

2‖v1(t)− v1(ti)‖ ≤ ‖v2(t)− v2(ti)‖ (11)

always holds, then the number of node violations may be reduced by imposing
node dependent constraints

‖v1(t)− v1(ti)‖ < δ1 =
2

3
δ, and ‖v2(t)− v2(ti)‖ < δ2 =

4

3
δ

so that the wider varying stream at the second node enjoys larger “freedom” of
change, while the inequality

∣∣∣∣
∣∣∣∣v1(t) + v2(t)

2
− v1(ti) + v2(ti)

2

∣∣∣∣
∣∣∣∣ < δ1 + δ2

2
= δ

holds true. Assigning “weighted” local constraints requires information provided
by (11). With no additional assumptions about the stream data distribution this
information is not available. Unlike [12] we refrain from making assumptions
regarding the underlying data distributions; instead, we estimate the weights
through past values ‖vj(t)− vj(ti)‖.
1. Start with the initial set of weights

w1 = . . . = wn = 1 and W1 = . . . = Wn = 1 (12)

(so that

n∑
j=1

wj =

n∑
j=1

Wj = n).

2. As new texts arrive at the next time instance t, each node computes updates

Wj =
1

2
Wj + ‖vj(t)− vj(ti)‖, with Wj(t0) = 1, j = 1, . . . , n.

When at time ti+1 the root constraint δ(r) needs to be updated, each node nj

broadcasts Wj to the root. The root computes W =

n∑
j=1

Wj , and transmits

the updated δ(nj) = wjδ(r) where wj = n× Wj

W
(so that

n∑
j=1

wj = n) back

to node j. For a coordinator c of a node cluster π the constraint δ(c) =
1

|π|
∑
n∈π

δ(n).

5 Experimental Results

The data streams analyzed in this section are generated from the Reuters Corpus
RCV1–V2. The data is available from http://leon.bottou.org/projects/sgd

158 M. Barouti et al.

and consists of 781, 265 tokenized documents with document ID ranging from
2651 to 810596. We simulate n streams by arranging the feature vectors in as-
cending order with respect to document ID, and selecting feature vectors for the
stream in the round-robin fashion.

In the Reuters Corpus RCV1–V2 each document is labeled as belonging to one
or more categories. We label a vector as “relevant” if it belongs to the “CORPO-
RATE/INDUSTRIAL” (“CCAT”) category, and “spam” otherwise. Following
[10] we focus on three features: “bosnia,” “ipo,” and “febru.” Each experiment
was performed with 10 nodes, where each node holds a sliding window containing
the last 6,700 documents it received.

First we use 67, 000 documents to generate initial sliding windows. The re-
maining 714, 265 documents are used to generate datastreams, hence the selected
feature information gain is computed 714, 265 times. Based on all the documents
contained in the sliding window at each one of the 714, 266 time instances we
compute and graph 714, 266 information gain values for the feature “bosnia”
(see Figure 1).

0 1 2 3 4 5 6 7 8

x 10
5

0

1

2

3

4

5

6

7

8
x 10

−3 bosnia

iterations

IG

Fig. 1. Information gain values for the feature “bosnia”

For the experiments described below, the threshold value r is predefined, and
the goal is to monitor the inequality f(v)− r > 0 while minimizing communica-
tion between the nodes.

We assume that new texts arrive simultaneously at each node. The numer-
ical experiment reported in [13] with the feature “febru,” and the threshold
r = 0.0025 are shown in Table 2 where a broadcast is defined as one time
transmission of information between different nodes. We run the node cluster-
ing monitoring presented in this paper for the same feature and threshold with

Monitoring Distributed Data Streams through Node Clustering 159

Table 2. Number of mean computations, and broadcasts for feature “febru” with
threshold r = 0.0025, no clustering

norm mean updates broadcasts

l1 2591 67388

l2 3140 81650

l∞ 3044 79144

Table 3. Number of root and coordinator mean computations, and total broadcasts
for feature “febru” with threshold r = 0.0025 with clustering

norm alpha root mean coordinator total
update mean update broadcasts

l1 0.70 1431 0 38665

l2 0.80 1317 0 35597

l∞ 0.65 1409 0 38093

α = 0.05, 0.10, . . . , 0.95. The best results for l1, l2, and l∞ norms with respect to
α are presented in Table 3. The clustering approach in this case is particularly
successful – coordinators’ constraints are not violated, and the root mean up-
dates are decreased significantly. As a result the number of broadcasts decreases
by about 50%.

Next we turn to the features “ipo” and “bosnia.” In both cases we run moni-
toring with clustering, allowing α = 0.05, 0.10, . . . , 0.95, and report results with
the lowest number of broadcasts. The results obtained for “ipo” without clus-
tering are presented in Table 4. Application of clustering procedure leads to
a significant reduction in the number of broadcasts. Results obtained through
clustering procedure are shown in Table 5. The table demonstrates significant
inside cluster activity, and a decrease in root mean updates.

Table 4. Number of mean computations, and broadcasts for feature “ipo” with thresh-
old r = 0.0025, no clustering

norm mean updates broadcasts

l1 15331 398606

l2 21109 548834

l∞ 19598 509548

Finally we turn to the feature “bosnia.” Application of clustering to mon-
itoring this feature information gain appears to be far less successful. Results
obtained without clustering in [13] are presented in Table 6. Application of the
clustering procedure leads to a slight decrease in the number of broadcasts in
case of the l2 and l∞ norms (see Table 7). In case of the l1 norm, the number
of broadcasts increases. Clustering does not offer a universal remedy; in some

160 M. Barouti et al.

Table 5. Number of root and coordinator mean computations, and total broadcasts
for feature “ipo” with threshold r = 0.0025 with clustering

norm alpha root mean coordinator total
update mean update broadcasts

l1 0.15 5455 829 217925

l2 0.10 7414 1782 296276

l∞ 0.10 9768 2346 366300

Table 6. Number of mean computations, and broadcasts, for feature “bosnia” with
threshold r = 0.0025, no clustering

norm mean updates broadcasts

l1 3053 79378

l2 4006 104156

l∞ 3801 98826

Table 7. Number of root and coordinator mean computations, and total broadcasts
for feature “bosnia” with threshold r = 0.0025 and clustering

norm alpha root mean coordinator total
update mean update broadcasts

l1 0.65 3290 2 89128

l2 0.55 3502 7 97602

l∞ 0.60 3338 2 91306

cases better performance is achieved with no clustering (by keeping α between
0.05 and 0.95 we force nodes to cluster).

6 Conclusions and Future Research Directions

In this paper we propose to monitor threshold functions over distributed data
streams through clustering nodes whose data fluctuations ”cancel out” each
other. The strategy, if successful, in many cases reduces the communication
required to message exchanges within a cluster only, yielding overall communi-
cation reduction.

The clustering strategy suggested is based on minimization of a combination
of average of a vector associated with a cluster and the cluster size. The nodes
are re–clustered each time the entire dataset mean violates its constraint δ(r).
The amount of communication required depends on the “trade off” parameter
0 < α < 1 selected at the beginning of the monitoring process. While the
results obtained show improvement over previously reported ones that do not
use clustering [13] it is of interest to introduce an update of α based on the

Monitoring Distributed Data Streams through Node Clustering 161

monitoring history each time nodes are re–clustered (see e.g. [3] for feedback
theory approach).

Clustering does not provide a universal remedy. It is of interest to identify data
streams that benefit from clustering, and those for which clustering does not re-
duce communication load in any significant fashion. Finally a methodology that
measures effectiveness of various monitoring techniques should be introduced, so
that different monitoring strategies can be easily compared.

Acknowledgment. The authors thank the reviewers for the valuable remarks
that much improved exposition of the results. The research of the second author
was supported by Grant No. 2008405 from the United States-Israel Binational
Science Foundation (BSF). The work of the fourth author was partially sup-
ported by a 2013 UMBC Summer Faculty Fellowship grant.

References

1. Gray, R.M.: Entropy and Information Theory. Springer, New York (1990)
2. Mirkin, B.: Clustering for Data Mining: A Data Recovery Approach. Chapman &

Hall/CRC, Boca Raton (2005)
3. Willems, J.C.: The Analysis of Feedback Systems. The MIT Press, Cambridge

(1971)
4. Brucker, P.: On the complexity of clustering problems. Lecture Notes in Economics

and Mathematical Systems, vol. 157, pp. 45–54 (1978)
5. Burdakis, S., Deligiannakis, A.: Detecting outliers in sensor networks using the

geometric approach. In: ICDE, pp. 1108–1119 (2012)
6. Dilman, M., Raz, D.: Efficient reactive monitoring. In: Proceedings of the Twenti-

eth Annual Joint Conference of the IEEE Computer and Communication Societies,
pp. 1012–1019 (2001)

7. Gabel, M., Schuster, A., Keren, D.: Communication-efficient outlier detection for
scale-out systems. In: BD3@VLDB, pp. 19–24 (2013)

8. Garofalakis, M., Keren, D., Samoladas, V.: Sketch-based geometric monitoring of
distributed stream queries. In: PVLDB (2013)

9. Madden, S., Franklin, M.J.: An architecture for queries over streaming sensor data.
In: ICDE 2002, p. 555 (2002)

10. Sharfman, I., Schuster, A., Keren, D.: A Geometric Approach to Monitor-
ing Threshold Functions over Distributed Data Streams. ACM Transactions on
Database Systems 32, 23:1–23:29 (2007)

11. Sharfman, I., Schuster, A., Keren, D.: A Geometric Approach to Monitoring
Threshold Functions over Distributed Data Streams. In: May, M., Saitta, L. (eds.)
Ubiquitous Knowledge Discovery. LNCS, vol. 6202, pp. 163–186. Springer, Heidel-
berg (2010)

12. Keren, D., Sharfman, I., Schuster, A., Livne, A.: Shape Sensitive Geometric Mon-
itoring. IEEE Transactions on Knowledge and Data Engineering 24, 1520–1535
(2012)

13. Kogan, J.: Feature Selection over Distributed Data Streams through Convex Opti-
mization. In: Proceedings of the Twelfth SIAM International Conference on Data
Mining (SDM 2012), pp. 475–484. SIAM (2012)

162 M. Barouti et al.

14. Kogan, J., Malinovsky, Y.: Monitoring Threshold Functions over Distributed Data
Streams with Clustering. In: Proceedings of the Workshop on Data Mining for
Service and Maintenance (held in conjunction with the 2013 SIAM International
Conference on Data Mining), pp. 5–13 (2013)

15. Manjhi, A., Shkapenyuk, V., Dhamdhere, K., Olston, C.: Finding (recently) fre-
quent items in distributed data streams. In: ICDE 2005, pp. 767–778 (2005)

16. Yi, B.-K., Sidiropoulos, N., Johnson, T., Jagadish, H.V., Faloutsos, C., Biliris, A.:
Online datamining for co–evolving time sequences. In: ICDE 2000 (2000)

17. Zhu, Y., Shasha, D.: Statestream: Statistical monitoring of thousands of data
streamsin real time. In: VLDB, pp. 358–369 (2002)

	Monitoring Distributed Data Streams through Node Clustering
	Introduction
	Text Mining Application
	Monitoring Threshold Functions through Clustering: Motivation
	Monitoring Threshold Functions through Clustering: Implementation
	Experimental Results
	Conclusions and Future Research Directions

