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Abstract

Regularization looks for an interpolating function
which is close to the data and also “smooth”. This
function is obtained by minimizing an error functional
which is the weighted sum of a “fidelity term” and a
"smoothness term”. However, using only one set of
weights does not guarantee that this function will be
the MAP estimate. One has to consider all possible
weights in order to find the MAP function. Also, using
only one combination of weights makes the algorithm
very sensitive to the data.

The solution suggested here is through the Bayesian
approach: A probability distribution over all weights
is constructed and all weights are considered when re-
constructing the function or computing the expecta-
tion of a linear functional on the function space.

1 Introduction and Previous
Work

In computer vision, regularization [19] is used to re-
construct objects from partial data {17, 18, 5, 1]. The
data can be sparse — e.g. the height of a small num-
ber of points on a surface, or dense but incomplete —
e.g. the case of optical flow and shape from shading
[4] where data is available at many points but consists
of the function’s or its derivative’s valye in a certain
direction only. The first difficulty in solving this prob-
lem stems from the multitude of possible solutions,
each satisfying the partial data; which one should be
chosen? Also, data instances which are not compatible
with others can cause singularities in the solution.
The regularization approach overcomes these dif-
ficulties by choosing among the possible objects
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one which approximates the given data and is also
“smooth”. This embodies an important assumption
— that the “smoother” the object, the more proba-
ble it is. Formally, a cost functional M(f) is defined
for every object f by M(f) = D(f) + AS(f), where
D(f) measures the distance of f from the given data,
S(f) measures the smoothness of fiand A > D is a
parameter. The f chosen is the one minimizing M ().
In the one-dimensional case, one minimizes
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two-dimensional case, the functional to minimize is
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The question is, how does one choose ) and o7
There are various methods for doing this. However,
all regularization schemes we are familiar with choose
one combination of weights and use them alone to in-
terpolate the function.

But there’s a serious problem with this approach:
It fails to find the MAP estimate for the interpolant
[, as it uses only one set of weights A and o to con-
struct f. But, what happens if the chosen function
has a relatively small probability for a wide range of
other weights? The MAP estimate should maximize
the following:

/ Pr(f/w)Pr(w)dw

where w varies over the set of all possible weights. The
main contribution of this work is the computation of
Pr(w).

The most popular method for determining the
smoothing parameter A is that of the Generalized



Cross Validation (GCV) [2]. The problem with GCV
is that the choice of the value of } is sometimes very
sensitive to the data. Since this value s crucial to
the shape of the fitted curve or surface, it turns out
that sometimes a small change in the data drastically

changes the shape of the fitted function. Another
problem is that although it can be proved that GCV
has some nice asymptotic properties, the choice of the
“optimal” values of A and ¢ is heuristic in nature. One
goal of this work is to suggest an improvement for the
GCV algorithm. Bayesian approaches for choosing the
weights are suggested in the pioneering work of Szeliski
[15] and more recently in [10]. Here we suggest a dif-
ferent approach, namely, com puting the probability
distribution by directly integrating over the (infinite-
dimensional) space of all possible interpolants. An-
other novelty is in using all possible weights, not only
the “optimal” ones.

2 Computing the Joint Proba-
bility for )\, o
Suppose we have a data set D and we want to describe

or fit it with a member of some model M. The Bayes
solution is to find f which satisfies

e Pr(D/f)Pr(f/M)
fei P/ D) = max — = D)

o max Pr(D/ ) Pr(f/M)

Regularization, for instance, can be formalized in this
way because
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(assuming uncorrelated Gaussian noise of constant
variance) and the prior distribution is

Pr(f)  exp(—A f £2,du)

which resembles the Boltzmann distribution [15, 3, 6,
8, 14, 13, 11, 9, 186, 12). Multiplying, we get that the
f chosen from M should maximize exp(—M(f)), or
minimize M( f). This simple analysis shows how reg-
ularization is consistent with Bayes rule for choosing
the MAP estimate, given A.

Now, what if a few models are possible? As ex-
plained before, the first step is to compute the prob-
ability of each model. In our case, the models are in-
dexed by two continuous parameters, A and ¢. Thus,
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a specific choice of the two parameters is equivalent to
the claim “this function was sampled from a function
space with a specific prior, and the measurement was
corrupted by a specific noise”.

Call the model that assumes ) as a smoothing pa-
rameter and o as the measurement nni% M)y ¢. In this

model, Pr(f) o exp[—.lfff“du}. Given a data set
D, we compute Pr(M, /D). Using Bayes rule:

Pr(My./D) = £ ffﬂfﬂ;a;ﬂ;‘}'rfﬂﬂ.r}

Jat, . Pr(D/F)Pr(f/M) . )Df
o PT{D!MAJJ —] IML. Pr(fthlﬂ_}'Df

where the denominator is introduced to turn the dis-
tribution on the functions f into a probability, by nor-
malizing its integral on the whole space to 1.

Since the data is given, it is the same for all models
and can be eliminated from consideration.

It turns out that although the space M), , is infi-
nite dimensional, it is possible to reduce the integral
to a quotient of two integrals defined on a finjte di-
mensional space. There is not enough space here to
present the computation (see [7]); however, the inte-
gral turns out to be equal to

(1)
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where Y is the data vector and A is a matrix which
can be easily computed from the sample points (it does
not depend on the data).

3 Computing the Expectation
of the Value at

If L is a functional on f, its expectation given D is

E[L(f)/D] = j L(f)Pr{(f/D)D}

if we want to compute the value of a function at
a point z, then L(f) is simply the evaluation at z,
and the expectation can be computed, according to
Fubini’s theorem, by first evaluating it for each {A, 7}
pair, and then integrating over all such pairs, weighing
each one by its probability conditioned by the data D-

Elf=)/) = [ | EU@)/D, M, 1Pr(My o D)ardo



which can be shown to equal [7]

Figure 6. Applying Equation 3 to the data of Figure

5 results in a fit which is almost similar.
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where H., are simple polynomial functions in z,
i= l..n.

We have therefore presented a closed-form expres-
sion for evaluating the expectation of the value of f
at a point, given partial data about f. No optimiza-
tion and no selection of an "optimal” parameter are
necessary. One has to note, though, that the fune-
tion defined pointwise by this expression is notf nec-
essarily the function which maximizes the probability
Pr(f/D) - this is true only in the simple model which
uses only one value of the A and o parameters. The
problem of finding the most probable f will be ad-
dressed in a subsequent paper. Nontheless, the func-
tion defined by the pointwise expectations can serve
as an interpolant; however, as is obvious from the ex-
amples, this interpolant is not very smooth. This is
because it is computed pointwise, without attempting
to force global smoothness. It is a question of what
one desires; if one wants to give a good estimate for
the value of the function at a certain point, Equation
3 is the expression to use. If one wants to estimate
the global function, that is a different matter. Oddly
enough, the value of the most probable function at the
point z is not the “best” estimate for the value at x
(that is, the expectation).

4 Experimental Results

Next, we demonstrate how the proposed approach re-
sults in stable fits. The algorithm was extended to 2D
data [7]. In Figure 1, we show the GCV reconstruction
for data which consist of a sinuseidal pattern contam-
inated by Gaussian noise. The data in Figure 2 differs
from that of Figure 1 at only one point. The GCV re-
turns radically different results for the two data sets,
because this slight change caused GCV to choose a
very different value of A. Figure 3 shows the recon-
struction for the data of Figures 1 and 2 using Equa-
tion 3. The fits are nearly similar,

Figure 4 shows the GCV reconstruction to data
created by adding Gaussian noise to the function
z(1-z)y(1-y). In Figure 5, the GCV fit to a data set
differing from that of Figure 4 by one point is given,
Again, GCV chooses a very different value of ) and
returns a very different fit. Applying Equation 3 to
the data of Figure 4 results in the surface presented in
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5 Conclusion and Future Work

A novel approach for looking at regularization is sug-
gested, which considers all possible values for the noise
and smoothing parameter, by assigning a probability
to each combination of these two parameters. This
probability is used to compute the expectation of a
linear functional over the function space. The main
advantages of this interpolation paradigm are that it
is free of instability problems which haunt interpo-
lation schemes that choose a single value for these
parameters; also, the computation of the parameter's
probabilities is performed in a mathematically rigor-
ous manner. We have also demonstrated that the op-
timal parameters can be found by solving a simple
one-dimensional minimization problem [7].

In the future, we plan to demonstrate how the
most probable function is computed, and compare it
to the pointwise interpolation presented in this work.
We also hope to study other priors/models, notably
those that belong to the realm of “robust statistics” .
These pose a fascinating mathematical challenge be-
cause, usually, the probability they assign to models
can not be expressed in terms of inner products on
the function spaces involved. Finally, an attempt is
being made to tie this research to the fascinating field
known as “information-based complexity”, or “contin-
uous complexity™.
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Figure 1: GCV chooses a “standard” value of ), to
interpolate sinusoidal data contaminated by
Gaussian nojse.

Figure 2: For a data set differing from that of Figure
l in only one point, GCV chooses a very small valye
of A, resulting in a completely different fit.
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Figure 3: The suggested method for fitting, used on
the data sets of Figures 1 and 2, Fijts are almost
identical,
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Figure 4: GOV reconstruction for the function
z(1 = z)y(1 - ), contaminated by Gaussian noise.
This is a “typical” reconstruction for such data
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Figure 6: The suggested method for fitting, used op
the data set of Figure 4.




References

[1] M. Bertero, T.A Poggio, and V. Torre, Ill-posed
problems in early vision. Proceedin gs of the IEEE,
8:869-889, 1988.

[2] P. Craven and G. Whaba. Optimal smoothing
of noisy data with spline functions, Numerische
Mathematik, 31:377-403, 1979.

[3] S. Geman and D.Geman. Stochastic relaxation,
gibbs distribution, and the bayesian restorat jon
of images. JEEE Trans. on Patiern Analysis and
Machine Intelligence, 6:721-T41, June 1984,

[4] B. Horn. Robot Vision. MIT Press, 1086,

[5] B.K.P Horn and B.G. Schunck. Determining opti-
cal flow. Artificial Intelligence, 17:185-203, 1981.

[6] D. Keren and M. Werman. Variations on regu-
larization. In 10°th International Conference on
Pattern Recognition, Atlantic City, 1990.

[7] D. Keren and M. Werman. A bayesian frame-
work for regularization. 1994. submitted to IEEE
Transaction on Patiern Analysis and Machine
Intelligence.

[8] D. Keren and M. Werman. Probabilistic analysis
of regularization. JEEE Trans. on Patiern Anal-
ysis and Machine Intelligence, 15:982-995, Octo-
ber 1993.

[9] Y.G. Leclere. Image and boundary segmenta-
tion via minimal-length encoding on the co nnec-
tion machine. In Jmage Understanding Work-
shop, pages 1056-1069, 1989,

[10] David J.C. MacKay. Bayesian Methods for Adap-
tive Models. PhD thesis, California Institute of
Technology, 1992.

[11] J.L Marroquin. Deterministjc bayesian estima-
tion of markovian random fields with app lica-
tions to computational vision. In International
Conference on Computer Vision, pages 597-601,
London, May 1987.

[12] L. Matthies, R. Szeliski, and T. Kanade. Incre-
mental estimation of dense depth maps from im-
age sequences. In JEEE Conference on Computer
Vision and Pattern Recognition, Pages 366-374,
Ann Arbor, June 1988,

76

[13] D. Mumford and J. Shah, Boundary detection by

minimizing fuctionals,

22-26, San Francisco, June 1985.

[14] R. Szeliski. Regularization tses fractal priors.

In National Conference on Artificial Intelligence,
pages T49-T754, 1987,

[15] R. Szeliski. Bayesian Modeling of Uncertainty in _

Low-Level Vision. Kluwer, 1989,

[16] S. Szeliski and D. Terzopoulos. From splines to 3

fractals. In SIGGRAPH, pages 51-60, 1989,

[17] D. Terzopoulos. Multi-level surface reconstruc-
tion. In A. Rosenfeld, editor, Multiresolution
Image Processing and Analysis. Springer-Verlag,
1984.

[18] D. Terzopoulos.
lems involving discontinuities. J[EEE Trans.
on Pattern Analysis and Machine Intelligence,
8:413-424, August 1986,

[19] A.N Tikhonov and V.Y Arsenin. Solution of M-
Posed Problems. Winston and Sons, 1977,

In IEEE Conference on
Computer Vision and Pattern Recognition, pages - :

Regularization of visual prob-

FAR e

SR LR A

o SR E T T

Pt 'I-._ o e 5 . e
bt kol - e 2 e 8 b



