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Abstract

- . Regularization has become an important tool for solv-
ing many ill-posed problems in approximation theory, for
| example in computer vision: surface reconstruction, optical
t flow, shape from shading and more. This paper poses the
" following questions: is the approach taken in regularization
~ always the correct one, and to what extent are the results
~ of regularization reliable. For example, suppose regular-
~ ization has been used to reconstruct a surface from sparse
- data. How strongly can the height of the surface at a cer-
® tain point be relied upon? These questions are answered
by defining a probability distribution on the class of sur-
¢ faces considered, and computing its expectation and vari-
ance. The variance can be used, for instance, to construct
a “safety strip” around the interpolated surface that should
not be entered if collision with the surface is to be avoided.,

1 Introduction

" Regularization is used in image processing to reconstruct
" an object when partial data about it is given [15, 16, 7, 3,
. 17]. Reconstruction of surfaces given partial information
i has been studied in many other fields, for example geology
% [4), and electronics [2]. The data can be sparse - e.g. the
i height of a small number of peints on a surface, or dense
& but incomplete - eg. the case of optical flow and shape
& [rom shading [6] where data is available at many points
= but consists of the derivative’s value in a certain direction
¢ only. The first difficulty in solving this problem stems from
. the multitude of possible solutions each agreeing with the
. Ppartial data; which one should be chosen? Also, data in-
¢ Stances which are not compatible with others can cause

- singularities in the solution. The regularization approach
overcomes these difficulties by choosing among the possi-
& ble objects one which approximates the given data and is
i 250 “smooth”. This embodies an important assumption
. - that the “smoother” the object is, the more probable it
g b Formally, a cost function M (f) is defined for every ob-
g8 Ioct f by M(f) = D(f) + AS(f), where D(f) measures
© the distance of f from the given data, 5(f) measures the
& "moothness of f, and A is a parameter. The f chosen is
~ the ope minimizing M(). A typical example is surface re-
- “onstruction: the estimated (up to some degree of accu-

Tacy) height of the surface at a set of points {z;, ¥ }i.;

M now on called sample points) is given as {zi}i=1,
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and the problem is to interpolate these values to the rest
'

+ 1 A oiag
of the surface. Then D(f) = }; 2 [f{zir ) — 2] and
S(f) = ff{ﬂ,+2_f,’y+f§,}dtdy are usually chosen, were o,
1s an indicator for the measurement reliability at the point
(zi,wi) (for simplicity it will be assumed that o; = 1). As
A grows, the resulting surface tends to be smoother - possi-
bly at the cost of not being close to the sample points. The
f minimizing M() can be found by variational methods.
From now on we will deal with the surface reconstruction
problem in its one and two-dimensional forms, but the jideas
and results can be extended to other problems.
This work poses the two following questions:
1) Why should f be chosen as the function minimizing M7
It is known that f is a random choice from a probabil-
ity space that assigns higher probabilities to functions with
small M(). But the element with the highest probability is
not always the best representative of the probability space!
2) How reliable are the values of f at certain points? Sup-
pose that f is the surface chosen and f(z) = y. Now, what
if there are many functions g such that M (g) is almost equal
to M(f) but g(z) differs substantialy from f(z)? Naturally,
the value f(z) should be assigned a high degree of uncer-
tainty. If z is close to many sample points, intuition tells us
that its interpolated value is more reliable than that of an =
that is situated far away from the sample points. Thus the
measure of reliability should be pointwise and not a global
one for f.
An attempt is made to answer these guestions in a prob-
abalistic setting. Each f is assigned a probability propor-
tional to =™/} (for a justification of this choice, see [14]),
thus generating a probability distribution over all functions.
The distribution of the f.values at r is computed for each
z. Note that this approach takes into account all functions
and does not use a single function as the representative of
the space.
Related work was done on the problem of estimating lin-
ear functionals on Banach and Hilbert spaces given partial
information [18, 11, 10]. Work more closely related are
[14, 19]. In [19), an a priori distribution is assumed on
the reconstructed surface. In [14], Monte-Carlo methods
are heuristicly used to compute a measure of uncertainty.
The novelty in the work presented lies in the probabalis-
tic framework which allows definition and computation of



variance, which is a natrual measure of uncertainty.

The organization of this paper is as follows: In Section 2
the problems are solved when f is constrained to a finite-
dimensional subspace of the function space. In Section 3
the results will be extended to the complete function space
by using the theory of Hilbert space. In Section 4 it will be
shown that the values of the expectation and variance on
certain “small” finite-dimensional subspaces approximate
the values on the whole function space. In Section 5 the
results will be extended to the 2-D surface interpolation
problem. In Section 6 the problem of *active interpelation™
will be presented, and in Section 7 experimental results are
given. Due to space limitations, the proofs are omitted and
can be found in [8].

2 The Case of a Finite
Dimensional Space

In this section the two questions posed in the introduction
are solved when the functions are restricted to a finite-
dimensional subspace. The problem of one-dimensional
surface reconstruction will be dealt with first. The input
to this problem is a set of points {(z;, 3:)}\;, 0 < 2 €1,
and the regularization approach is to find the f minimizing
the cost function

i 1
Mm=2[ﬂn1—ml‘+Af [ (@Pde (1)
i

=1

In order to avoid drowning in a sea of indexes, the so-

lution will be carried out for a 2-dimensional subspace,

span{f, g}. For every function in this space M(a f+bg) =
i

1
> [af(zi)+bg(z:)— g + A f [af (v)4bg (v)]’dv. This
iml 0
is actually a bilinear form in @ and b which can be written
as (a,b)A(a, b)T +Coa+Cob+C, where A is a 2% 2 matrix
given by
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As noted before, the probability of af + by is defined to
be fre~M(a/+29) and the expectation at the point z, de-

noted E;, will therefore be i-f ﬁ{:}e‘”‘f“]’dh where H =
H

e~ MM dh is the normalizing factor.

senl ) i K= |

H

Ey = Jrfn uf—ﬂm e~l{a.b}a(a,b)T+CaatChbldadh

(w,v)7 = A(a,b)T where 4> = A. In the next section
it will be shown that if f,g are linearly independent A
is positive definite, and thus has a root. The result for
Es turns out to be —1(C.,Co)A~(f(2),9(z))T. How-
ever, this result can be obtained more easily - look for
the a,b minimizing M{af + bg); they are readily seen to

be (a,b) = —%(Ca,Cs)A~". So the value at r of the cost B

minimizing function is —$(Ca, Cy)A~"(f(x), 9(2))T, which
is equal to the expectation. In the next section it will be
shown that this equality is typical for quadratic cost func-
tions M ).

The variance at z, V3, is equal to

- Substituting the explicit expression for M() gives E

T2 0% [af(2) + bg(z))e~let)a(at)T+CoatCutl go gy -5:?
s

This expression can be calculated by {the substitution

[ S [af (=) + by(z) — E.Pel(anaeNT 40 a4 Gt g it

Ve * g=lab)a{a,b)T 4 Csa+ CI-'HJ:HHI

After some cumbersome manipulations this turns out te
be 3(f(z), g(z))A=(f(z),9(2))". Similarly it is seen that
this result is true for any finite-dimensional subspace:

Lemma 1 IfH = span{f,, fr...fn} where {fi,fa-..fa) are
linearly independent and the n x n matriz A is defined by

i 1
Biy = flza)fi(za) + A £ (v)f] (v)dv, and C, =

k=1

i
=2 wif(z:), then

Ew _%{Ghl:';....ﬂ'ﬂ]&_]{h{z}.f:ft}---fn{I}}T

Vi = 3(filz), fa(z)... fal2))A™" (fi(z), fa(2)... fu(2))T
where H is the probability space and M () if defined as in
Equation 1.

It is interesting to observe that V; does not depend on the
set {yi)!

=1

3 The Infinite Dimensional
Case

3.1 Some Notions of Hilbert Space

In order to extend the definitions of expectation and vari-
ance to the set of all functions the notion of Hilbert space
is used, as it is a generalization of finite dimensional spaces.
A real Hilbert space H is a vector space over the reals R
with an inner product (-,-) : H x H — R. The norm of
z € H, ||z|, is defined as y/(z,z). For an introduction to
Hilbert space, see [20].

A linear functionalon H is a linear mapping [:f —=R. The
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B normof L, ||L], is defined as sup L2 1tit is finite £ will
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be called bounded. An important theorem about bounded

linear functionals is the - '
Riesz representation theorem: if [: H — R is a bounded
linear functional there exists a unique element y of H such
that (z,y) = L(z) for all z€ H. Furthermore, |L|| = ||y||.

In the previous section it was needed to compute integrals
on finite-dimensional spaces. In order to generalize these
results, the theory of integration theory on Hilbert spaces
is used [9]. Without delving into the mathematics involved,
it suffices to say that it is possible to define a measure on
a Hilbert space that assigns low values to sets consisting of
elements with a large norm and thus suits our purposes.

3.2 Expectation and Variance in

Hilbert Space

The Hilbert l"?i.l:'.'e suiting the framework of regularization
is the space L3") of all functions f with a square integrable
distributional second derivative. This is because the cost
function M() of Equation 1 contains the integral of the
square of the second derivative. This is an example of a
Sobolev space [1]. As a result of the Sobolev imbedding the-
orem it follows that these functions are continuous, hence

defined at every point. The inner product on this space is

! 1
defined as (f,9) = 3 _ f(z)g(z:) + A [ £(v)g” (v)dv.

=1 Q

Lemma 2 Forl > 2 this defines an inner product on Lg’}.

This inner product actually appears in Lemma 1, as the
(£, 7)-th element of the matrix A is (f;, f;). An easy exercise
in Hilbert space shows that such a matrix, called “gram
matrix” is positive definite iff the corresponding elements
are linearly independent.

Another result needed in the sequel is -

Lemma 3 For every 0 < z < 1, the linear functional
L, : LE" — R defined by L:(f) = f(z) is bounded by
_‘ -

(23 =x Jmin{1,1} "

By the Riesz representation theorem, there exists for every
0<z<1afunction ks € LY such that (f,h:) = f(z) for
every fe L‘,”. Using this fact the cost function M{) can

| i
be expressed as M(f) = 3ol + I = 2(£, Y wihs.)

=] i ]

i [
Defining f, = Zy.-.’:,.- gives M(f) = ZH? + 717 -

[T B =l

= |
Afifo) =D o +1If = foll* = I foll?
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Lemma 4 M () attains its minimal value at fq.

Theorem 3.1 for FH 0<z<1,

1 1 1 .
Ve = E"h’": = Eﬁ;{:}= 2 “?J - Fh]l_
2 i
4 [ 1 ore
i=1 o
From this theorem and Lemma 3 lower and upper bounds
on the variance can be derived:
Lemma 5 forall0<z <1,

1 &

<V < r—
21 isr?ﬁn[zi - z;)" min{1, A}
It can be shown that

v{f:a < fz) b} = — fai'ﬁ:”-du

vixVe

and so f(z) is normally distributed. This allows to give
confidence intervals on the height of the interpelated sur-
face.

The rightmost expression in Theorem 3.1 has geometric
meaning, and indeed could have been taken as a defini-
tion of the uncertainty at . Suppose r is at a great dis-
tance from the {z;}. In that case, even if the {f(z:)} and
_j;l [f" (v)Pdv are small then f(z) can be large, because al-
though the function varies slowly the distance of = from the
z; allows f to increase. This agrees with the intuitive ob-
servation in the introduction - peints surrounded by many
sample points should be associated with lower uncertainty
than points which are situated far away from the sample
points.

The most direct way to compute V; is te find hy. From
Theorem 3.1 it is enough to compute hs(z).

Theorem 3.2 h: is a cubic spline with knots at {=i}ius
and x. '

4 Approximation

In this section it is shown that V; can be approximated on
a finite dimensional subspace of [{?). This allows faster
computations in some cases. Since the norm of an operator
is to be evaluated, it is desirable to find an increasing se-
quence of subspaces 5, such that the norm of the operator
on the “supplement® between S,_; and S, is small. Such
a sequence is 5, = span{l, z,sin(=z),sin{2xz)...sin(nxz)}.
S = l__JS.. iz dense in L{,’}, meaning that every element of
the space L{f]' can be approximated in norm by an element
of 5. This follows from Fourier theory - the odd trigono-
metric functions are dense in the integral part of the norm,
and by integrating twice the completeness in the norm fol-
lows. This integration adds the functions 1 and z. The
norm of an operator when restricted to a dense subspace of
a Hilbert space is the same as the norm on the space. Thus
it suffices to compute the norm-on 5.

Lemma 6 In order to appronimate the norm up to a fac-
tor of 1 4+ ¢, it _is enough to evaluate it in a subspace of
dimension % T



9 The 2-D Case

The 2-D case, e.g surface interpolation, is similar to the

1-D problem in principle. Given a set of sample points

{(zi,9i)}ay with z; the height at the point (z;,y), a
I

function f that minimizes M(f) = Elff% %) — z]? +

iml
1 41
A / f (e + 2!3, + f:,]d:dy is sought. Proceeding as in
0

the 1-D case, Lemmas 1,4 and Theorem 3.1 go unchanged,
except for the obvious change in the Hilbert Space com-
cerned and the inner product definition. Lemma 2 is re-
placed by -

Lemma 7 If the set {(zi,y4:)}', contains three non.
collinear points, the inner product
!

1 1

{-'r' EI'} - E.f{:i;!'i}ﬂtziryi} + -]lf f {f:rﬂ:: + E_f_:y!hy =+
i=1 a Jo

fyy@yy)dzdy defines an inner product on the Hilbert space

of 2.0 functions concerned,

The analogue of Lemma 5 is -

Lemma 8 If the variance at the point (x,y) is denoted
Vz.y, then

.-}if E “|H E g g ] " 1 ,.1

4 1ormx \SPip; P [Epipyp, ) min{l, A)
where Sp,p.p, is the area of the triangle with wertices
Fy, P;, Py, and Ep.pip, the length of the longest edge of
that triangle.

This is an interesting result, which agrees with intuition:
the bound on the variance is larger as the three points ap-
proach collinearity. It is seen that not only the area of the
triangle is related to the variance, but also its shape: an
equilateral triangle and a “fat” triangle give rise to greatly
different variances even if their areas are the same. An
example of this is given in Section 7.

We would like to have an analogue of Theorem 3.2;
however, the reproducing kernel [5] for the inner product
defined in Lemma 7 can be described only as an infinite
series. .

Just as the variance in the 1-D case could be com-
puted on a “small® subspace, it can be in the 2-D
case as well The formalism is the same as in Sec-
tion 4, and the base used is a combination of the
bases used in Section 4 in the z and y directions:
{1, =z, y.:yTM{rzj.yﬁn{r:}.m‘n{u]ﬁn{ry],:sin{:ry},
sin{xy)...}). However, it turns out that in order to approxi-
mate the norm up to a factor of 1 + ¢, it is necessary to use
?&I basis functions.

6 Active Interpolation

The newly developing field of “Active Vision” [13] deals
with the possibility of improving the knowledge on some
observed phenomena by taking measurements designed to

decrease the un-::r_-_tt.a.intr related with it. In the case of reg- I.
ularization, this could be interpreted as sampling the data « 4
in points that would make the variance as small as possi-

ble. The measure of variance used in this work was the
integral of the point variances overfthe domain in ques-

tion (the unit interval or unit square). Specifically, the
question posed was: for some I, what are the | points that
will minimize this integral? This problem pPoses a numeri-
cal difficulty because the function connecting the points to
the variance is rather complicated. Nonetheless it can be
solved using methods that do not require computing the
function’s derivatives, such as Powell’s method [12). The

answers depend considerably on A, the weight given to the

smoothing part of M(): as A decreases the points tend to
be closer, while for large A the points tend to be spread out
and frequently lie on the region’s boundary. This can be
explained as follows: as A increases non-smooth functions
are assigned very low probabilities, and thus have less ef.
fect on the variance. Smooth functions, however, can be
sampled at points spatially spread apart without losing too
much information. ;
The active interpolation paradigm can also be applied when
some sampling has already been done, and a new sample
point - or points - are to be chosen so the resulting variance
i minimal.

The next tables give, for some values of { and A, the best
points in which to sample one and two-dimensional func.
tions.

#® One-dimensional results:

A=1 A=0.1 A =.001
=201 0.02, 0.98 02,08
1=3]0,051 0051 0.09, 0.5, 0,91
T=470,0,1,1]0,0.8,0.82, 1 | 0.05, 0.35, 0.65 005

* Two-dimensional results:

A=1
=13 ] (0.72,1), {0,0.3], (1,0)
I=41] (0,0), (0,1), (1,0}, (1,1)

7 Experimental Results

Some tests were run in the one and two-dimensional cases
to demonstrate the concept of variance introduced in this
work. The results are presented in the 1-D case by graphs
in which the horizontal axis stands for the points and the
vertical axis for the variance at those points, and similarly
for the 2-D results where the variance is described as a
surface. : f5its

In Figures 1-4, the sample points are {0,1} and X is
changing from 1 to 0.001. It can be seen that not only the
height but the shape of the variance map changes com-
pletely as A varies. For large A, smooth functions are
given much higher probability than oscillating functions




and thus the linear functions influence the variance con. [10] F.M. Larkin. Gaussian measure in hilbert space and

~ siderably. This reflects in the fact that 0.5 is the most applications in numerical analysis. Rocky Mountain

.4 reliable point, because for linear functions the value at 0.5 Journal of Mathematics, 2:379-421, 1972,
4 is the average of the value st the sample points; but of all [11] D. Lee Approximation of linear operators on
the convex combinations of two identical random variables, wiener space, Rocky Mountafn Journal of Mathemat.

the average is the one of lowest variance, However, as ) ics, 16:641-659, 1986,

decreases, the variance increases as one moves away from [12] W.H. Press, B.P, Flannery, S.A. Teukolsky, and W.T.

the HimP_]'-' points. : Vetterling. Numerical Recipes. Cambridge University
In Figures 5-7 the sample points are Press, 1986,

{n,n.l,ﬂ.i’.ﬂj...ﬂ.g,l} and also here ) is decreasing, The gy o
same phenomena as for the Previous examples occures, al. (13] A. ?hmueI 2nd M. Werman. Active vision: 3d from
though for different values of ) e sequeace. In ICPR, 1900,

In Figures 811 (2-D results) A=1 and the sample [14] R. Szeliski. Rzgula.rizat.iun_ uses Era::tla.l priors. |In
poinis change. The variance maps can be computed for Vational Conference on Artificial Intelligence, pages,
any number of points; the results are presented for three 1987. ; .
points as they are intuitively appealing. In Figure 8, the [15] D. Terzopoulos. Multi-level surface reconstruction. In

sample points are {(0,0), (1,0), (0,1)} and the increase in A, Rﬂuenfei:ﬂ, edif._nr, Multiresolution Image Processing
the variance towards the point (1,1) is obvious. In Figure and Analysis, Springer-Verlag, 1984.
9, the sample points are the optimal ones from the table [16] D. Terzopoulos. Regularization of visual problems

in Section 6: Indeed, the variance map is much more bal- involving discontinuitjes. TEEE Trans. on Pattern

anced and the tota] variance is lower. [n Figure 10 The Analysis and Machine Intelli , 81413424, Augnst
sample points are {(0,0), (1,1), (0.4,0.6)}: This produces a 1986,

variance map that has low values across the main diagonal [17] A.N Tikhonov and V.Y Arsenin. Solution of Ml- Poged
where the points are situated but increases rapidly as one Problems. Winston and Sons, 1977.

(oo from it. In Figure 11 the sample points are (18] G.W. Wasilkowski. Optimal al

{(0.3,0.3), (H.Tﬁ,ﬂ..‘i]. [ﬂ.ﬂ.ﬂ,ﬁ?}}: the area of the triangle

bounded by them is the same as in Figure 10, but the more Journal of Mathematics 16:727-749, 1988,

compact form of the triangle results in a more balanced [19] G. Whaba, Bayesian Confidence Intervals for the

variance map and in smaller total variance, as implied by E';-asJ- Validated Smoothing Spline. TR No. 645, De-

Lemma 8. partment of Statistics, University of Wisconsin, Madi-
son, 1981.
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