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Abstract

Implicit higher degree polynomials in z,y,z
(or in z,y for curves in images) have con-
siderable global and semiglobal representa-
tion power for objects in 3D space. (Spheres,
cylinders, cones and planes are special cases
of such polynomials restricted to second de-
gree.) Hence, they have great potential for
object recognition and position estimation. In
this paper we deal with two problems perti-
nent to using these polynomials in real world
robust systems: 1) Characterization and fit-
ting algorithms for the subset of these alge-
braic curves and surfaces that is bounded and
exists largely in the vicinity of the data; 2)
A Mahalanobis distance for comparing the
coefficients of two polynomials to determine
whether the curves or surfaces that they rep-
resent are close over a specified region. These
tools make practical the use of geometric in-
variants for determining whether one implicit
polynomial curve or surface is a rotation,
translation, or an affine transformation of an-
other [2]. Though this technology handles ob-
jects with easily detectable features such as
vertices, high curvature points, and straight
lines, its great attraction is that it is ideally
suited to smooth curves and smooth curved
surfaces which do not have detectable fea-
tures.

1 Introduction

Implicit polynomial curves and surfaces of degree
higher than two have great modeling power for com-
plicated shapes and can be made to fit data very well,
but their coefficients may be sensitive to small changes
in the data. This poses a problem since we would like
to compare curves and surfaces based on their poly-
nomial coefficients or functions of the coefficients that
represent only shape, i.e., that are invariant to object
rotation, translation and stretching in two directions
— general linear transformations. In this paper we
present new approaches and tools to these problems
which should permit robust 2D curve and 3D surface
object recognition and position estimation based on the
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polynomial coefficients only. In particular, we intro-
duce the class of implicit polynomials that represent
closed curves or surfaces, exhibit a low computation
cost algorithm for fitting such that the curve or surface
exsists only in the general region of the data, illus-
trate the wide range of shapes that can be represented
and illustrate the improved stability of the coefficients.
Then, for any polynomial whether it represents a closed
or an open unbounded curve or surface, we present and
discuss a simple expression for the aposteriori proba-
bility distribution of its coefficients given the data set
that is to be represented by a polynomial. Polynomial
coefficient sensitivity to small changes in the data oc-
curs when a data set does not sufficiently constrain the
coeflicients. Our development determines the subset of
coeflicient space that is constrained by the data, and
provides the appropriate metric for polynomial curve or
surface recognition based on the polynomial coefficient
vectors.

2 Description of Closed Objects Using
Polynomials :

2.1 Finding the Fitting Polynomial

In general, for a polynomial f(z,y) to describe a closed
object O with boundary B the following should hold:

1) The set {(z,y) : f(z,y) = 0} is equal to B.

2) (z,y) € O iff f(z,y) <0.

We shall refer to the set {(z,y) : f(=,y) = 0} as the
zero set. Note that polynomials with an unbounded
zero set can describe curve patches, but in Section 2
we are interested in describing closed bounded objects.

Since second degree polynomials can describe only
circles and ellipses, we proceed to higher degrees. The
standard notation for a polynomial of degree n will be

adopted: f(z,y) = Z a;;z'y . The following sim-
0<i+i<n

ple lemma shows that the next class in the polynomial

hierarchy is not suitable for describing closed objects.

Lemma 1 The zero set of a third (or any odd) degree
polynomial is unbounded.

Proof: [3].

Next on the list are fourth degree polynomials. Their
zero set can be bounded - e.g. z*+y*—1=0-or
unbounded, e.g. z* — y* = 0. It is not surprising
that the high powers of the polynomial determine if
its zero set is bounded or not. Let us call the fourth
degree powers, asoz® + as123y + azoz?y? + ajazy® +
aoay?, the leading form of f(z,y), or fa(z,y), and the



sum of the lower powers — cubics,quadrics,linear terms
and the constant — the lower terms or fs(z,y). Let
us also define a polynomial to be stably bounded if a
small perturbation of its coefficients leaves its zero set
bounded. For reasons of numerical robustness we are
interested only in stably bounded polynomials.

Theorem 1 The zero set of f(z,y) is stably bounded
iff there ezists a symmetric gosz’tive definite matriz A
such that fa(z,y) = (2 zy y*)A(z? zy y*)7.

Proof: For the full proof, see [3]. The easy part of the
proof proceeds as follows: suppose such a matrix A ex-
ists. Then (z? zy y*)A(z? zy y*)T > Ma*+22y* +¢%),
where ) is the smallest eigenvalue of A. It is clear that
as (z,y) approaches infinity f4(z, y) dominates f(z,y),
and that f approaches infinity. So the zero set has to
be bounded.

Summerizing, given an object O with boundary B we
look for a fourth degree polynomial f(z,y) such that:

1) fa(x,y) can be expressed as
(2 zy v*)A(2? zy y?)T
with A symmetric positive definite.

2) The zero set of f(x,y) approximates B.

A good approximation to the distance between a
point (z;,y;) and the zero set of an implicit function

2 o

f, suggested by [4] and extended in 6], is %%%
(where 72 f(zi, y;) stands for the square of the norm
of the gradient). So the expression to be minimized is

(m%es Vi (@i, yi) (1)

Taubin [6], in an extensive work on implicit curve and
surface fitting, solves the unconstrained fitting problem
by approximating Equation 1 with the expression

Z =i, u)
(xi,9:)€B

Z vzf(ﬁiayi)

(zi,y:)EB

(2)

and then minimizing Equation 2 by generalized eigen
vector techniques, followed by an iterative scheme for
improving the polynomial fit. Taubin’s work results in
excellent fits, but he does not constrain the zero set to
be bounded; hence the outcome of his fitting algorithm
is that the zero set contains B but often has additional
unbounded parts (see Figures 1,2). A simple example
is that of a square; Taubin’s algorithm describes it as
the union of four straight lines, with the corresponding
f(z,y) equal to the product of the four linear polynomi-
als describing these lines. So the square is represented
as the union of the infinite extension of its edges.

The question is how to incorporate into Taubin’s al-
gorithm the condition that the zero set be bounded.
What should be done is simple: look only for poly-
nomials f(z,y) such that fa(z,y) can be expressed as
in Theorem 1. The question is how to parametrize
positive definite matrices. We use the fact that if
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a matrix A is symmetric positive semi definite, it
has a symmetric square root. Hence it is enough to
look at all f(z,y)’s where fa(z,y) can be written as
(22 zy y?)C%(2? zy y*)T where C is symmetric. Thus
the strategy chosen was to minimize the error measure
of Equation 1 while conforming to the above condi-
tion. This is done by minimizing not over the space of
unconstrained polynomials, but only over the space of
f(z,y) such that f3(z,y) is unconstrained and fs(z,y)
is as above. Technically, we look for the optimal C (6
parameters) and f3(z,y) (10 parameters). Note that in
Equation 1, fourth powers of the elements of C appear.
This does make the minimization problem non-linear,
but that seems a reasonable price to pay if one wants
to enforce boundness of the zero set. Sometimes, the
zero set is bounded but contains spurious parts. This
problem was solved by adding eI to C?, where I is the
identity matrix and € a small positive constant. This
also guarantees that A is positive definite.

Another problem affecting the running time of the
fitting algorithm is that the expression in Equation 1
is expensive to calculate. Most non-linear minimization
techniques require computation of the function and its
derivatives many times. If many points are present,
this means computing the sum of the function over its
gradient squared in all these points, requiring enormous
time. However, it is possible to overcome this problem
using the following iterative algorithm:

Z f*(zi,u). This is quite fast,
(x.,y‘)EB
because the sum of the squares of the polynomial at
the points can be written as FMFT where F is the
vector of the polynomial’s coefficients and M 1is a scat-
ter matrix of the points [6]. This is much faster than
using Equation 1 directly. Call the optimal polynomial
Fl(m7 y)

2) Assign to each point p; a weight w;

1) minimize

1
v2Fi(pi)°

3) Minimize Y w; F%(p;). This is also quick - it is
exactly the same Process as in 1), with M replaced by
a weighted scatter matrix.

4)Go back to 2) and update the weights using the
minimizer of 3) instead of Fy(z,y).

5) Iterate untill the error of fit, measured by Equa-
tion 1, doesn’t decrease substantially. (Note that we
are using Equation 1, but only a small number of times
— usually less than 5 iteration are needed).

This is almost similar to the algorithms suggested by
Taubin and Sampson, but the minimization is carried
out only on positive definite matrices and the normal-
ization is different.

Some examples are presented. In Figure 1, an as-
sortment of objects, each described by a fourth degree
polynomial, are presented. In Figure 2a, a bounded de-
scription of a vase resembling shape is presented, and
the unbounded one in 2b. In 2c, robustness of the
fitting algorithm under noise is demonstrated for the
same shape. In Figures 3,4 and 5, 3D objects are fitted
with polynomials - a pear, an eggplant, and a com-
plicated shape with holes (data was collected using an



IBM cartesian robot with tactile sensing). The fitting  recognize the object, the system can collect more data
algorithm for 3D data is similar to that for 2D data  in order to improve the parameter estimates [5].
and is described in [3].
3.1 Mahalanobis Distance as a Comparison
3 Asymptotic Parameter Measure for Polynomial Zero Sets

Distributions, Mahalanobis The scenario that we consider here is one where the

. . database consists of a set of L objects labeled | =
DIStanc,e s,’ And Bayesian 1,2,...,L, and modeled by polynomials of degree n.
Recognition Let o' be the parameter vector for object . The opti-

'°, cor) X e opU
This section addresses the problem of variability in the 12 ork recognition rule is: *choose I for which p(Z” | &)

polynomial coefficients with small changes in the data 18 r{lea.xmzlﬁm ’ toti imati 4 h
set by formulating it within a probabilistic framework. sing the asymptotic approximation, (4), we see that

If the polynomial coefficients vary considerably, so will since p(Z" | &) is independent of /, an approximately

the invariants that are functions of these coefficients, eq.uiyalent recognition is : choose ! for which (6) is
thus giving unreliable recognition results. Thus, the  Trunimum Y P
first problem is to get an estimate of the uncertainity (@' —an)'¥Un(a’ —an) (6)

in the polynomial coefficients. The second problem is  The advantage in using (6) is that the data is involved
to design a metric based on the polynomial coefficients  jyst once (not L times) to compute éy and ¥y. Note
for comparing two polynomial zero sets over the region  that (6) is a Mahalanobis distance measure. Using this
where the data ezists. distance measure is equivalent to checking how well the

The input data here is a sequence of range dag.a data set Z1, Za, ..., Zy is fit by the polynomial having
points, ZV = {21, Z3,..., Zn}, with Z; = (2, u;, z)'. coefficient vector o.

Let a denote the vector of coefficients of the polyno- An explanation for why the Mahalanobis distance is
mial f(z,y, z) that describes the given object. We as-  the appropriate metric for comparing polynomial zero
sume that the range data points 71, Z3,..., ZN aresta-  gets is that even though a polynomial of degree n may

tistically independent, with Z; being a noisy Gaussian  he necessary to approximate the data well, the data
measurement of the object boundary in the direction may not constrain the coefficients of the fitted polyno-

gerpendicula.r to the boundary at its closest point. [I,  nial completely. Then, many different coefficient vec-
. . . L tors may result in essentially equally good polynomial
Thus, the joint probability of the data points is fits to the data. The matrix ¥y weights the various
N ) directions in o space proportional to the reliability of

(ZV | @) = 1 ex [_L z (Z;) 1 the estimated coefficients given the data.
p - (2,,.02)121 P 202 — | VF(Z:) |2 The scenario discussed here is the simplest. More

3) complex scenarios, where each object is characterized

The maximum likelihood estimate &y of a given the by a distribution, are given in [51.

data points is the value of a that maximizes (3). 3.2 Experimental Results

A very useful tool for solving the problems of ob-
ject recognition and parameter estimation is an asymp-
totic approximation to the joint likelihood function,
(3), which can be shown to have a Gaussian shape in
a (1}, ie.,

Space limitation permits showing only a few data sets.
See [5] for more. The data sets correspond to hand-
written characters and are all well fit by third degree
polynomials. Figures 6(a) through 6(d) show the data
sets and the polynomial fits for the objects (‘e’,‘s’,'t’
. 1 . . ., and ‘T’) in the database. Figure 7 corresponds to an-

p(Z" | @) ~ [p(Z" | an))] exp{—-i(a—aN )'¥n(a—&n)} other instance of the handwritten character ‘r’ (that
4 looks very much different from the one in the database.)

where Wy is the uncertainity matrix of &y having  The Mahalanobis distance (6) of the coefficient vector
. __ 9 N A for the best polynomial fit to this data set to the coeffi-
i,jth compone-nt.,. daidaj {n p(Z" | a) la=auy- . cient vectors for the best polynomial fits to the letters
The %)os_terlon distribution of}\?z given the data, i.e., <’ ‘5’ %’ and ‘1’ in the database are 15.84, 13.97, 13.91
p(a | ZV), is propotional to p(Z" | a)p(a). and 1.0 respectively. For computing the Mahalanobis
distance, we scale all the data sets so that they all lie

N o~ . . . .
p(a | Z7) & constant within a rectangle of the same dimension. We see that

p(Z" | an)exp [-3(a— an)' Un(a - an )] p(a) the Mahalanobis distance is an effective substitute for
. o (5)  (8). Of course, an ‘r’ like the one in the database would
where p(a) is a prior distribution for a. produce a much smaller distance.

This distribution addresses the first problem because
it tells us about the uncertainity in the polynomialco- 4 Geometric Invariants
efficients given the data points. If the uncertainity is
large, it implies that the coefficients are not reliable.  If the object is a rotated, translated, or an affine trans-
Then, instead of using the existing measurements to  formed version of an object in the database, then object
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recognition based on shape and not coordinate system
parameters is accomplished through use of geometric
invariants — functions of the coefficients of the best fit-
ting polynomial to the data. Reliability can now be
had by using the stabilized coefficients from section 2,
or by using a Mahalanobis distance in invariants space
obtained from (5). (See [5]).
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