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Recognizing Surfaces Using Curve Invariants and Differential
Properties of Curves and Surfaces
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Abstract

A general paradigm for recognizing 3D objects is
offered, and applied to some geometric primitives
(spheres, cylinders, cones, and tort). The assumption
15 that a curve on the surface was measured with high
accuracy (for instance, by a sensory robot). Differen-
tial invariants of the curve in one method and differ-
ential properties of curves and surfaces in the other
are then used to recognize the surface. The motivation
s twofold: the output of some devices is nol surface
range data, but such curves. So, surface invariants,
which may be simpler in some cases, cannot always
be obtained. Also, a considerable speedup is oblained
by using curve data, as opposed to surface data which
usually contains a much higher number of points.

1 Introduction and Previous
Work

One task an intelligent system should be able to ac-
complish is recognition. Usually, a recognition system
derives some charactenistics of an object it examines.
and tries to match them against similar characteristics
in a database. Suppose, for instance, that one is deal-
ing with 2D abjects, and tries to recognize them, given
their boundary. Typically, there is a finite database
these boundaries are matched against; various invari-
ants have been derived, some global and some local
[13, 12, 18], to solve this problem. These are quanti-
ties that do not change under certain transformations
(Euclidean, affine, projective), and therefore can be
used to recognize an object even after it had been al-
tered by such transformations.

Here, a different problem is addressed - recognizing
a surface in 3D space, while the information we have
is one-dimensional. Specifically, we assume that some
measuring device has sampled a curve on the surface.
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Figure 1: High-accuracy measuring device and a curve
it measured on a cylinder.

Given the curve, the goal is to recognize the surface.
Typical sensors which are the source of such curves are
measuring devices, such as coordinate measuring ma-
chines, manufactured by the Brown & Sharpe Com-
pany (Figure 1), or the IBM RS/1 Cartesian robot.
Such devices can measure 3D curves with very high
accuracy (for instance, typical error range for a co-
ordinate measuring machine is 0.01 mm). Another
source of curves on a surface is stereo; if there are
shapes (such as letters) on a surface, they can be used
to recover curve data, but usually surface data will be
much harder to obtain, due to the difficulty of solving
the matching problem in smooth areas. We focus here
on the case where surface (range) data is not available.

In [1}, an algorithm is presented for determining the
axis of a surface of revolution, using the information
measured by a tactile sensor which can also estimate
the two principle curvatures. Here, we do not assume
that the two curvatures are given. In [5], the parame-
ters of a cylinder are computed from structured light
patlerns.

Some previous work has addressed the problem of
recognizing various surfaces given their occluding con-
tours [10, T]. However, the aggregate of possible curves
on a surface is much larger than the aggregate of its
occluding contours, and may contain far more compli-
cated curves; for instance, the occluding contour of a
sphere is always a circle, while there are a great many
3D curves - some of which have rather complicated
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structure - on a sphere.

One way to proceed is straightforward: fit an im-
plicit polynomial to the curve’s points, and, from
its type, determine the surface. This is the alge-
braic approach [15, 9]. However, this approach will
fail if the curve does not lie on a single “primitive”
(sphere, cylinder etc), but “crosses over” between two
or more primitives (see Section 2 and Figure 2). In
that case, the global algebraic fit will give us a mean-
ingless result. A very rich theory of local, or differ-
ential invariants, was developed to solve this problem
(3, 2, 6, 17, 18, 8).

Natural curve characteristics to use for recognition
are curvature and torsion, as they do not change un-
der rigid transformations. Since we're dealing with
3D data, a rigid transformation is usually a general
enough model. So, the goal is to discover invariants
depending on a curve’s curvature and torsion, which
will provide a necessary condition for it to lie on a
cylinder (we have obtained results for some other sur-
faces, but will not include them here due to lack of
space). These depend only on the curvature and tor-
sion at a point on the curve.

In Section 4 we present a second method to solve
the same problem, which uses not only the differen-
tial properties of the curve (tangent and normal vec-
tors and the curvature), but their relationships to
the differential properties of the surface. These dif-
ferential properties measured at one or more points
on the curve are used to recognize the type of prim-
itive (sphere, cylinder, cone or torus) on which the
those points lie and also recover their shape parame-
ters. Similar techniques have been used for recognizing
plane and space curves [2, 16, 14] but not the surfaces
on which they lie.

1.1 Applying Invariants to Segmenta-
tion

Since the algebraic approach for recognition given a
curve may fail, because it can pass through a few ge-
ometric primitives, one may try to segment the curve,
using some notion of discontinuity, and then use al-
gebraic techniques for each segment. We now show
that this is not always easy, by constructing a curve
which is infinitely differentiable, yet crosses over from
a sphere to a cylinder.  The curve is displayed in
Figure 2. Next to it, we plot the curvature, torsion,
curvature’s derivative, and a spherical invariant for
curves. [t is interesting to see that, although the cur-
vature and torsion are continuous, there is a very sharp
break in the spherical invariant, at the point in which
the curve crosses over from the sphere to the cylinder:
this demonstrates that the kind of invariants presented

here can succeed where segmentation by “ordinary”
differential properties (curvature, torsion etc.) fails.

2 Curve Invariants Method

In this section, a general overview of the method for
deriving differential invariants for curves lying on sur-
faces is provided.

We wish to find conditions on the curvature and
torsion of a curve C which will allow us to deter-
mine if it possibly lies on a certain geometric object
OBJ, which is described by a generic implicit equa-
tion, P(z,y,2z) = 0.

The method by which these conditions is derived
proceeds as follows. First, we use the local canonjcal
form [4] to write down an expression for C in the vicin-
ity of a point M we have measured on OB.7: we also
assume that we have measured x, 7, and their deriva-
tives, as well as the Frenet trihedron at M. These
are all determined from the derivatives of O s0, if we
have accurate measurements for C in the vicinity of
M, we may directly calculate them. Since x and
do not depend on the pose of the ', we are allowed
to translate and rotate OB - and the curve on it —
thus obtaining a new curve C. Denote the rotated and
translated object by OB pew.

Every condition on + and & we derive for C is, of
course, also a condition for C. The reason we apply
rigid transformations to OB.J is because these allow
us to make assumptions on C’s Frenet trihedron which
result in simpler calculations; this will be explained
in the sequel. Let P(z,y, z) be the implicit equation
defining OB.J ..o

Next, we substitute C’s local canonical form into
P(z,y, z); This results in a Taylor series in 5. This se-
ries has to be identically zero, because C is contained
in OBJ pew, and, therefore, has to satisfy the equation
which defines OB.T ..,.. This gives us a set of equa-
tions - each for every coefficient in the Taylor series.
Next, we eliminate from these equations everything
but C’s curvature and torsion. For one curve, we usu-
ally have to eliminate the Frenet trihedron. For two
curves, we will show that the Frenet trihedrons are
known and therefore need not be eliminated. In both
cases, the elimination gives an expression that has ta
be zero; and this is the sought invariant.

3 The Case for a Cylinder

3.1 One Curve, Known Radius

We now proceed to derive differential invariants for
a curve which lies on a eylinder. To the best of our
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Figure 2: Demonstrating how invariants manage to
detect when a curve crosses over from one geomet-
ric primitive (sphere) to another (cylinder), although
the curvature, torsion etc. cannot detect this CTOSSINE
aver.

Figure 3: Rotating and translating the cylinder.

knowledge, such invariants have not been derived be-
fore.

Given a point M on a curve which lies on a cylin-
der, we can assume without loss of generality that the

‘cylinder had been translated and rotated s0 that M is

at the origin, and the cylinder lies on the XY plane
(recall that this does not alter the curvature and tor-
sion). Let us further assume that it had been rotated
at some angle & so that the tangent vector at M is
aligned with the X-axis (see Figure 3).

Hence, T = (1,0,0), and the cylinder’s equation
becomes

(zcos(B) +ysin(B))* + (: - R’ - R*=0 (1)

It follows that ¥ = (0, cos(a),sin(a)) for some a,
and B = (0, —sin(a), cos(a)).

We now substitute these T N, B in the local canon-
ical form [4], which yields expressions for ¢(s)’s com-
ponents as power series in the arc-length parameter
8.

Plugging these into the cylinder’s equation (1) gives
a Taylor series in s which has to be identically zero.
This expression is huge and we do not write it down
here; we need only the coefficients of the powers of s
between 0 and 5.

The coefficients of the constant and linear terms are
identically zero.

For the other terms, we obtain the following
expressions, after substituting cos(a) = z,sin{a) =
y.cos{f) = z,sin(3) = w:

For the coefficient of 52

=2xyR+2:° = 0 (2)

For the coefficient of 52

ﬁ:wﬂz—ﬂuryﬁ+2xrrﬁ = 0 (3)

For the coefficient of s?
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In addition, we have an equation for the coefficient
of 5% and

P4y =1=0

2rwi-1= 0

(5)
(6)

Assume now that the radius R is known. In that
case, we have to eliminate z,y, z, w from Equations
(2,3,4,5,6) (note that we need at least five equations in
order to eliminate four unknowns). All our attempts
to directly do this, using various packages for symbolic
computations, have failed; however, it is possible to
proceed as follows. First, solve the system consisting
of the four simplest equations (2,3,5,6). Then, substi-
tute the solution into (4).

Using the Maple symbolic computation program, it
was possible to find a solution for Equations (2,3,5,6).
This solution uses an auxiliary polynomial we denote

by pi(d):

pi(8) =81 R +

(18 Rk — 18 %22 B2 + 81 8% — 162x" R*)6° +
365" RE* s T + (—816° + 816" R — 36R%x ' 4+ x' ! B2 -
Eﬁifiﬂnﬁr? + .I':Frr:li + 185" r* R*)6* — 36 &' R6°x 1 +
(18 Rj.-:rzr;" —2x%7 HEH‘: - ‘.?-‘Hjxﬂjﬁﬂ + R

Denote by ¢ a root of p,(4).
(2,3,5,6) equals

Then, the solution of

e 9K — @R 4 g —gmigt — P
% q(9gx? +2x' T R)

_ —9% Re'q'+x’ R+ Rg*—9x Rx'¢® —x' " R49x's q*

3 j 2 Sutgtgdndrdyedn' g ol gl
33 (9qx? 42k’ 7 R)x \/—m’

_ROK'G - + 5" —9x'g? — k")
g9ge? +2x" r Rk

y:

L =aq

Substituting these expressions into (4) and simpli-
fying, we obtain the following identity

IF ] T
(18R "R — 45 Bk k' + 27" K 4 1620 B2 —
81K )" 427k°r R— 547w RE')g® +
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162k° — 37 R'x" k* — 1625°R? — 27 %" k%)q* +
907K Rk'q® + [—L’Lﬁﬂﬂznh k +E-R:-:H -

li‘ a I
O R — 27 B k) - BPx =0

Let us denote this polynomial by pa2(q).

Now, we know that p; () and pa() must have a com-
mon root; therefore, their resultant must be zero. This
resultant is, therefore, an invariant for a curve lying
on a cylinder.

Using elimination techniques we can write down the
resultant of p;() and pz(). It is a determinant whose
elements depend on the curvature and torsion: if the
curve lies on a cylinder, this determinant has to be
zero, and this is an invariant for a curve lying on a
cylinder.

3.2 One Curve, Unknown Radius

3.2.1 Numerical Search for the Correct Ra-
dius

Suppose we do not know the radii of the cylinders in
the database.

There are two ways to proceed. We can simply fol-
low the trivial observation that, if we substitute the
correct K into py() and pa(), we will get two polynomi-
als whose resultant is zero. We can therefore conduct a
simple, one-dimensional search for B which minimizes
this resultant.

Experience has shown us that this simple numerical
algorithm works quite well. For example, in Figure 4,
a plot for the logarithm of the resultant, for values
of & and r measured on a curve on a cylinder with a
radius of 2, is displayed. We can clearly see a strong
minimum at the correct radius.

3.2.2 Solve for the Correct Radius

The second method for the case in which the radius is
unknown is to eliminate R, z,y, 2, w from Equations
2.3.4,5,6.

This can be done by solving Equations 2.3.4,5,6,
and substituting the solution in the equation for s*:
if this gives zero, it means that these six equations
have a common solution, which is a necessary condi-
tion for the curve to lie on a cylinder. It turns out
that Equations 2,3,4,5.6 do have a relatively simple
solution, expressed as follows. z is the root of a poly-
nomial equation whose coefficients can be expressed as
functions of x and r. We skip the details, due to lack
of space. After r is solved for, we can easily extract y
from Equation 5. Then, after substituting the known



Figure 4: Logarithm of the resultant of pi() and pa(),
as a function of R, for a point sampled from a curve
on a cylinder of radius 2.

values of r and y in Equations 2,3.6 we can solve for
the remaining unknowns — w, : and R:
Define ¢ to be

? a

¢! 12
K1z — 2krrys + yPx + Oxtzly?

and then

Root(ed* = 962y ) (kr z — yi')
A = Ix2zy : (")

-
2 = Root(ed? - 9x42%?), R = 25 V2

g

(by Root of an equation, we mean the root of the
equation when viewed as an equation in §). The equa-
tions in (7) are trivial to solve and involve only taking
square roots.

3.2.3 Comparison of Methods

While the second method is straightforward and
does not require any search (as opposed to the first
method), it has the drawback of requiring the fifth
derivative of the curve. The first method requires a
numerical search for the correct radius, but uses only
the fourth derivative of the curve, Depending on how
accurate the measurements are, one may opt for using
the first or the second method.

4 A Method Using Differential
Properties of Surfaces

In this section we study curve invariants which use
only curvature (this requires computing only the first

and second derivatives of the curve). We also as
sume that the only primitives the recognition system
may encounter are spheres, cylinders, cones, and tori.
When the information from one point is not enough
to uniquely determine the object, we will use an addi-
tional point or two on the curve to help disambiguate
the object.

Each of the classes of objects mentioned above have
a small number of parameters which determine its
shape. The sphere is defined by its center and radius
(four parameters) and the cylinder, cone, and torus
have 5, 6, and 7 parameters respectively.

In order to be able to recover the shape of primi-
tives, constraints which involve the differential prop-
erties of the curve and shape parameters have to be
derived, simple techniques for recovering the shape pa-
rameters from these constraints have to be found, and
additional constraints are used to verify that the shape
is correct.

For each point on a curve the proposed primitive
must satisfly the following constraints:

¢ The point M must lie on the surface. This
means that if P is the object’s implicit equation,
P(M) = 0.

¢ T, the curve’s tangent, must be orthogonal to
the surface normal Ns at the point. Thus Ng -
Te =0.

e If @ is the angle between N5 and N, then Kg =
k¢ cos(f), where the value of k5 (the curvature of
the normal section on the surface) is determined
by the principal curvatures x; and x5 and the
angle between them and Te.

Therefore, each point yields three equations which
have to be satisfied. These equations can be used
to verify hypotheses or to determine the value of un-
known parameters.

When two curves intersect, at the intersection point
only five constraints exist because the first constraint
for the two curves is identical.

If additional points are not on a curve, and we don't
have any differential properties associated with them,
we still have the first condition (they have to satisfy
the surface equation). In that case, we will need more
points; this is a typical tradeoff for semi-differential
Invariants.

In all the cases considered, we will require at least as
many constraints as unknown shape parameters and
use the remaining (or additional) constraints to verify
the shape hypothesis.
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4.1 Object Recognition from Two In-
tersecting Curves

Given two intersecting curves €1 and Cs, we extract
T1, Ny, By, k., T, N3, By, k2 at the intersection point
M. These are the Frenet trihedrons and the curvature
for both curves respectively. Recall that Ng, the nor-
mal to the surface at M, equals 77 x T,

For each curve we compute @, the angle between
Ns and the curve's normal, The surface normal
curvature equals xy, = xo cos(d), and ky (3) =
k1 sin®(3) + #3 cos?(3), where K1, K2 are the principal
curvatures for the surface at M, and & is the angle
beiween the tangent to the curve and &3, the second
principal direction.

Given two curves we have two equations for the

surface normal curvature, with three unknowns — &,
k2, and 3

k1 8in’ (8) + k., cos? ()
KNs2 = Kisin®(8 + @) + ko cos’(3 + ¢), (8)

BNg1 =

where ¢ the angle between T, and T3 is known. Usu-
ally, it is impossible to solve such a system; however, if
we know in advance that the geometric primitives can
only be spheres, cylinders, cones, and tori, it is possi-
ble to identify them and extract theip parameters.

[l the given object is a cylinder, its parameters can
be recovered as follows. As K1 = 0, the surface nor-
mal equations are reduced to two equations with two
unknowns. Solving them, we can recover ka and the
principal directions x7,#%. The cylinder's radius is
R= !—'J—_. and the orientation of its axis is ¥7. A point
on the axis is:

C=M+RNs.

It is important to note that this does not prove that
the object is a cylinder. That has to be verified using
an additional point on the curve.

4.2 Object
Curve

Recognition from One

When two intersecting curves are given, we are able
to recover Ng and thus we know the angle # between
Ns and No. When we are given only one curve, # is
an unknown parameter which has to be recovered.

In the case of the cylinder we know that K1 =0
and k2 = . Given a point M, on the curve, the two
unknowns are #; and ;. When they are given, the
cylinder is uniquely defined. Note that &7 is parallel
to the axis of the cylinder, so it has to be the same
for every point on the cylinder. We will now use these
facts to define R and «; the axis of the cylinder as

functions of #, and #:

cos® (3 )
R= —1"f
Ll | ﬂﬂB[ﬁll

Ns = cos(8; )N + sin(6,) B

Ky = T E-i]'.l{ﬁ:] =+ {T{? b J"Hr_g} cu&[_ﬂﬂ {9]‘

And a point on the axis is:
Ci1 = M, + RNgs,

Griven an additional point, its B2 and 84 can be recov-
ered as follows:

2
b = mcm{ﬁ_f@

= inf{Tee - K
B2 = arcsin(Tes - 1), e

1

From them we can recover the point on the axis
closest to the second point, and both points must lie on
the cylinder’s axis, which is parallel to &7 ; therefore,

(Ch = C2) x &7 =0,

which gives us two equations in two unknowns, which
can be solved for the values of #, and 3.

These two points give the equation of the cylinder
that passes through them and satisfies the given con-
straints. In addition, from (9)

B2 = arccos((Tez x Ngj) - K1),

which gives an additional constraint to verify that this
is indeed a cylinder with the computed parameters.

o Experimental Results

The algorithm for a single curve has been tested on
real data received from the Brown i Sharpe Com-
pany using their coordinate measuring machines {Fig-
ure 1). The data is a curve measured on a cylinder.
For each point on the curve Te,Ne, Be, and k¢ are
estimated. Using the algorithm described above, the
problem is reduced to solving for cos(#; ) and cos(5; ),
where all other parameters are expressed as functions
of these unknown values. The correct values must
satisfy four equations and have to satisfy the con-
straints that the absolute values of the cosine and
sine of the various angles must be less than 1. The
values of the unknowns are found using non-linear
least squares optimization techniques. In this case we
use the Levenberg-Marquardt procedure of the MIN-
PACK library [11].
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We chose at random 200 pairs of points and ran the
minimization procedure on them using several initial
conditions for the minimization. Even though the data
is noisy, most pairs of points yielded results close to
the correct shape. The results were sorted according
to the least-squares error (LSE) of the four equations.
We trace the five cylinders with the smallest LSE in
Figure 5(a). One of these results and the original data
are shown in 5(b). It is important to note that only the
data on the two points and their derivatives mentioned
above was used to recover the shape of the cylinder.
Additional points can then be used, if desired, to get
a better estimate for the shape.
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(a) (b)

Figure 5: {a) The five recovered cylinders with the
lowest LSE. (b) The recovered shape of the cylinder
and the original data points.

6 Conclusions

Two novel methods to recognize some surfaces, given
curve(s) on them, were presented. The first method
exploits invariants which are com puted on curves, that
supply information on the type of surfaces the curve
can possibly lie on. The second method achieves the
same result by finding relationships between the dif-
ferential properties of the curves and the surfaces on
which they lie.

The methods can use 3D curves derived from stereo
and structured light; it is particularly useful when
given the output of measuring devices which produce
such curves (for instance, sensory robots and coordi-
nate measuring machines),

The main advantage of the proposed method com-
pared to algebraic methads is in its local nature, which
enables it to segment and recognize curves (and the
surfaces they lie on), even if the curves lie on more
than one geometric primitive. Also, it necessitates a
far smaller number of curve points than the algebraic
method, for recognizing a single primitive.
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