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Abstract. This paper offers a novel detection method, which works
well even in the case of a complicated image collection – for instance,
a frontal face under a large class of linear transformations. It was also
successfully applied to detect 3D objects under different views. Call the
class of images, which should be detected, a multi-template.
The detection problem is solved by sequentially applying very simple
filters (or detectors), which are designed to yield small results on the
multi-template (hence “anti-faces”), and large results on “random” na-
tural images. This is achieved by making use of a simple probabilistic
assumption on the distribution of natural images, which is borne out
well in practice, and by using a simple implicit representation of the
multi-template.
Only images which passed the threshold test imposed by the first de-
tector are examined by the second detector, etc. The detectors have the
added bonus that they act independently, so that their false alarms are
uncorrelated; this results in a percentage of false alarms which exponen-
tially decreases in the number of detectors. This, in turn, leads to a very
fast detection algorithm, usually requiring (1 + δ)N operations to clas-
sify an N -pixel image, where δ < 0.5. Also, the algorithm requires no
training loop.
The suggested algorithm’s performance favorably compares to the well-
known eigenface and support vector machine based algorithms, and it is
substantially faster.
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1 Introduction

The well-known template detection problem in computer vision is: given a (usu-
ally small) image – the template – T , and a (usually much larger) image P ,
determine if there are instances of T in P , and if so, where. A typical scenario
is: given a photograph of a face, and a large image, determine if the face appears
in the image.

This problem may be solved by various methods, such as cross-correlation,
or Fourier-based techniques [16,2,12]. A more challenging problem is what we
call multi-template detection. Here, we are given not one template T , but a class
of templates T (which we call a multi-template), and are required to answer
the more general question: given a large image P , locate all instances of any
member of T within P . Obviously, if T can be well represented by m templates,
we could apply the standard template detection techniques m times, and take the
union of the results. This naive approach, however, breaks down in complexity
for large m. The goal of this research is to develop an efficient algorithm for
multi-template detection.

Typical cases of interest are:

– Given an image, locate all instances of human faces in it.
– Given an aerial photograph of an airfield, locate all instances of an airplane

of a given type in it. If we do not know the angle at which the airplanes are
parked, or the position from which the photograph was taken, then we have
to locate not a fixed image of the airplane, but some affinely distorted version
of it. If the photograph was taken from a relatively low altitude, we may have
to look for perspective distortions as well. In this case, the multi-template
consists of a collection of affinely (perspectively) distorted versions of the
airplane, and it can be well-approximated by a finite collection of distorted
versions, sampled closely enough in transformation space (obviously, one
will have to limit the range of distortions; say, allow scale changes only at a
certain range, etc.).

– Locate different views of a three-dimensional object in a given image.

1.1 Structure of the Paper

We proceed to define some relevant concepts, and outline the idea behind the de-
tection scheme offered in this work. After surveying some related research, we lay
the mathematical foundation for the anti-face algorithm. Following that, some
experimental results are presented, and compared with eigenface and support
vector machines based methods.

1.2 “Quick Rejection” vs. Detection and Recognition

The detection/recognition problem has a few stages, which converge to the so-
lution. We term them as follows:

– The quick rejection stage: here, one tries to find a fast algorithm that filters
out most input images that are not in the multi-template T ; usually, since
we are searching a large image, the majority of input images – which, in this
case, are the sub-images of the large image – will not be in T . The quick
rejection stage has to fulfill three requirements:
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1. It should be fast, due to the large amount of input images.
2. It should not classify a member of T as a non-member.
3. It should classify as little as possible non-members as members.

It is well-known, for instance from the extensive research on the eigenface
method [20,7] that, in some cases, T can be reasonably approximated by a
linear subspace F , whose dimension k is quite smaller than the dimension
of the ambient Euclidean space in which T ’s images reside. In the eigenface
method, the quick rejection stage consists of casting aside the images whose
distance from F is larger than a certain threshold, and it takes O(k) convo-
lutions to compute this distance [20]. However, in some cases k turns out to
be quite large, as will be demonstrated in the sequel.

– The detection stage: here, one has to filter out the errors of the quick rejection
stage – that is, detect the non-members of T which were not screened out
in the quick rejection stage.

– The recognition stage: this optional stage consists of identifying and labeling
T ’s members. For instance, after human faces have been detected in an
image, one may wish to identify the corresponding individuals. However,
there are cases in which recognition is not important or relevant; for instance,
in detecting airplanes of a specific type, which are parked in an airfield,
the recognition problem may be meaningless, since there is no distinction
between airplanes parked at different angles.

This work addresses only the quick rejection stage. However, our empirical
results were usually good enough to make the detection stage superfluous. The-
refore we shall hereafter allow a slight abuse of terminology, by referring to the
algorithm proposed here as a detection algorithm, and to the filters developed
as detectors.

1.3 A Short Description of the Motivation Behind the Anti-Face
Algorithm

The idea underlying the detection algorithm suggested here is very straightfor-
ward, and makes use of the fact that often an implicit representation is far more
appropriate than an explicit one, for determining whether a certain element
belongs to a given set.

Suppose, for instance, that we wish to determine whether a point in the plane,
(x, y), belongs to the unit circle. Naturally, we will simply compute the value of
x2 +y2 −1; that is, we make use of the fact that there exists a simple functional,
which assumes a value of zero on the set – and only on it. We could also use
this fact to test whether a point is close to the unit circle. Let us term the idea
of determining membership in a set S, by using functionals which obtain a very
small value on S, as the implicit approach, and the functionals will be called
separating functionals for S. Note that this definition is more general than the
classic “separating hyperplane” between classes; we are not trying to separate the
set from its complement, or from some other set, by a hyperplane, or a quadratic
surface etc., but characterize it by the range of values that certain functionals
obtain on it. In general, this characterizes the set accepted by the detection
process as semi-algebraic (if we restrict our functionals to be polynomials), or
some other set, which is defined in the most general manner by:
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A =
m⋂

i=1
f−1

i [−εi, εi] (1)

where fi are the separating functionals, and the εi are small. For the unit circle,
for instance, one separating functional is required: x2 + y2 − 1.

So, to test whether a point (or, in our case, an image) x belongs to S, one
has to verify that, for every 1 ≤ i ≤ m, |fi(x)| ≤ εi. The decision process can
be shortened by first checking the condition for f1, and applying f2 only to the
points (images) for which |f1(x)| ≤ ε1, etc.

This very general scheme offers an attractive algorithm for detecting S, if
the following conditions hold:

– A ⊇ S. This is crucial, as S should be detected.
– m is small.
– The separating functionals fi are easy to compute.
– If y /∈ S, there is a small probability that |fi(y)| ≤ εi for every i.

Now, suppose one wishes to extend the implicit approach to the problem of
quick rejection for a multi-template T . Let us from here on replace “separating
functional” by the more intuitive term detector.

Images are large; it is therefore preferable to use simple detectors. Let us
consider then detectors which are linear, and act as inner products with a given
image (viewed as a vector). For this to make sense, we have to normalize the
detectors, so assume that they are of unit length. If |(d, t)| is very small for
every t ∈ T , then f(y) = |(d, y)| is a candidate for a separating functional for T .
However, if we just choose such a few “random” di, this naive approach fails, as
|(di, y)| is very small also for many images y which are not close to any member
of T .

Let us demonstrate this by an example. The object that has to be detected is
a pocket calculator, photographed at an unknown pose, from an unknown angle,
and from a range of distances which induces a possible scaling factor of about
0.7 − 1.3 independently at both axis. Thus, T consists of many projectively di-
storted images of the pocket calculator. Proceeding in a simplistic manner, we
may try to use as detectors a few unit vectors, whose inner product with every
member of T is small; they are easy to find, using a standard SVD decompo-
sition of T ’s scatter matrix, and choosing the eigenvectors with the smallest
eigenvalues. In Figs. 1-2 we show the result of this simplistic algorithm, which –
not surprisingly – fails:

Fig. 1. Two of the members of the pocket calculator multi-template, and three of the
“simplistic” detectors.
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Fig. 2. The failure of the “simplistic” detectors, depicted in Fig. 1, to correctly locate
the pocket calculator. Detection is marked by a small bright square at the upper left
corner of the detected image region. Not only are there many false alarms, but the
correct location is not detected. In the sequel, it will be shown that very accurate
detection can be achieved by using better detectors.

Figs. 1-2 demonstrate that it is not enough for the detectors to yield small
values on the multi-template T ; while this is satisfied by the detectors depicted
in Fig. 1, the detection results are very bad. Not only are many false alarms
present, but the correct location is missed, due to noise and the instability of
the detectors. More specifically, the detection fails because the detectors also
yield very small results on many sub-images which are not members of T (nor
close to any of its members). Thus, the detectors have to be modified so that they
will not only yield small results on T ’s images, but large results on “random”
natural images.

To the rescue comes the following probabilistic observation. Most natural
images are smooth. As we will formally prove and quantify in the sequel, the
absolute value of the inner product of two smooth vectors is large. If d is a
candidate for a detector to the multi-template T , suppose that not only is |(d, t)|
small for t ∈ T , but also that d is smooth. Then, if y /∈ T , there is a high
probability that |(d, y)| will be large; this allows us to reject y, that is, determine
that it is not a member of T .

In the spirit of the prevailing terminology, we call such vectors d “anti-faces”
(this does not mean that detection is restricted to human faces). Thus, a can-
didate image y will be rejected if, for some anti-face d, |(d, y)| is larger than
some d-specific threshold. This is a very simple process, which can be quickly
implemented by a rather small number of inner products. Since the candidate



Anti-Faces for Detection 139

image has to satisfy the conditions imposed by all the detectors, it is enough to
apply the second detector only to images which passed the first detector test,
etc; in all cases tested, this resulted in a number of operations less than 1.5N
operations, for an N -pixel candidate image. In the typical case in which all the
sub-images of a large image have to be tested, the first detector can be applied
by convolution.

2 Previous Work

Most detection algorithms may be classified as either intensity-based or feature-
based. Intensity-based methods operate directly on the pixel gray level intensi-
ties. In contrast, feature-based methods first extract various geometric cues from
the raw image, then perform higher-level reasoning on this geometric informa-
tion.

Previous work on multi-template detection includes a large body of work
on recognition of objects distorted under some geometric transformation group,
using invariants [25]. Some intensity-based methods use moment invariants for
recognition of objects under Euclidean or affine transformations [6]. One dif-
ficulty with these methods is that one has to compute the local moments of
many areas in the input image. Also, moment-based methods cannot handle
more complex transformations (e.g. there are no moment invariants for projec-
tive transformations, or among different views of the same three-dimensional
object).

Feature-based algorithms [5] have to contend with the considerable difficulty
of locating features in the image. Methods that use differential invariants [25],
and thus require computing derivatives, have to overcome the numerical difficul-
ties involved in reliably computing such derivatives in noisy images.

Of the intensity-based methods for solving the multi-template detection pro-
blem, the eigenface method of Turk and Pentland [20,21] has drawn a great
deal of attention. This method approximates the multi-template T by a low-
dimensional linear subspace F , usually called the face space. Images are classi-
fied as potential members of T if their distance from F is smaller than a certain
threshold.

The eigenface method can be viewed as an attempt to model T ’s distribution.
Other work on modeling this distribution includes the study of the within-class
vs. “general” scatter [1,18,17], and a more elaborate modeling of the probability
distribution in the face class [7]. In [8], eigenfaces were combined with a novel
search technique to detect objects, and also recover their pose and the ambient
illumination; however, it was assumed that the objects (from the COIL database)
were already segmented from the background, and recognition was restricted to
that database.

The eigenface method has been rather successful for various detection pro-
blems, such as detecting frontal human faces. However, our experiments have
suggested that once a large class of transformations comes into play – for in-
stance, if one tries to detect objects under arbitrary rotation, and possibly other
distortions – the eigenface method runs into problems. This was reaffirmed by
one of the method’s inventors [22].

In an attempt to apply the eigenface principle to detection under linear trans-
formations [23], a version of the eigenface method is applied to detect an object
with strong high-frequency components in a cluttered scene. However, the range
of transformations was limited to rotation only, and only at the angles −500
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to 500. The dimension of the face space used was 20. We will show results for
a far more complicated family of transformations, using a number of detectors
substantially smaller than 20.

Neural nets have been applied, with considerable success, to the problem of
face detection [14], and also of faces under unknown rotation [15]. It is not clear
whether the methods used in [15] can be extended to more general transfor-
mation groups than the rotation group, as the neural net constructed there is
trained to return the rotation angle; for a family of transformations with more
than one degree of freedom, both the training and the detection become far
more complicated, because both the size of the training set, and the net’s set of
responses, grow exponentially with the number of degrees of freedom.

Support vector machines (SVM’s) [11,9,10,13] are conceptually the method
closest in spirit to the method suggested in this paper. An SVM consists of a
function G which is applied to each candidate image t, and it classifies it as
a member of the multi-template T or not, depending on the value of G(t). A
great deal of effort has been put into finding such a function which optimally
characterizes T . A typical choice is

G(t) = sgn(
l∑

i=1

λiyiK(t, xi) + b)

where t is the image to be classified, xi are the training images, yi is 1 or -1
depending on whether xi is in T (or a training set for T ) or not, and K() a
“classifier function” (for example, K(t, xi) = exp(−‖t − xi‖2)). Usually, a fun-
ction is sought for which only a relatively small number of the xi are used,
and these xi are called the support vectors. Thus, the speed of SVM’s depends
to a considerable extent on the number of support vectors. The λi are reco-
vered by solving an optimization problem designed to yield a best separating
hyperplane between T and its complement (or possibly between two different
multi-templates). SVM’s were introduced by Vapnik [24], and can be viewed as a
mechanism to find the optimal separating hyperplane, either in the space of the
original variables, or in a higher-dimensional “feature space”. The feature space
consists of various functions of the components of the original t vectors, such
as polynominals in these components, and allows for a more powerful detection
scheme.

As opposed to SVM’s and neural nets, the method suggested here does not
require a training loop on negative examples, because it makes an assumption on
their statistics – which is borne out in practice – and uses it to reduce false alarms
(false alarms are cases in which a non-member of T is erroneously classified as
a member).

3 The “Anti-Face” Method: Mathematical
Foundation

To recap, for a multi-template T , the “anti-face detectors” are defined as vectors
satisfying the following three conditions:

– The absolute values of their inner product with T ’s images is small.
– They are as smooth as possible, so as to make the absolute values of their

inner product with “random” images large; this is the characteristic which
enables them to separate of T ’s images from random images. This will be
formalized in Section 3.1.
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– They act in an independent manner, which implies that their false alarms are
uncorrelated. As we shall prove, this does not mean that the inner product of
different detectors is zero, but implies a slightly more complicated condition.
The independence of the detectors is crucial to the success of the algorithm,
as it results in a number of false alarms which is exponentially decreasing in
the number of detectors. This is explained in Section 3.2.

Once the detectors are found, the detection process is straightforward and
very easy to implement: an image is classified as a member of T iff the abso-
lute value of its inner product with each detector is smaller than some (detector
specific) threshold. This allows a quick implementation using convolutions. Ty-
pically, the threshold was chosen as twice the maximum over the absolute values
of the inner products of the given detector with the members of a training set
for T . This factor of two allows to detect not only the members of the training
set (which is a sample of T ), but also images which are close to them, which
suffices if the training set is dense enough in T .

A schematic description of the detection algorithm is presented in Fig. 3.

Fig. 3. Schematic description of the algorithm.

3.1 Computing the Expectation of the Inner Product

Let us proceed to prove that the absolute value of the inner product of two
“random” natural images is large (for the statement to make sense, assume
that both images are of zero mean and unit norm). The Boltzman distribution,
which proved to be a reasonable model for natural images [4,3], assigns to an
image I a probability proportional to the exponent of the negative of some
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“smoothness measure” for I. Usually, an expression such as
∫∫

(I2
x + I2

y )dxdy,
or

∫∫
(I2

xx + 2I2
xy + I2

yy)dxdy, is used [4,19]. It is preferable, for the forthcoming
analysis, to work in the frequency domain, since then the smoothness measure
operator is diagonal, hence more manageable. The smoothness of a (normalized)
n × n image I, denoted S(I), is defined by

S(I) =
n∑

(k,l) 6=(0,0)

(k2 + l2)I2(k, l) (2)

(note that is small for smooth images), and its probability is defined, following
the Boltzman distribution, as

Pr(I) ∝ exp(−S(I)) (3)

where I(k, l) are the DCT (Discrete Cosine Transform) coefficients of I. If the
images are normalized to zero mean, I(0, 0) = 0. This definition is clearly in
the spirit of the continuous, integral-based definitions, and assigns higher proba-
bilities to smoother images. Hereafter, when referring to “random images”, we
shall mean “random” in this probability space. Now it is possible to formalize
the observation “the absolute value of the inner product of two random images
is large”. For a given image F , of size n × n, the expectation of the square of its
inner product with a random image equals

E[(F, I)2] =
∫

Rn×n

(F, I)2Pr(I)dI

using Parseval’s identity, this can be computed in the DCT domain. Substituting
the expression for the probability (Eq. 3), and denoting the DCT transforms of
F and I by F and I respectively, we obtain

∫

Rn×n−1

(
∑

(k,l) 6=(0,0)

F(k, l)I(k, l))2 exp(−
n∑

(k,l) 6=(0,0)

(k2 + l2)I(k, l))dI

which, after some manipulations, turns out to be proportional to

∑
(k,l) 6=(0,0)

F2(k, l)
(k2 + l2)3/2 (4)

Since the images are normalized to unit length, it is obvious that, for the expres-
sion in Eq. 4 to be large, the dominant values of the DCT transform {F(k, l)}
should be concentrated in the small values of k, l – in other words, that F be
smooth.

This theoretical result is well-supported empirically. In Fig. 4, the empirical
expectation of (F, I)2 is plotted against Eq. 4. The expectation was computed
for 5,000 different F , by averaging their squared inner products with 15,000 sub-
images of natural images. The size was 20 × 20 pixels. The figure demonstrates
a reasonable linear fit between Eq. 4 and the empirical expectation:
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Fig. 4. Empirical verification of Eq. 4.

3.2 Forcing the Detectors to be Independent

It is difficult to expect that one detector can detect T , without many false alarms.
This is because, for a single detector d, although |(d, y)| is large on the average
for a random image y, there will always be many random images I such that
|(d, I)| is small, and these images will be erroneously classified as members of T .
The optimal remedy for this is to apply a few detectors which act independently;
that implies that if the false alarm rate (= percentage of false alarms) of d1 is
p1, and that of d2 is p2, then the false alarm rate for both detectors will be p1p2.
Since the entire detection scheme rests on the probability distribution defined in
Eq. 3, the notion of independence is equivalent to the requirement that the two
random variables, defined by I → (I, d1) and I → (I, d2), be independent, or

∫

Rn×n

(I, d1)(I, d2)Pr(I)dI = 0

where Pr(I) is defined as in Eq. 3. Denote this integral by (d1, d2)∗; it turns out
to be

(d1, d2)∗ =
∑

(k,l) 6=(0,0)

D1(k, l)D2(k, l))
(k2 + l2)3/2 (5)

where D1 and D2 are the DCT transforms of d1 and d2.



144 D. Keren, M. Osadchy, and C. Gotsman

3.3 Finding the Detectors

To find the first anti-face detector, d1, the following optimization problem is
solved:

1. d1 has to be of unit norm.
2. |(d1, t)| should be small, for every image t in the training set for the multi-

template T .
3. d1 should be as smooth as possible under the first and second constraints,

which will ensure that the expression in Eq. 4 will be large.

The solution we implemented proceeds as follows. First, choose an appro-
priate value for max

t∈T
|(d1, t)|; experience has taught us that it doesn’t matter

much which value is used, as long as it is substantially smaller than the absolute
value of the inner product of two random images. Usually, for images of size
20 × 20, we have chosen this maximum value – denoted by M – as 10−5. If it is
not possible to attain this value – which will happen if T is very rich – choose a
larger M . Next, minimize

max
t∈T

|(d1, t)| + λS(d1)

and, using a binary search on λ, set it so that max
t∈T

|(d1, t)| = M .

After d1 is found, it is straightforward to recover d2; the only difference is
the additional condition (d1, d2)∗ = 0 (see Eq. 5), and it is easy to incorporate
this condition into the optimization scheme. The other detectors are found in a
similar manner.

We have also implemented a simpler algorithm, which minimizes the quadra-
tic target function

∑
t∈T

(d1, t)2 + λS(d1). The resulting detectors are suboptimal,

but usually 30% more such detectors will yield the same performance as the
optimal ones.

4 Experimental Results

We have tested the anti-face method on both synthetic and real examples. In Sec-
tion 4.1, it is compared against the eigenface method for the problem of detecting
a frontal face subject to increasingly complicated families of transformations. In
these experiments, the test images were synthetically created. In the other ex-
periments, the anti-face method was applied to detect various objects in real
images: a pocket calculator which is nearly planar, and the well-known COIL
database of 3D objects, photographed in various poses. Results for the COIL
objects were compared with those of support vector machine based algorithms.

The results for the COIL database are not presented here, due to lack of
space. Readers interested in a more complete version of this work, which includes
these results, are welcome to mail the first author.

– A note on complexity: recall that each detector only tests the input images
which have passed all the thresholds imposed by the preceding detectors.
If, say, eight anti-face detectors were used, that does not mean that the
number of operations for an input image with N pixels was 8N . If, for
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example, the average false alarm rate for the detectors is 30%, then 70% of
the input images will be discarded after the first detector, hence require N
operations; of the 30% which pass the first detector, 21% will not pass the
second detector, hence they’ll require 2N operations, etc. Thus, the average
number of operations per input image will be roughly (0.7·1+0.21·2+0.063·
3+...)N . In all our experiments, no more than 1.5N operations were required
for classifying an N -pixel input image. Note that this analysis assumes that
the large majority of input images are false alarms, a reasonable assumption
if one searches all the sub-images of a large image.

4.1 Performance as Function of Multi-template’s Complexity

In order to test the performance of the anti-face method with multi-templates of
increasing complexity, we have created the following three multi-templates, each
of which consists of a family of transformations applied to the frontal image of
a face (20 × 20 pixels). The background consisted of other faces.

– Rotation only.
– Rotation and uniform scale at the range 0.7 to 1.3.
– The subgroup of linear transformations spanned by rotations and indepen-

dent scaling at the x and y axis, at the range 0.8 to 1.2.

In order to estimate the complexity of these multi-templates, we created the
scatter matrix for a training set of each, and computed the number of largest
eigenvalues whose sum equals 90% of the sum of all 400 eigenvalues. This is a
rough measure of the “linear complexity” of the multi-template.

Ten images from each multi-template were then super-imposed on an image
consisting of 400 human faces, each 20 × 20 pixels, and both the eigenface and
anti-face algorithms were applied. These ten images were not in the training set.

Interestingly, while the eigenface method’s performance decreased rapidly as
the multi-template’s complexity increased, there was hardly a decrease in the
performance of the anti-face method. The next table summarized the results:

Algorithm’s Performance Rotation Rotation + Scale Linear
Number of Eigenvalues
Required for 90% Energy 13 38 68
Eigenfaces Performance:
Dimension of Face Space
Required for Accurate Detection 12 74 145
Anti-Face Performance:
Number of Detectors Required
for Accurate Detection 3 4 4

Independence of the Detectors For the case of linear transformations (most
complicated multi-template), the false alarm rates for the first, second, and third
detectors respectively were p1 = 0.0518, p2 = 0.0568, and p3 = 0.0572; the false
alarm rate for the three combined was 0.00017 – which is nearly equal to p1p2p3.
This proves that the detectors indeed act independently. With four detectors,
there were no false alarms.
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Detectors and Results Some of the images in the multi-template are now
shown, as well as the first four detectors and the detection result of the anti-
face method, and also the result of the eigenface method with a face space of
dimension 100.

Fig. 5. Sample 20 × 20 pixel templates, and the first three anti-face detectors.

Fig. 6. Detection of “Esti” face, anti-face method (left), and eigenface method with a
face space of dimension 100 (right).

4.2 Detection of Pocket Calculator

In this set of experiments, the problem of detecting a pocket calculator photo-
graphed from different angles and distances was tackled. Here, too, the anti-face
method performed well, and eight detectors sufficed to recover the object in all
the experiments without false alarms, which was substantially faster than the
eigenface method.
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Fig. 7. Detection of pocket calculator, anti-face method (left), and eigenface method
with a face space of dimension eight (right).

5 Conclusions and Further Research

A novel detection algorithm – “anti-faces” – was presented, and successfully
applied to detect various image classes, of the type which often occur in real-life
problems. The algorithm uses a simple observation on the statistics of natural
images, and a compact implicit representation of the image class, to very quickly
reduce false alarm rate in detection. In terms of speed, it proved to be superior
to both eigenface and support vector machine based algorithms.

We hope to extend the anti-face paradigm to other problems, such as detec-
tion of 3D objects under a larger family of views, and event detection.
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