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Using Symbolic Computation to Find Algebraic Invariants

Daniel Keren

Abstract— Implicit polynomials have proved themselves as having
excellent representation power for complicated objects, and there is
growing use of them in computer vision, graphics, and CAD. A must for
every system that tries to recognize objects based on their representation
by implicit polynomials are invariants, which are quantities assigned to
polynomials that do not change under coordinate transformations. In the
recognition system developed at the Laboratory for Engineering Man-
Machine Studies in Brown University (LEMS), it became necessary to
use invariants which are explicit and simple functions of the polynomial
coefficients. A method to find such invariants is described and the new
invariants presented. This work addresses only the problem of finding the
invariants; their stability is studied in another paper.

I. WHAT ARE INVARIANTS?

Invariants are quantities assigned to objects that do not change
when the coordinate system undergoes transformations, and hence are
good descriptors for recognition. The more general the transforma-
tion, the more difficult it is to find invariants. For instance, if one deals
with shapes described solely by ellipsoids, and the transformations
are Euclidean, the lengths of the various axis of the ellipsoids
are invariants. If, however, affine or projective transformations are
allowed, the axis are no longer invariants. Another way to classify
invariants is by their scope. Roughly, there are local invariants—such
as curvature—that are determined by the local behavior of the curve,
or surface, and global invariants, which depend on all the points
of the object. Recently, there have been interesting works on semi-
differential invariants, which combine local and global features. It
is beyond the scope of this work to go into a deeper analysis of
these families of invariants and their respective advantages; for an
extensive survey of invariants in computer vision, see [7], [10], [1].

This work focuses on finding algebraic invariants, which are
related to the description of objects as the zero sets of implicit
polynomials [6], [5], {2], [9]. These are global invariants which
show great promise for recognition of complicated objects. In [9],
an elegant theory is presented which allows to describe many
such invariants, as eigenvalues of matrices constructed from the
coefficients. However, in order to use invariants in the Bayesian
based recognition system developed in the LEMS laboratory, we must
have invariants that are expressed as simple explicit functions of the
coefficients {8]. Roughly, this is because our recognition system is
based on probabilistic analysis of the invariants, and at some stage a
covariance matrix for them has to be constructed from the covariance
matrix of the coefficients. For this and other reasons it is necessary
to write down the invariants as explicit functions of the coefficients,
and the simpler the better. Needless to say, the simpler the shape of
the invariants the easier it is to analyze how stable they are in the
presence of noise. Also, the more invariants a recognition system uses
the more discriminatory power it has. The method described here is
bound to find all the invariants of the type it is looking for.
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Let us note in passing that, in order to use invariants for recognition
purposes, their stability has to be studied. This is presented in a
different paper [8]. That paper demonstrates how the invariants found
in this work are used for recognition of 2-D and 3-D free-form
objects.

We turn now to a short survey of polynomial invariants. Probably
the first known invariants were those of the second degree polynomial
pgorz + puzy + p02y2 + prox + po1ry + Ppoo: if the coordinate
system undergoes an affine transformation (u,v)! = A(z,y)' + T,
where A is a non-singular matrix and T a vector, then the quantities
P20 + poz and 4paopoz — p3; are multiplied by the square of the
determinant of A; hence, they are invariants of the leading form
P20 +p112y + poey® (in general, the leading form is the part of the
polynomial that contains the monomials with the highest total degree,
i.e., with the highest sum of powers of z and y). Such invariants are
called relative invariants.

Classical work [3] concentrated on finding affine invariants, but
only of the leading form. This is probably because the leading form
does not change under translation, hence the problem of finding
invariants is more approachable and the theory more elegant. In [3],
an elegant solution—the symbolic method—is presented for writing
down all the affine invariants of the leading form. However, there
are other classes of invariants, such as Euclidean invariants, and
invariants that depend on all the coefficients, that remain to be
explored.

II. THE PROPOSED METHOD FOR FINDING
INVARIANTS: MATHEMATICAL FOUNDATION

In order to find simple and explicit invariants of polynomials,
the tool of symbolic computation was utilized. We have used the
Mathematica package [11], running on a SPARC working station.
Recently, symbolic computation is finding more applications to vision
(6], (4.

The suggested method for finding invariants is simple: assume
that the invariants are low-degree homogeneous polynomials in the
coefficients. This is a reasonable assumption, as we know that
the known invariants can be represented in such a manner. The
degree of the homogeneous polynomials is called the rank of the
invariant. Now, try to solve for the coefficients of this homogeneous
polynomial. A more detailed explanation follows.

Formally, let a pelynomial be denoted by P(z,y) =
> 0<itj<nPiiz'y’. L&t z and y be subjected to some kind
of transformation (u,v)* = T(z,y)!, where T is determined
by a certain number of parameters ¢;; (six in the case of an
affine transformation, three for Euclidean, and .one for rotation).
Then, P(zx,y) transforms into a polynomial Q(u,v), where Q’s
coefficients, g;;, are functions of the p;;’s and ¢.;’s. From here on,
it will be more convenient to look at the coefficients p;; and ¢:; as
being indexed by a single variable. So let us revise the notations
as follows: P(z,y) is determined by the coefficients {p;}:=V, and
Q(u,v) by the coefficients {g;:}:=Y, where each g; is a function
of the p;’s and the t;;’s, and N = 1(d + 1)(d + 2), where d is
the degree of P(z,y).

Now, a particular algebraic structure for the invariant I is as-
sumed—a homogeneous polynomial (or form) ¥ in the p;’s, say of
second degree, so I =37, ; .« ¥i;pip;, which has to be equal to
Po<icj<nTii2:g;- Let us consider a simple kind of transformation
T, e.g., rotation by an angle 6. In that case, each g¢; is a function of
the p;’s and 8; more specifically, it is a polynomial in the p.’s and
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in cos(6) and sin(6). For instance, if d = 2, than the polynomial
p202” + p112Y + po2y” + p1ox + pory + poo is transformed into the
polynomial g202” + g112y¥ + go29” + q10Z + go1y¥ + oo, Where

G20 = P20 cosz(e) ~+ p11sin(f) cos(8)
q11 = p11(cos®(8) — sin®(8)) + 2poz cos(6) sin(h)
— 2p20 cos(8) sin(h),

etc.
Let us denote the relation between the p;’s and 6 and the ¢;’s by
®. Formally,

®:R xRN - RN,

Here ®(#,p) = ¢, where as before 6 is the rotation angle, p the
vector of coefficients of the polynomial P(z,y), and ¢ the vector
of coefficients of Q(u,v), where (u,v)" is the rotation of the (z,y)
coordinate system by 4.

The following simple property of ® is needed in the sequel:
&(6: + 62,p) = B(61,P(62,p)). This is obvious, as rotation by
61 + 62 is equivalent to rotation by 6, followed by a rotation by 6.

As noted before, we are looking for an invariant I =
ZUSi<j§N‘I’ijpipj' Thus, the following has to hold for every
coefficient vector p and every angle 6:

Y({p:h)= > Wippi= Y. iqg
0<i< <N 0<i< <N
= ¥({a:}).

Theorem 1: For the above to hold—e.g., for the form ¥ to define
an invariant—it is necessary and sufficient that for every p,

(%”‘I’”*"”)ozo ~o. M

Proof: First, let us show that for every coefficient vector p and
every angle 6o,

0 .
Fusen]) o
(60 8=0,
This is equal to
i 2[2(00 + 6,p)] — ¥[P(60, p)]
9—0 [’

P[2(6, (6o, p))] — ¥[2(6o,p)]
9

= lim
6—0

denoting ®(6o,p) = po, the above reduces to

i Y12(6, Po)] — ¥(po]
6—0 [

which, because ®(0,po) = po, equals

(Zveson) .

but the assumption was that this is zero.
Since the partial derivative of ¥[®(f,p)] by 6 is equal to zero
everywhere, it does not depend on 6; hence, ¥ defines an invariant.
The case for more general transformations is similar; let T,, be any
family of transformations, indexed by a real parameter «, satisfying
Toi+as = Ta, © Ta,; then the same proof extends to show that if

(Z¥[®(a,p)])a=o = 0 (using the same notation as for rotation),
then ¥ defines an invariant.

Now, this property is satisfied by translation; but affine transfor-
mations include also stretching at the = and y directions, and these
do not satisfy To;+ay = Tay © Tay, but Taya, = To, © Tu,. In
order to overcome this, let us define stretching by a factor of 1 + a
by T,; then, the following holds:

Toy+aztota2 = Toy 0 Ta,.

Now, we have for every ao

7]
(avzem)
= lim ¥[®(ao + o + aao, p)] — ¥[®(ao, p)]
a—0 o + aag
— lim Y&(x ®(a0,p))] - ¥[®(a0, p)]
a—0 o+ aog

Denoting ®(ao,p) by po, the above reduces to

o (2(0,0)] = lpo]

a—0 o+ aog ’

which is equal to

1 lim \I’[Q(a,po)] - ‘I’[po]
14+ ap a—0 I

But this is simply

1 )
el Al

Hence, in this case also, for ¥ to define an invariant it is enough
that (2 ¥[®(c, p)])a=o = O for every p.

These derivatives are special cases of Lie derivatives, but are simple
enough to be derived in a straight-forward manner without relying
on the general theory. For a short introduction to Lie derivatives and
their applications to invariant theory, see [2].

Since the group of affine transformations is generated by rotations,
translations and stretchings in the z and y axis, it is enough to test
that ¥ is invariant under each of these type of transformations to
prove that it is an affine invariant. Thus, the technique described here,
which handles only very simple transformations, really covers general
linear transformations. All this generalizes easily to invariants of 3-
D polynomials; in 3-D, we assume that objects undergo Euclidean
transformations, which are generated by rotations and translations on
the z, y, and z axis. Hence, to test if I is an invariant, it is enough
to test that it doesn’t change under rotations around the three axis
or translations along them. This is done in exactly the same way as
for the 2-D case.

a=0

III. REDUCING THE INVARIANT PROBLEM TO A LINEAR SYSTEM

Next, the theorem of the previous section is used to find invariants
of polynomials. All the invariants we shall find are homogeneous
polynomials (or forms) in the coefficients of the polynomials—either
all the coefficients or only those of the leading form. The method is
best demonstrated with a simple example; suppose we are interested
in finding some invariants under rotation of the second degree form
in z and y, paox? + p112y + posy?®. For applying the method, some
general shape for the invariant is assumed, and then one attempts
to solve for its specific parameters. For example, let us assume the
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invariant has the following shape:

U(paoz® + pr1zy + po2y’)
= Apso + Bpi;, + Cpds + Dpaop11 + Ep2opoz + Fp1ipoz,

i.e., it’s a second degree form in the coefficients of the second degree
form p20z? + prizy + po2y*. According to Theorem 1, a necessary
and sufficient condition for ¥() to define an invariant under rotation
is that (;—O\P[Q(G,p)])ozg = 0, where p is any second degree form
in z and y.

The goal is to transform the problem of finding A, B, C, D,
E, F—which characterize I—to that of solving a linear system of
equations in A, B, C, D, E, F. Let us assume the new coefficients are
g20,q11, 902, Which are functions of pzo,p11,poz and 8. According
to Theorem 1, the following should hold:

lim (ApZ + Bp? + Cpdy + Dpaopi1 + Epaopez + Fpiipo2)
8—0 6

(Agdo + Bai, + Cqz + Dgaoq11 + Eqzogo2 + Fqi1902)
g

=0.

In order to write this expression down, it is necessary to com-
pute go0,q11,902. Since all powers of # higher than 1 will be
discarded—this is true because we divide by ¢ and then let it approach
zero—it is legitimate to replace sin(f) and cos(6) by their first
order Taylor approximations (¢ and 1), since the higher order terms
vanish anyway; this greatly simplifies the expressions for the new
coefficients. Doing this results in the following expression for the
limit above:

2Ap11p20 + 4po2p11 B — 4p11p20B — 2po2p11 C
+ p112D + 2pozp20D — 2p20> D + pozp i1 E — pripao E
+ 2p02®F — p11° F — 2poopao F.

Now, this has to be zero for every choice of p2o,p11,po2, result-
ing in the following set of six linear homogeneous equations in
A,B,C,D,E,F: -2-D =0

D-F=0
—-2F =0
2A-4B-E=0
4B-2C+E =0
D-F=0,

which have the solution {A = C,B=C/2-E/4,D = F = 0}.
Substituting C = 1, E =0resultsin A =1, B=1/2,C =1,
D = E = F = 0, which correspond to the invariant p5+ 3p} +p..
Substituting C =0, E=1gives A=0,B=-1/4,C=D =0,
E =1, F = 0, resulting in the invariant p2opoz — %p?l.

In this simple case, it is possible to do the calculations manually,
but that would be impossible when looking for invariants of more
complicated forms, especially when the rank of the invariant is higher
than two. To the rescue comes the tool of symbolic computation. In
this work, the Mathematica package was used. The algorithm for
finding the invariants follows.

1) Write down the expression whose invariants are sought (in this

work, either polynomials or forms were selected).

2) Replace the variables in that expression by new variables,

which are a transformed version of the old ones. Use only

the first approximation for the transformation. This results in a
polynomial whose coefficients are polynomials in the original
variables and the transformation parameters. This is repeated,
as noted before, for all the generators of the transformation
group in question.

3) After deciding on some shape for the invariant (say, a form in
the coefficients—the method adopted in this work), expand the
invariant in the original coefficients and also in the coefficients
that are combinations of the original coefficients and the
transformation parameters. Call these I and Io.

4) Take the expression I; — I3. It is a polynomial in the original
coefficients and the transformation parameters. Of course, it
has to be zero. Take as many partial derivatives of this
expression as necessary to get rid of the original coefficients
and the transformation parameters; equate all these derivatives
to zero. This results in a linear system in the coefficients
that determine the invariants (a word of caution here: these
are not the coefficients of the original polynomial, but the
coefficients of the invariant, which is a polynomial in the
original coefficients). Solve this system, and you have the
invariants (of course, there may be no solutions; this will
indicate that there are no invariants of the type you decided
to look for).

One should note that the invariants are not necessarily independent.
I currently know of no method that produces algebraic invariants that
are guaranteed to be independent. After the invariants are found,
symbolic computation can be used to discover dependencies among
them. However, this is not guaranteed to work, especially if there are
many invariants and their shape is complicated.

Dependency in the invariants can cause a bias in the recognition
process, for the following reason. Suppose I1, I2, I3 are invariants
and P(I,I>,Is) = 0 for some polynomial P. Then, if one uses I;
and I for recognition, Is should be omitted, as it brings no new
information. The recognition system developed at LEMS [8] can
overcome this to some extent, as it computes a covariance matrix
for the invariants and uses it as a weight measure when comparing
invariants of two different objects. The question is how effective
the covariance matrix is for detecting high-order dependencies be-
tween the invariants; this has to be studied further, but is outside
the scope of this limited work, which is confined to finding the
invariants.

The case demonstrafed before—finding invariants of a second-
degree form in two variables—is very easy. It results in only six
equations, and the Mathematica 2.0 version solved it in less then
two seconds (running on a SPARC 1 work station). Other cases,
although exactly the same in principal, result in ‘manipulating huge
expressions and solving very large linear systems. In general, suppose
we want to find the invariants of rank d for a polynomial of degree
n in m variables. The number of coefficients for such a polynomial
is ("j’n'"). The number of coefficients in the form composing the

elusive invariant is
(d + (" +m ) )
m .

d

which might be very large. In our experiments, the highest we could
go to was n = 4, m = 3, d = 3. The input consisted of 8,312
lines, and was generated using a lexical analyzer. Running time was
about 5 hours.

If affine invariants are sought, the problem is easier, because most
possible combinations of coefficients can be ruled out. If the x-weight
(y-weight) of a monomial in the coefficients is defined as the sum
of the powers of z(y) that the monomial represents (for instance, the
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z-weight of p34ps: is 11, and the y-weight 9), it is easy to see that
an affine invariant can consist only of monomials having the same x-
weight and y-weight. This is because the invariant should change the
same under stretchings in the x and y directions, and stretching in the
z(y) direction multiplies the coefficients by the stretching parameter
raised to the x-weight (y-weight) power. This can be demonstrated
by a simple example: suppose we look for affine invariants of a
second-degree form, paox® + pi1zy + po2y®. Let us look for an
affine invariant of the shape I = Ap3, + Bp?, + Cpas + Dpaop11 +
Epaopoz+ Fpi11poz. Suppose, now, that the z-axis has been stretched
by a factor of a. I should be multiplied by the determinant of the
transformation squared, which is o? (see, for instance, [3]). It is
easy to see that the coefficients after the stretching are op3, api1,
poz2. Hence, the following equality should hold (on the left is the
determinant squared multiplied by the value of the invariant for the
original form p20x? + p112y + pozy?, and on the right is the value
of invariant for the original form after it had been subjected to the
stretching, o?plox? + apiizy + po2y?):

o?(Ap3o + Bph + Cpiz + Dp2op11 + Epaopoz + Fpi1po2)
= Aa’p3o + Ba®pl; + Cphs + Dapsopi
+ Ell2p20p02 + Fapiipoz.

Since this has to hold for every {p20,p11,po2} and «, it is obvious
that A = C = D = F = 0. This argument generalizes in a trivial
manner to polynomials of any degree and invariants of any rank.

It is interesting to observe that the process described here is bound
to find all invariants of the type it assumes. This is in contrast to other
methods, such as the symbolic method {3], which does not allow
any control on the complexity of the resulting invariants. (Note that
the “symbolic method” referred to here dates back to the previous
century, and has nothing to do with the tool of symbolic computation
used in this work).

IV. AN EXAMPLE

As an example, the invariants of a 3-D object in two different
positions are presented. The object is an eggplant, and the 3-D data
were gathered at the LEMS laboratory using an IBM RS/1 Cartesian
robot. Fourth degree polynomials were fit to the data using the
algorithm described in [S], and the seven invariants were computed
from the coefficients.

As can be seen, the invariants are not identical. The reason for
this is the inherent ambiguity in the polynomial fitting; the data, in
this case, does not completely constrain the coefficients. The Bayesian
method described in [8] was developed to take care of this ambiguity,
by weighing the difference between two sets of invariants according
to their covariance matrix.

For comparison, the fit and invariants for a pear are also displayed
(Fig. 1(c)).

A. An Eggplant in the First Position
The implicit equation describing an eggplant as shown in Fig. 1(a)

is
0.000000159z* + 0.000000109z°y — 0.000000052z> 2
+ 0.000000528z2y> — 0.000000176zy = + 0.0000004692> 2>
+ 0.000000188zy> — 0.0000003042y°z + 0.0000002162y »>
+ 0.00000008622> + 0.000000198y* — 0.000000104y° =
+ 0.000000144y%2* — 0.000000092y =* + 0.0000005622*

— 0.000003817° + 0.000012272x%y + 0.00000184527 =
- 0.000010695xy> + 0.000002500zyz — 0.000023821 x>
+ 0.000023714y° + 0.000003443y> = + 0.000015230y 2>
— 0.0000004932° — 0.000221265z” + 0.000126875zxy

— 0.000043034x 2 4+ 0.001085746y> — 0.000303012y =
+0.000901378z + 0.021760320z — 0.019226730y

— 0.0068226562 — 1.00 = 0

and the (normalized) invariants are

{-6.9 -531 1,631 —762.7 —222.7 90.2 504.4}.

B. The Eggplant in a Second Position
The implicit equation describing the eggplant in another position
(see Fig. 1(b)) is
0.000000320z* 4+ 0.0000001062>y + 0.000000268z° z
+ 0.000000059z>y* + 0.00000000822yz + 0.00000042022 >
+ 0.000000061zy> — 0.000000406zy> = + 0.000000008zy = >
+ 0.000000114zx2° + 0.000000279y* — 0.000000331y° 2
+ 0.000000617y 2% — 0.000000279y 2> + 0.000000209*
~ 0.000006870z° + 0.000016088zy — 0.000000236z°
— 0.000000797xy? + 0.000001425zyz + 0.000006098z >
+ 0.000026666y° — 0.000000823y> = + 0.000017790y >
+ 0.000003685z° + 0.000661459x> — 0.000229126xy
+ 0.001154826xz 4 0.001013282y> — 0.000231176y=
+ 0.00020929327 + 0.003136426z — 0.021879080y
—0.013379310z — 1.00 = 0

and the (normalized) invariants are

{-79 -424 1,240.2 -656.9 —191.4 101.3 479.7}.

C. A Pear
‘.
The implicit equation*describing a pear (as shown in Fig. 1(C)) is

0.00023825699z* — 0.00003152196x>y + 0.000147279402> =
+0.000155703112%y® + 0.00006637343z>y z
+0.00015663391x> 22 — 0.00017923310xy>
— 0.00010124010zy = + 0.0000306254 7y 2>
+0.00004791431z2° + 0.00015177330y°y
+ 0.00008492508y° = + 0.00006513776y> 2>
+ 0.00002481378y 2" + 0.00001641268*
+0.00186856801° — 0.00419494417%y
+0.00615517283z” 2 — 0.00143002998zy>
+ 0.00347008789xy z + 0.00307465997 2>
+0.00043983711y° + 0.00280278409y°
+ 0.00125001499y 2 + 0.001295448982°
— 0.18444170058z° + 0.13251049817zy
~ 0.01150386967x~ — 0.11283490062y>
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(W]

Fig. 1. (a) An eggplant. (b) The eggplant from a second viewpoint. (c) A pear.

- 0.07044252753yz — 0.05872813985 2>
— 0.41683548689z — 0.27396979928y
—4.10123014450z — 1.00 =0

and the (normalized) invariants are

{3.8 32.5 840.2 -—356.9 —154.4 56.3 303.7}.

V. APPLICATION AND FUTURE WORK

The invariants given in this paper are currently used in the
Bayesian-based recognition system that is described in [8]. In the
future, we hope to further explore other types of invariants and
their distribution. An especially interesting problem is the one of

recognizing curves, which are defined by a pair of polynomials
(i.e., by the intersection of their zero-sets). The fact that the pair
is not unique makes the problem of using invariants in this case
mathematically challenging.

APPENDIX
INVARIANTS FOUND USING SYMBOLIC COMPUTATION

The method described above was used to find invariants of both
general polynomials and forms. As the input files fed to Mathematica
were too large to include here, only the invariants themselves will be
given; suffice it to say that the method used to find these invariants
is a straightforward extension of the method in which invariants
of rank two of the second degree form in x and y were found.
Since fourth degree implicit polynomials seem to be very suitable for




1148 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 11, NOVEMBER 1994

describing a large variety of objects [5], [9], we have concentrated on
finding invariants for them; also, some invariants for higher degree
polynomials were found (up to degree eight).

Following are the Euclidean invariants for a fourth-degree polyno-
mial in two variables, which were found using the method described
in this work.

6pps + 6paap22 + 6poap13pa1 + 6poapi; — 6paspao + 6pispao

— 12poap22pao0 + 6p13p31Pa0 — 6poapio + 6p22pio + 6plo;

6poapis — 16p54p2z + 2plap22 — 12poap1sps1 + 4p13paspa
— 18posp3: + 2p22p31 — 18pispao + 32poap22pao
— 12p13p31p4o + 6p31 a0 — 16p22pio;

6poap32 — 18poapips1 + 3p1spazps1 — 27poaps; + T2pbapao
+ 72p54pa0 — 27pi3Pao + 96Posp22p4a0 + 6p32Pao
— 18p13pa1pao + T2PoaP30;

6poapis — 9pospr2pis + Wozpis + Iprap20 — Ip12P13pa
+ 9p3apaz — 24poapospez + Piap2z — 24pospropan
+ 6posp21p22 + Phip2zdpoapls — 4paople
+ 36poapi2p30 — 27po3p13p30 — IP13P21P30 + 6p12P22P30
+ 54poap3o + 9p22p30 — Iposp12ps1 + 18pop1spar
+ 18p13p2op31 — 3p12p21p31 — 27pospsops: — Ip21P3oPs1
+ 9po2p3y + 9p20p3) + 54pespao — 144pozPospao
— 144poapaopao + 36posp21pa0 + 6p31pa0 — 24poap2opao
— 24pa0p22paos

6p32 — 2Tp13p22ps1 + 81pospis + 81piapao — 216poapazpac;

— 9pT3p20 + 3p12p13pa1 + 6poaps; — 2piapez + 3p11p13pa2
+ 24poapa0pa2 — 12posparpez — 2pa P22 + 8poapae
+ 8p20p32 — 36poap12pso + 27posp1aPso + 18p13paipao
— 12p12p22p30 — 54poapso — 18p0ap11pa1 + 18poaprzpa:
— 27po2p13p31 — 2Tp13p20ps1 + 3p12p21P31 + 3p11P22p31
+ 27posp3ops1 — 9po2p31 ~ 54pgapao + 144po2pospa
+ 6p3apa0 — 18p11p13pao + 144pospaopao — 36posp21pao
+ 24po2p22pao;

6p3s — 24poapiapaz + 48pasp31 + 6pispa1 — 24poaprepar
— 6p13p31 — 6p31 + 48poap13pao + 24p13pa2pao
— 48poapa1Pao + 24p22p31Pao — 48p13pao;

6p72p20 — 18p11p13p20 + 36pospro — 3p11p12par + 27p1op1apa
— 18posp20p21 + 6po2ps; + 6pi1p2z — 18proprapae
+ 12po2p2ope2 — 18po1 P21 P22 + 36poopas — 108poap1op3o
+ 27posp11pso — 18po2p12p3o + 27po1p13pso + 27pospiops1
— 18po2p11p31 + 27po1p12ps: — 108poop13par + 36pgapao
— 108po1po3p4o + 432poopoapao;

Also, seven Euclidean invariants for a fourth-degree polynomial in
three variables were discovered. Lack of space allows us to present
only one of them. Those interested in the rest can e-mail the author

at dk@lems.brown.edu for a listing of the other invariants and for
other classes of invariants:

36p904 + 36pg04Po22 + 36P00sPor13Po31 + 36Pocapas:
- 361730411040 + 36173131?040 — 72poo4Ppo22Po40
+ 36p013P031P040 — 36P004Paso + 36?0221)340
+ 36Pps0 — 4Po0abiiz + 4posopirz + 12P00spr03pizt
— 12posopio3pi21 — 2po13pi12P121 — 2Pos1Pi12P121
+ 4pooapizr — 4posopiar + 18po13pr03p130
+ 18po31p103P130 — 12p00apPr12P130 + 12posop112P130
+ 36pg0ap202 + 16p0o4Pozap2o2 + 6P013Poa1paos
+ 6po31P202 — 24Po0aPosopao2 — 16poz2posopaos
- 121134017202 + 2p1o3p121p202 + 4P112P130P202
+ 6pZa0p202 — 8Posop3ez + 12Pooapo1apain
+ 2po13po22p211 + 24Po0apos1p211 + 2Po22Po31 P21t
+ 241)0131704017211 + 121)0311)04012211 - 21)1031)11217211
— P112pP121P211 — 3p10311130p211 - 2p121p1301?211
+ 4po31pa02p211 + 4Pooapars + 4Posopai;
— 12p504P220 + 6Pg13P220 — 16p00sPozzpazo
+ 6po13P031P220 — 24PooaPosop2zo + 16po22posopazo
+ 361’%4017220 + 61’?0317220 + 4p1o3p121P220
+ 2p112p130P220 — 16p00aP202p220 — 8Po22P202P220
— 16po40p202P220 + 4po13p211P220 — 8P004Paz0
+ 36pooaP103p301 + 6po22p103P301 + 12posoPr03P3or
~ 3po31P112P301 + 24Pooap121P301 + 4po22P121P301
= 12posopi21p301 + 15po13pi3zopsor + 18posz1pizopaot
+ 2p121p202P301 — 2p112P211P301 + 6p103P220P301
+ 36p004P301 + 6P022P301 + 18po1sprospsro
+ 15poa1p1o3psio — 12pooapii2p3io + 4pozepi12psio
+ 24posop112P310 — 3po1api21Psio + 12pooapizepsio
+ 6po22p130p310 + 36posopi3opaio + 6pisop202P310
— 2p121P211P310 ;)- 2p112p220p310 + 18po13p3o1psio
+ 18po31pso1Paro + 6po22piio0 + 36pos0psio
— 36p504P100 — 24P004Po22P400 — 8Pa22Pa00
+ 12po13pos1Paco — 120pooaposopaco — 24Po22Po40Pa00
— 36phaopaco + 36pTaspaco + 4p312paco
+ 24p103p121P400 + 4p3a1Pa00 + 24p112P130P400
+ 36pZ30Pa00 — 72PacaP202P400 — 16pazap202paco
— 24po4op202P400 — 12po13p211P400 = 12po31p211P4co
— 4p511Pao0 — 24po0ap220Pa00 — 16Poz2p220paco
— T2posop220pa00 + 16p202p220P100 + 36p103P301P400
+ 12p121p301P400 + 12p112p310Pa00 + 36p130P310P100
- 361700417300 - 121702217200 - 361704017300
+ 36p202Pi00 + 36p220P500 + 36P300;
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