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ABSTRACT
Least squares regression is widely used to understand and
predict data behavior in many fields. As data evolves, re-
gression models must be recomputed, and indeed much work
has focused on quick, efficient and accurate computation
of linear regression models. In distributed streaming set-
tings, however, periodically recomputing the global model is
wasteful: communicating new observations or model updates
is required even when the model is, in practice, unchanged.
This is prohibitive in many settings, such as in wireless sensor
networks, or when the number of nodes is very large. The
alternative, monitoring prediction accuracy, is not always
sufficient: in some settings, for example, we are interested in
the model’s coefficients, rather than its predictions.

We propose the first monitoring algorithm for multivariate
regression models of distributed data streams that guarantees
a bounded model error. It maintains an accurate estimate
using a fraction of the communication by recomputing only
when the precomputed model is sufficiently far from the
(hypothetical) current global model. When the global model
is stable, no communication is needed.

Experiments on real and synthetic datasets show that
our approach reduces communication by up to two orders
of magnitude while providing an accurate estimate of the
current global model in all nodes.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—least squares
methods; G.3 [Probability and Statistics]: correlation and
regression analysis; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—distributed applications

General Terms
Algorithms
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Regression; distributed streams; least squares; data mining
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1. INTRODUCTION
Least squares regression is commonly used for prediction

of new values from past values (i.e., forecasting), for analysis
of existing phenomena through discovered coefficients (e.g.,
in econometrics [9] and social studies [30]), and as building
blocks in other algorithms (e.g., in sparse coding [37, 1]).

Data behavior evolves, however, and changes can ren-
der a previously-computed model invalid. In such settings
regression models must be updated to incorporate new ob-
servations, or to be periodically recomputed. This problem
is exacerbated in distributed settings: when observations
are distributed over many nodes, we are also faced with the
additional cost of communicating updates.

The question then becomes not just how to efficiently
compute the model, but when. Recomputing the model
after each new observation seems is wasteful, as models tend
to change slowly. Recomputing periodically still involves
needless work if the model changes infrequently, yet may
introduce unacceptable errors between scheduled updates.

Hence, there are two complementary approaches to dis-
tributed linear regression. The first is efficient distributed
computation of the model. Indeed, much work has been
devoted to this approach [23, 21, 33].

We focus on the second approach – monitoring the quality
of a given model, and recomputing it only as needed (using
any of the computational approaches). The monitoring ap-
proach looks at incoming data and triggers an alert if the
previously-learned model is too dissimilar to the hypothetical
global model that would have been built given the current
data. This problem is difficult in distributed settings, since
the existing model and the (hypothetical) current model are
both global models – composed from the union of data at all
nodes. Thus a distributed monitoring algorithm must deal
with communication efficiency, in addition to the problem of
monitoring a model without actually relearning it.

The monitoring approach has received little attention,
possibly because the least squares solutions involve matrix
inversion, which is difficult to analyze (Section 2.1). The few
existing techniques monitor the model’s prediction error or
R2 fit [4, 3], or a univariate model where the problem reduces
to monitoring a ratio [8]. This is not always sufficient: in
some settings we are interested in the model’s coefficients
(e.g., analysis), and in others (e.g., interpolation) we lack the
ground truth to measure prediction error. Moreover, mon-
itoring model error is a more general approach: prediction
error and fit can be inferred from model error but not vice
versa.



Our Contribution
We describe DILSQ: a novel communication-efficient mon-
itoring algorithm for multivariate least squares models of
distributed, dynamic data streams. To our knowledge, this
is the first algorithm that monitors the multivariate regres-
sion model itself, rather than its prediction or fit. Given a
previously-computed global model, we derive local constraints
on the local data at each node. A node only communicates
if its constraint is broken. These constraints guarantee that
if no node communicates, the global hypothetical model is
sufficiently close to the precomputed model.

DILSQ easily generalizes to more complex least squares
variants such as GLS and RLS [9], and is independent of how
the model was computed. Evaluation on two real datasets
shows it reduces communication by up to two orders of
magnitude. Complete elimination of all communication is
also possible when the model is fixed.

2. RELATED WORK
Due to the ubiquity of linear regression, a great deal of

research was dedicated to solving for the regression model
not only in a centralized setting, but over distributed systems
as well; for a comprehensive survey, see [33]. Typically, the
distributed nodes compose a graph, each holding a portion
of the data, and the goal is to solve for the regression model
of the aggregated data. It is well-known that the accurate
solution involves calculating a matrix-vector pair from the
data (denote it A, c), and then calculating A−1c. Since the
global matrix-vector pair can be expressed as the sum of
local pairs at the nodes, a path is defined over the graph,
and the global pair is obtained by traversing this path; a
Hamiltonian path is desirable, in order to reduce the time
required to traverse the graph [20]. Spanning trees have also
been applied to this end [28]. Eventually, the local estimates
at the nodes converge, via message passing with neighbors,
to a global consensus [24]. In [38] it was suggested that
diffusion strategies outperform consensus-seeking methods.

Variants include taking advantage of the global matrix’s
sparseness in order to reduce traffic [7], and gradient-based
methods run either sequentially or with some degree of par-
allelism [23, 21, 33, 40]. Such techniques were also applied in
online distributed learning, where the sought classifier can
sometimes be expressed as the solution of a linear regression
problem [41].

While efficient solutions were developed for computing the
linear regression model over distributed nodes, there are,
to the best of our knowledge, only very few papers dealing
with monitoring it – that is, imposing local conditions which
imply that the global solution did not change by more than
a pre-defined amount since the last time it was computed
(Section 4). In [36], a heuristic is applied, and the nodes
do not broadcast if the newly arriving data conforms with
the current model up to some tolerance. In [4] distributed
monitoring was applied to monitor the prediction error (Sec-
tion 3.1) and quadratic fit error R2 [3], but not the error in
the model itself.

In [8], a one-dimensional regression problem is addressed –
monitoring the ratio of two aggregated variables. Here we
address the general, high-dimensional problem.

2.1 Distributed Monitoring
The last decade witnessed a sharp increase in work on im-

posing local conditions for monitoring the value of a function
defined over distributed nodes. While the general problem is
NP-complete [15], considerable progress has been made for
real-life problems. Most work dealt with the simpler cases of
linear functions [14, 13], as well as monotonic functions [25].
Some papers addressed non-linear problems, e.g., monitoring
the value of a single-variable polynomial [34], and analysis
of eigenvalue perturbation [10]. [11] describes a gossip-based
protocol for monitoring several aggregates (some non-linear),
which eventually converges to the monitored value, but can-
not guarantee user-specified error bounds. In [35] a geometric
approach for monitoring arbitrary functions over distributed
streams was proposed, and later extended and generalized [16,
18]. However, nearly all work on geometric monitoring ad-
dressed functions which are either polynomials (typically
quadratic), or defined by compositions of polynomial with
simple functions such as medians and quotients. To the
best of our knowledge, the problem addressed in this paper –
monitoring the linear regression model (as opposed to its fit
error) – was never addressed over a distributed setting. Note
that the monitored function contains the highly complicated
operation of matrix inversion, which is not linear or convex,
and which, when written explicitly, becomes intractable even
for relatively low dimensions (e.g., the analytic expression
for the inverse of a 20× 20 matrix involves polynomials with
20! monomials). Therefore, a straightforward application of
previous work on geometric monitoring is impossible.

3. PROBLEM DEFINITION
Let {(x1, y1), . . . , (xn, yn)} be a set of n observation pairs

of m < n independent variables and one dependent variable,
where xi are column vectors in Rm, and yi are the corre-
sponding response scalars. We seek a linear transformation
β ∈ Rm, β = (β1, . . . , βm)T , that minimizes the sum of
squared errors between yi to the mapping of xi. In other
words, we seek a model β that minimizes ‖Xβ − y‖2, where

X is the n ×m matrix of row vectors X , (xT1 , . . . , x
T
n )T ,

and y is the column vector composed of response scalars
y , (y1, . . . , yn)T .

The optimal solution to this convex problem, known as
ordinary least squares (OLS), is given by [9]

β =
(
XTX

)−1

XT y . (1)

3.1 Monitoring OLS of Distributed Streams
Assume that the observations {(xi, yi)} are distributed

across k nodes, and that these observations are dynamic –
they change over time, as nodes receive new observations that
replace older ones. As data evolves, it is possible that the
previously computed model no longer matches the current
true model. We wish to maintain an accurate estimation β0
of the current global OLS model, β. The question is then
when to update the model.

The simplest way is to update β every time a new ob-
servation arrives at the nodes, using a straightforward or
incremental procedure. Though this gives the most accurate
model, it is also wasteful. It requires communicating the up-
date every time, and potentially disseminating the updated
model to all nodes. It is especially wasteful when the current
global model is similar to the old one.

Another simple solution the periodic algorithm: sending
updates once every T times [39, 4] guarantees a reduction in
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Figure 1: (a) Model fit for the traffic dataset from
Section 5.2, and (b) comparison with model error.

communication. The problem is that a fixed update schedule
must balance communication and error a priori. For large T
the estimate error may be unbounded for a long interval, yet
if model changes are infrequent we waste communication.

Recent approaches monitor the prediction error |y −Xβ0|,
where X, y are the current observations [36, 4], the model’s
R2 fit [3], or prediction error between divergent local models
and the hypothetical global model [12].

Monitoring prediction error is not always sufficient, how-
ever. First, prediction is not the only application of regres-
sion. In some settings [9, 30] we are interested in model
coefficients, rather than prediction performance. Yet predic-
tion error may be small even when the difference between
models is large. Consider the following example in m = 3
dimensions, with the precomputed model β0 = (1, 2, 3)T ,
the current model β = (1, 1, 1)T , and with the observation
x = (−0.95, 2.05,−0.95)T , y = βTx = 0.15. In this case the
prediction error is small, |xTβ0 − y| = 0.15, yet the models
are very different: ‖β0 − β‖ = 2.236.

Monitoring model fit is also tricky. Figure 1a shows the R2

fit of the true model β in an interpolation problem (described
in Section 5.2). The fit of the true model varies widely, and
it is not clear where to set the R2 monitoring threshold.
Figure 1b shows an example where both the model error
‖β−β0‖ and the fit of the monitored model β0 are increasing.

Thus, we aim to monitor the model estimation error itself.
Let β0 be the existing model, previously computed at some
point in the past (the synchronization time), and let β be the
hypothetical OLS model from current observations1. Given
an error threshold ε, our goal is to raise an alert if

‖β0 − β‖ > ε ,

while minimizing communication. Note that monitoring
model error is a more general approach: limiting model error
allows us to bound prediction error |xTβ0 − xTβ| through
Cauchy-Schwarz but not vice versa. Indeed, Sayed and
Lopez [21] estimate the expected model error and use it to
get expected prediction error.

4. MONITORING DISTRIBUTED LEAST
SQUARES WITH CONVEX SUBSETS

Monitoring distributed OLS models is difficult because the
global model cannot be inferred from the local model at each
node. Even when all current local models βj are similar to the

1β is hypothetical since we don’t actually compute it.
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Figure 2: Monitoring distributed OLS models is diffi-
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precomputed local models βj0, the current global model β may
be very different from the precomputed model β0. Consider
the example in Figure 2 with k = 2 nodes and m = 1. The
global model deviation is very large, β − β0 = 0.44, even
though local models are identical: β1 = β1

0 and β2 = β2
0 .

To overcome this difficulty, we turn to geometric moni-
toring. Geometric monitoring [15, 16] is a communication-
efficient approach that monitors whether a function of dis-
tributed data streams crosses a threshold. The key idea is to
impose constraints on local data at the nodes, rather than
on the function of the global aggregate. Given a function of
the average of all local data and the threshold, we compute a
convex safe zone for each node. As we show below, convexity
plays a key role in the correctness of this scheme. As long
as local data stay inside the safe zones, we guarantee that
the function of the global average does not cross a threshold.
Nodes communicate only when local data drifts outside the
safe zone, which we call a safe zone violation. Once that
happens, violations can be resolved, for example by gathering
data from all nodes and recomputing β0 and the safe zones.

To summarize, we want to impose conditions on the local
data at each node so that as long as they hold, ‖β − β0‖ ≤ ε.
The conditions should be “lenient” as possible – we wish to
minimize the number of violations.

4.1 Notation
Define A ,

∑n
i=1 xix

T
i = XTX and c ,

∑n
i=1 xiyi = XT y,

and rewrite Eq. (1) as β = A−1c. The global matrix A can

be written as the sum of local matrices A =
∑k
j=1 A

j , where

Aj is constructed from the local observations at node j.
Similarly, c =

∑k
j=1 c

j where cj is constructed from the local

observations at node j. Therefore, we can rewrite Eq. (1) as
a function of the sums of Aj , cj :

β =

(∑
j

Aj
)−1(∑

j

cj
)

= A−1c (2)

In our notation we use {Aj , cj}k instead of the original

observations {xi, yi}n. Let A0 =
∑k
j=1 A

j
0 and c0 =

∑k
j=1 c

j
0

be the global sums of local values at nodes during the last
sync time (when β0 was computed), and A =

∑k
j=1A

j , c =∑k
j=1 c

j be the current values. We define the local drifts as
the deviation of local data from its initial values during sync:
∆j = Aj −Aj0 and δj = cj − cj0.

We can now express global β and β0 as a function of the
averages of Aj , cj and Aj0, c

j
0. This will allow us to bound

model changes inside a convex subset. Recall β = A−1c.
Similarly, β0 = A−1

0 c0. Values averaged over nodes (rather



than summed) shall be denoted with ·̂. Hence initial values

Â0 =
1

k

k∑
j=1

Aj0 , ĉ0 =
1

k

k∑
j=1

cj0 , β̂0 = Â−1
0 ĉ0 ,

and current values

Â =
1

k

k∑
j=1

Aj , ĉ =
1

k

k∑
j=1

cj , β̂ = Â−1ĉ .

Note ( 1
k
A)−1 = kA−1 thus β̂ = Â−1ĉ = A−1c = β and

likewise β̂0 = β0. In other words, we can compute the OLS
model from the averages of local Aj , cj rather than the sums:

β =

(
1

k

∑
j

Aj
)−1(

1

k

∑
j

cj
)

= Â−1ĉ (3)

4.2 Convex Safe Zones
We propose to solve the monitoring problem by means of

“good” convex subsets, called safe zones, of the data space.
Each node monitors its own drift: as long as current values
at local nodes (Aj , cj) are sufficiently similar to their values
at sync time (Aj0, c

j
0), β0 is guaranteed to be close to β.

Formally, we define a convex subset C in the space of
matrix-vector pairs, such that (0m×m, 0m) ∈ C and

(∆, δ) ∈ C =⇒ ‖(Â0 + ∆)−1(ĉ0 + δ)− Â−1
0 ĉ0‖ ≤ ε , (4)

for any drift (∆, δ), where 0m×m and 0m are the m×m zero
matrix and length m zero vector. Ideally, C should be “big”:
as local data slowly drifts over time, it is desirable that drifts
remain in C (otherwise communication is needed). Convexity
plays a key role in our paradigm: if all drifts are in C, then
their average is also in C.

Given such a subset C, the basic monitoring paradigm is
simple. As long as (Aj −Aj0, cj − c

j
0) ∈ C, node j can remain

silent. If all nodes are silent, then ‖β̂0 − β̂‖ = ‖β0 − β‖ ≤ ε.
If a violation of the local condition does occur at any node j,
some form of violation recovery must take place, for example
recomputing the global model and restarting monitoring.

We now prove the correctness of the paradigm.

Lemma 1. Let C be a convex subset that satisfies Eq. (4).
If (∆j , δj) ∈ C for all j, then ‖β − β0‖ ≤ ε.

Proof. Express Â, ĉ using the average of local deviations:

(Â, ĉ) =
1

k

∑
j

(Aj , cj)

= (Â0, ĉ0) +
1

k

∑
j

(Aj −Aj0, c
j − cj0)

= (Â0, ĉ0) +
1

k

∑
j

(∆j , δj) (5)

And from C’s convexity,

∀j (∆j , δj) ∈ C =⇒ 1

k

∑
j

(∆j , δj) ∈ C (6)

Denote (∆̂, δ̂) = 1
k

∑
j(∆

j , δj) and rewrite Eq. (5) and (6):

(Â, ĉ) = (Â0, ĉ0) + (∆̂, δ̂)

∀j (∆j , δj) ∈ C =⇒ (∆̂, δ̂) ∈ C

Time
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Substitute in Eq. (4) to finally obtain:

∀j (∆j , δj) ∈ C =⇒ ‖(Â0 + ∆̂)−1(ĉ0 + δ̂)− Â−1
0 ĉ0‖ =

‖β̂ − β̂0‖ = ‖β − β0‖ ≤ ε

which completes the proof.

4.3 Infinite and Sliding Window
We differentiate between two different variations for com-

puting the global model: sliding window and infinite window.
In the sliding window model, β is computed from the last W
samples seen at each node, and similarly β0 is computed from
the last W samples before sync. Conversely, in the infinite
window model β is computed over all observations seen thus
far, while β0 is computed from all observations seen until
last sync. Figure 3 illustrates these two models. Though the
sliding window is clearly more practical, the infinite window
model may be useful in some settings and so we discuss both.

Sliding Window. In the sliding window model each node
computes Aj from the W samples seen at node j, while
Aj0 (and hence Â0) is built from the last W samples before
sync. Computing ∆j and δj , however, requires substracting
observations that left the sliding window. If Aj0, c

j
0 and Aj , cj

do not overlap (Figure 3, top), then clearly ∆j = Aj−Aj0 and

δj = cj − cj0. It is also possible, however, that the current
window overlaps the window used to build β0. Figure 3
(middle) illustrates this case: ∆j , δj become the sum of new
samples from Aj , cj minus the sum of old (non-overlapping)
samples from Aj0, c

j
0.

The convex constraint C on (∆, δ) for this model is:

ε‖Â−1
0 ∆‖+ ‖Â−1

0 δ‖+ ‖Â−1
0 ∆β0‖ ≤ ε , (7)

where ‖A‖ is the L2 operator norm of the matrix A. The
derivation of the convex constraint C is quite technical, and
the details are available in Appendix A.

Alg. 1 shows the resulting monitoring algorithm each node
runs. Note monitoring does not require any matrix inversions.
Each node applies the local constraint from Eq. (7) to its own
data. When a violation occurs at any node, it is reported
to a coordinator node. The coordinator (Alg. 2) polls all
nodes for their local data, computes a updated global model
β0 and distributes it to all nodes, along with updated Â−1

0

used in the constraint. Monitoring then resumes. This is
the simplest violation resolution protocol. We briefly discuss



Algorithm 1 Node j update with new observation x, y.

1: (Aj , cj) ← (Aj + xTx , cj + xT y)
2: Insert new x, y to head of sliding window.
3: Retrieve old xw, yw exiting end of sliding window.
4: (Aj , cj) ← (Aj − xTwxw , cj − xTwyw)
5: (∆j , δj) ← (Aj −Aj0 , cj − c

j
0)

6: if ε‖Â−1
0 ∆j‖+ ‖Â−1

0 δj‖+ ‖Â−1
0 ∆jβ0‖ ≤ ε then

7: Report violation to coordinator.
8: Receive new β0, Â−1

0 from coordinator.

9: (Aj0 , c
j
0) ← (Aj , cj)

10: end if

Algorithm 2 Coordinator violation resolution algorithm.

1: Poll all nodes for Aj , cj .
2: Compute updated Â−1

0 , β0 from Aj , cj and distribute.

more sophisticated schemes [14, 15, 5] in Section 6. Similarly,

the coordinator can use any algorithm to compute Â−1
0 , β0.

Infinite Window. In this model the local drifts of each node
i are ∆j = Aj −Aj0 and δj = cj − c0 as before, but Aj and
cj are computed from all observations ever seen at the node.
We can use the same convex constraint from Section 4.3,
but in this case ∆j grows indefinitely, and so the condition
‖Â−1

0 ∆‖ < 1 is not easy to satisfy, and may cause frequent
synchronizations. Instead, we start from Eq. (9) and develop
a more lenient constraint for this model. The resulting
algorithm will be similar to Alg. 1, but without lines 2–4
and with the updated constraint in line 6. The coordinator
algorithm is the same.

The convex constraint for the infinite window case is

‖Â−1
0 δ‖+ ‖Â−1

0 ĉ0‖ ≤ ε . (8)

Appendix B details its derivation.
Note that δ accumulates more samples as time passes,

while Â0 remains fixed. As δ’s “weight” (number of samples)

grows beyond Â0’s, the constraint no longer holds and syn-
crhonization is needed. One way to avoid this is to replace
‖Â−1

0 δ‖ in Eq. 8 with ‖∆−1δ‖, which is correct (using the
same line of arguments in the Appendix). Alternatively, note
that after each sync the samples from all δj ’s are added to
the new Â0, so its “weight” is roughly doubled. Thus Â0’s
weight grows exponentially, and synchronizations become
increasingly rare.

4.4 Norm Constraint and the Sliding Window
The sliding window model constraint Eq. (7) requires

‖Â−1
0 ∆j‖ < 1 (embodied as ε‖Â−1

0 ∆j‖ + · · · ≤ ε). This
requirement depends only the independent variables Xj , and
does not depend in any way on the dependent variable yj . It
is quite possible that β is close to β0, yet the norm constraint
is violated, incurring extra communication. Fortunately, for
many reasonable data distributions, if window size W is
linear in the number of independent variables m then the
norm constraint is satisfied almost surely. The details are in
Appendix C.

The analysis assumes that consecutive observations in the
data stream are independent. Consider, however, the case
where some variables come from an over-sampled sensor, or
measure slowly changing phenomena. In such cases ‖∆‖

grows faster, linear in the number of identical observations,
and will overwhelm A−1

0 faster. This can result in more
frequent violations of the constraint, hence more communica-
tion. Such cases can be mitigated by increasing the window
size W , subsampling (since data changes slowly anyway), or
by the use of generalized least squares [9] with an appropriate
scaling matrix for the time series process (Section 4.5).

4.5 Regularization and Variants
Our scheme generalizes very well to more sophisticated

least squares variants [9]. We show two examples.
In regularized least squares the minimized function includes

a regularization term to mitigate the effects of outliers and
avoid overfitting. A commonly used form is Tikhonov reg-
ularization, also known as ridge regression, which finds β
that minimizes ‖Xβ− y‖2 + ‖RTRβ‖2, where R is a suitable
regularization matrix R. For R = 0 the problem reduces
to ordinary least squares, and for R = λI it reduces to L2

regularization. The optimal solution to this problem is

β =
(
XTX +RTR

)−1

XT y .

This solution is quite similar to Eq. (1) and indeed we can
monitor it using the same technique: compute Bj0 = Aj0 +
1
k
RTR and the resulting B0, B̂0, and use them in Lemma 1

instead of Aj0, A0, Â0.
Similarly, generalized least squares handles correlated mea-

surements and errors by minimizing the Mahalanobis distance
(Y −Xβ)TS−1(Y −Xβ), where S is the covariance matrix of
the residuals (errors). Again, GLS reduces to OLS if S = I.
As before, we can monitor the optimal solution

β =
(
XTS−1X

)−1

XT ỹ , where ỹ , S−1y

by monitoring B =
∑
i S
−1xix

T
i and d =

∑
i xiỹi. GLS is

particularly useful in time series analysis, where S is the pro-
cess’ structured covariance (or autocorrelation) matrix [32].

5. EVALUATION
We evaluated performance of our monitoring algorithm,

DILSQ, for Distributed Least SQuare monitor, using sim-
ulations with two synthetic and two real-world distributed
datasets. For each dataset, we run through the data, simulate
the nodes (Alg 1) and the coordinator (Alg 2), count mes-
sages, and keep track of the resulting true models β and the
current monitored models β0. Our simulations use discrete
time (rounds), and we use the OLS variant of our algorithm
with sliding window (Section 4.3), except for the gas sensor
dataset which uses the GLS variant (Section 4.5).

Our baseline is the naive algorithm, where each node sends
every new measurement to a centralized location each round.
We compare DILSQ to the T -periodic algorithm, denoted
PER(T ), a simple sampling algorithm that sends updates
every T rounds. Though PER cannot guarantee maximum
error, it can achieve arbitrarily low communication.

Our main performance metric is communication, measured
in normalized messages – the average messages sent per
round by each node [3]. Note that communication of the
naive algorithm is always 1. When calculating and reporting
results, we skip the first (incomplete) window (or the first
epoch for the drift dataset described below).

DILSQ is designed to communicate as little as possible
while always maintaining maximum model error below ε. It
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guarantees maximum model error below the user-selected
threshold ε, but PER does not. Hence, when comparing
the two, we find a posteriori the maximum period T (hence
minimum communication) for which the maximum error of
PER(T ) is equal or below that of DILSQ. Note this gives
PER an unrealistic advantage. First, in a realistic setting we
cannot know a priori the optimal period T . Second, model
changes in realistic settings are not necessarily stationary:
the rate of model change may evolve, which DILSQ will
handle gracefully while PER cannot.

5.1 Synthetic Datasets
We use two types of synthetic dataset. In the fixed dataset,

the true model βtrue ∈ Rm is fixed, with elements drawn i.i.d
from N [0, 1]2. We generate R rounds with k nodes, each
receiving at each round a new data vector x of size m and
scalar y. x is drawn i.i.d from N(0, 1), and y = xTβtrue + n
where n ∼ N(0, σ2) is Gaussian white noise of strength σ.
In the drift dataset the coefficients of βtrue change rapidly
during 25% of one epoch, and are fixed during the rest of
the epoch. We generate observations for E epochs using the
same procedure. For each experiment we generate new data.

Default parameter values are k = 10 nodes, m = 10
dimensions, noise magnitude σ = 10 (to generate interesting
results given the large window), window size W = 1300 and
maximum error threshold ε = 0.5, which is quite strict3. We
generate R = 16900 rounds for the fixed dataset, or E = 5
epochs of 3900 rounds each for drift dataset.

Figure 4 shows the behavior of the monitoring algorithm
over such a simulation on the drift dataset with ε = 1.35
and 3 epochs. For this configuration, DILSQ achieves com-
munication of 0.01 messages per node per round, and the
model error is always below the threshold. Conversely, the
equivalent PER(100) algorithm is unable to maintain the
error below the threshold, which would require a higher up-
date frequency. When model changes in β are large and
frequent DILSQ performs more syncrhonizations, resulting
in updated β0 = β that decreases the error. When β is stable
(it is never truly constant due to noise), syncrhonizations
are much rarer. The periodic algorithm, on the other hand,

2therefore ‖β‖2 ∼ χ2
m

3Given that elements of both β0 and β are i.i.d N(0, σ), then
‖β−β0‖√

2σ
∼ χm. The probability that a random e = β − β0

will overwhelm ε is P = 1− CDFχm( ε√
2σ

) > 1− 10−8.
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Figure 5: Communication for DILSQ (black) and
periodic algorithm tuned to achieve same max error
(green) at different threshold values. DILSQ com-
munication on fixed model drops to zero for more
permissive ε (not shown on logarithmic scale).

syncrhonizes every 100 iterations even during the periods
where β changes very little.

5.1.1 Effect of Threshold
Figure 5 shows the communication required for different

threshold levels for the DILSQ algorithm, and the minimal
communication required to match DILSQ using the PER
algorithm with optimal period, as discussed above. For the
fixed model dataset (Figure 5a) neither algorithm needs to
sync very often to provide an accurate estimate. Had there
been no noise, a single initial synchronization would have
been sufficient, regardless of threshold. Note that for more
permissive threshold values (or smaller noise magnitude σ)
DILSQ achieved zero communication (beyond initial sync)
for the fixed dataset (not shown in this log-scale figure).

Performance on the drift dataset (Figure 5b) is more in-
teresting. When ε is very strict, both algorithms perform
roughly the same, with normalized messages of 0.25–0.75. As
ε grows DILSQ develops an increasing advantage over PER
with optimal period. The optimal period must be low enough
to match the quickly changing model, and is wasteful on the
intervals where β is quiescent. For our dataset, βtrue is con-
stant during roughly 75% of each epoch. For datasets with
larger quiescent periods (or smaller window), the advantage
of DILSQ will be even larger.
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Figure 6: Communication vs. different parameters for the fixed (green) and drift (black) datasets. (a) shows
DILSQ is scalable: communication increases slowly with number of nodes. (b) shows communication is fairly
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5.1.2 Scalability
Figure 6 explores how performance of DILSQ scales with

different parameters.
Figure 6a shows communication for different values of the

number of nodes k. We observe communication increases
slowly, remaining below 10% even with 500 nodes.

Figure 6b shows normalized messages obtained at different
noise magnitudes. Below a certain level of noise, communi-
cation is fairly constant, reflecting the choice of threshold
ε. At lower values of noise (not shown), DILSQ requires no
communication for the fixed model dataset, beyond the first
window of W observations.

Figure 6c compares communication with the number of
independent variables m on the drift dataset, confirming
our analysis in Section 4.4. When window size W is fixed,
communication grows linearly with dimension m. However,
if W grows linearly with m, we see that communication
remains very low (and in fact decreases a little). In both
cases we keep epoch length to be 3W to maintain the same
rate of change of β across the window.

Similarly, Figure 6d shows what happens when the win-
dow size is too small compared to the value predicted in
Section 4.4. It depicts communication obtained on the fixed
dataset, as a function of window size W . As window size
decreases below 144m (see Appendix C), constraint viola-
tions are more frequent as data periodically overwhelms the
norms in Eq. (7). As we will see below, in practical settings
a much lower W can be used, since data values have finite
ranges, change slowly, and model changes are more frequent.

5.2 Traffic Monitoring
Consider the following interpolation problem: given peri-

odical traffic measurements (average velocity every minute)
from a small number of sensors embedded along a long road,
we wish to infer the current average velocity at every point
along the road. We aim to solve this problem using polyno-
mial regression. Note that in this case we have no good way
to measure the true error of our model, since we do not have
sensors in other locations. Moreover, as Figure 1 (derived
from the same data below) shows, monitoring model fit (R2)
is also problematic (Section 3.1). Instead, we rely on the fact
that we can limit the model error ‖β − β0‖.

We used two weeks’ worth of velocity data collected dur-
ing November 2014 from k = 6 sensors located along the
Grenoble south ring in France [27]. Reported measurements
of each sensor are aggregated once per minute, and when
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Figure 7: Velocity measurements from 8am–9am
(pink dots), and interpolated velocity at 9am: true
model (dashed) and DILSQ approximation (black).

measurements are unavailable average velocity was assumed
to be unchanged. The road is composed of several sections,
and we model it as the interval [1, 18], where the sensors
are located at l ∈ {1, 3, 7, 11, 14, 18} . The data from every
sensor at location l is always x = [1, l, l2, l3, l4], and y is the
velocity measured by the sensor. Given model β built from
measurements from the last hour (W = 60), the interpolated
velocity at location i ∈ [1, 18] is [1, i, i2, i3, i4]β.

Figure 7 shows the result of one such a prediction for
9am on Nov 1 2014, produced using ε = 25. The pink
dots represent average velocity measurements of each sensor
between 8am to 9am. The dashed purple line is velocity
interpolated using the exact least squares model β, while
the black line is interpolated using DILSQ approximation
β0. Observe the resulting interpolation is fairly accurate,
with errors below 10km/h across of range of interpolated
positions.

Figure 8 explores the communication of DILSQ and match-
ing PER with various levels of ε, for window sizes 60 and
30. DILSQ is superior to PER across all ranges except the
unrealistically strict ε = 5 (average ‖β‖ is roughly 100). For
one hour window, DILSQ obtains 0.12 normalized messages
for ε = 25 used in Figure 7, and can reduce communication
to 0.03 for ε = 85. For a much smaller window size of half an
hour, DILSQ requires more communication but still achieves
considerable communication reduction: it requires 20% com-
munication for ε = 25 and can use as little as 5% for ε = 85.
Finally, we observe that the communication gap between
DILSQ and PER increases considerably with smaller window
size, as β changes more quickly and is more sensitive to noise.
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Figure 8: Communication for DILSQ (black) and
periodic algorithm (green) on the traffic dataset at
different ε values.

5.3 GLS on Gas Sensor Time Series
Data in this experiment consists of measurements collected

by an array of 16 chemical sensors recorded at a sampling
rate of 25Hz for 5 minutes, resulting in 7500 data points
for each sensor. This dataset is described in [42], and is
publicly available [19]. The original goal in [42] is to identify
certain gas classes given high-level frequency features. Since
the original target variable is nominal and fixed throughout
the run in each experiment, we defined a different regression
problem. We divided the 16 sensors to k = 4 “nodes”, where
in each node three sensors serve as the data x while the
remaining sensor serves as the response y. We also added
a constant variable 1 to x, to allow intercept in the model,
hence m = 4. The regression task is therefore to predict the
value of the 4th sensor in each node using the first three.

Note that in this setting measurement errors cannot be
assumed to be independent, so an OLS models is ill-suited
here. Instead, we assume errors are an AR(1) process and
monitor the generalized least squares model [9]. We used
an AR(1) parameter value φ = 0.95 for the autocorrelation
matrix [32]. Average ‖β‖ is 0.3, so we use ε = 0.1, resulting
in 0.17 normalized messages for DILSQ. We note that using
an OLS model with the same ε resulted in 1.15 normalized
messages – the OLS model had to be updated very frequently
as it was unstable.

We repeated the experiment for various ε values in the
range [0.01,1] (figure omitted for lack of space). For ε < 0.1
DILSQ is clearly superior: PER must communicate every
round (T = 1) in order to match DILSQ, which achieves
communication between 0.2 and 1 (for ε = 0.01). When ε is
more permissive, however, PER is superior and can obtain
the same maximum error with less communication: with an
extremely permissive ε = 1, DILSQ requires 0.04 normalized
messages while PER requires 0.015 for the same maximum
error (though, of course, optimal T must be known a priori
to achieve this performance).

6. CONCLUSIONS
DILSQ is the first communication-efficient monitoring al-

gorithm for least-squares regression models that limits the
error in model coefficients. By monitoring the deviation of
the existing model from the true model, our approach is able
to avoid costly communication and model recomputations,
while guaranteeing bounded model error. Each round, each
node checks a simple local constraint on its own local data; if

it is satisfied, communication is avoided. If not, violation is
resolved by collecting data from all nodes and computing a
new global model. Evaluation on real-world datasets shows
a communication reduction of up to two orders of magnitude.
Simulations on synthetic datasets show our algorithm scales
well with the number of nodes.

We emphasize that correctness of the local constraint is
independent of network topology and the algorithm used
to compute the model β0. Hence it is straightforward to
adapt our method to other settings. First, the role of the
coordinator can easily be replaced with convergecasting [4,
39], yielding a peer-to-peer monitor. Alternatively, our dis-
tributed monitoring approach can easily be combined with an
efficient distributed computation technique, enjoying the best
of both worlds: the current model can be computed during
sync using any of several existing algorithms, be they exact,
iterative, or distributed [7, 21]. Similarly, our method is
compatible with recent communication reduction techniques
from the field of distributed streams, such as reference point
prediction [6], individualized constraints or slack [14, 5], and
local violation resolution [15]. We leave such extensions for
future work.
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APPENDIX
A. SLIDING WINDOW CONSTRAINT

To find a convex subset C satisfying the condition of Eq. (4),
we first review some notions and well-known results on norms
of real matrices [29]. We use the L2 norm throughout.

Definition 1. Let A be a matrix. Its operator norm, or
spectral norm, hereafter just norm, is defined as

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

It follows that for a matrix A and vector x, ‖Ax‖ ≤ ‖A‖‖x‖.
Moreover, for any two matrices A,B: ‖A+B‖ ≤ ‖A‖+‖B‖

and ‖AB‖ ≤ ‖A‖‖B‖. If A is a symmetric matrix, ‖A‖ =
maxi |λi| where λi are the eigenvalues of A. Additionally, if
A,B are symmetric then ‖AB‖ = ‖BA‖.

Lemma 2. For square A with ‖A‖ < 1, (I-A) is invertible,
the inverse being the Neumann series [26]: (I − A)−1 =
I +A+A2 +A3 + . . . .

Lemma 3. If A is square and ‖A‖ < 1, then

‖(I +A)−1‖ = ‖I −A+A2 −A3 + . . . ‖ ≤ 1

1− ‖A‖ .

Proof. Apply Lemma 2 and the triangle inequality:

‖ (I +A)−1 ‖ = ‖I −A+A2 −A3 +A4 − . . . ‖

≤ ‖I‖+ ‖A‖+ ‖A2‖+ · · · ≤ 1

1− ‖A‖ ,

since it is the sum of a geometric series.

We begin by subtracting and adding (Â0 + ∆)−1ĉ0 to the
bounded expression in Eq. (4):

‖(Â0 + ∆)−1(ĉ0 + δ)− Â−1
0 ĉ0‖ =

‖(Â0 + ∆)−1δ +
(

(Â0 + ∆)−1 − Â−1
0

)
ĉ0‖ .

Applying the triangle inequality, we obtain:

‖(Â0 + ∆)−1δ‖︸ ︷︷ ︸
E1

+
∥∥∥((Â0 + ∆)−1 − Â−1

0

)
ĉ0

∥∥∥︸ ︷︷ ︸
E2

. (9)

Next, note that

(Â0 + ∆)−1 =
(
Â0

(
I + Â−1

0 ∆
))−1

=
(
I + Â−1

0 ∆
)−1

Â−1
0

and, assuming ‖Â−1
0 ∆‖ < 1, we apply Lemma 2 to obtain:

(Â0 + ∆)−1

=
(
I − Â−1

0 ∆ + Â−1
0 ∆Â−1

0 ∆− . . .
)
Â−1

0 (10)

= Â−1
0 − Â

−1
0 ∆Â−1

0 + Â−1
0 ∆Â−1

0 ∆Â−1
0 − . . . (11)



Note the assumption ‖Â−1
0 ∆‖ < 1 is not trivial, and we

discuss it in Section 4.4 and Appendix C.
We now apply Eq. (10) and Lemma 3 to E1 in Eq. (9):

E1 = ‖(Â0 + ∆)−1δ‖

=
∥∥∥(I − Â−1

0 ∆ + Â−1
0 ∆Â−1

0 ∆− . . .
)
Â−1

0 δ
∥∥∥

≤ ‖I − Â−1
0 ∆ + Â−1

0 ∆Â−1
0 ∆− . . . ‖‖Â−1

0 δ‖

≤ ‖Â−1
0 δ‖

1− ‖Â−1
0 ∆‖

(12)

Similarly, we apply Eq. (11) to E2:

E2 =
∥∥∥((Â0 + ∆)−1 − Â−1

0

)
ĉ0

∥∥∥
=
∥∥∥(Â−1

0 − Â
−1
0 ∆Â−1

0 + (Â−1
0 ∆)2Â−1

0 − · · · − Â
−1
0

)
ĉ0

∥∥∥
=
∥∥∥−(Â−1

0 ∆ + (Â−1
0 ∆)2 − . . .

)
Â−1

0 ĉ0

∥∥∥
=
∥∥∥(I + Â−1

0 ∆− (Â−1
0 ∆)2 + . . .

)
Â−1

0 ∆β0

∥∥∥ (13)

Applying Lemma 3 to Eq. (13) we obtain:

E2 ≤
∥∥∥I + Â−1

0 ∆− (Â−1
0 ∆)2 + . . .

∥∥∥ ‖Â−1
0 ∆β0‖

≤ ‖Â−1
0 ∆β0‖

1− ‖Â−1
0 ∆‖

(14)

Substituting Eq. (12) and (14) in Eq. (9) and rearranging,
we arrive at the convex constraint C on (∆, δ):

ε‖Â−1
0 ∆‖+ ‖Â−1

0 δ‖+ ‖Â−1
0 ∆β0‖ ≤ ε . (15)

This convex constraint allows us to apply Lemma 1. Sat-
isfying Eq. (15) guarantees Eq. (4) is also satisfied, since
the bounded expression is larger. Moreover, this bound is a
subset of ‖Â−1

0 ∆‖ < 1, a necessary condition for correctness,
meaning we don’t have to check it explicitly.

B. INFINITE WINDOW CONSTRAINT
A matrix A is positive definite, denoted A � 0, if xTAx > 0

for all non-zero vectors x. This implies a partial order-
ing of square matrices: we denote A � B if A − B � 0.
Note A � B � 0 =⇒ ‖A‖ > ‖B‖. Moreover, A �
B � 0 =⇒ B−1 � A−1 � 0. Finally, observe that
‖(A + B)−1u‖ ≤ ‖A−1u‖, since A + B � A and there-
fore A−1 � (A+B)−1. Similarly, ‖

(
(A+B)−1 −A−1

)
u‖ =

‖
(
A−1 − (A+B)−1

)
u‖ ≤ ‖A−1u‖.

We apply the above to Eq. (9). Note that by construc-
tion, ∆j =

∑
i∈Sj xix

T
i , where Sj is the set samples seen

by node j since the last sync time, is symmetric and posi-
tive definite. Similarly, Â0 is symmetric positive definite by
construction. Thus, E1 = ‖(Â0 + ∆)−1δ‖ ≤ ‖Â−1

0 δ‖, and

E2 =
∥∥∥((Â0 + ∆)−1 − Â−1

0

)
ĉ0

∥∥∥ ≤ ‖Â−1
0 ĉ0‖.

The final convex constraint for the infinite window case is
therefore

‖Â−1
0 δ‖+ ‖Â−1

0 ĉ0‖ ≤ ε . (16)

C. WINDOW SIZE AND DIMENSIONS
We will show that sliding window W linear in m will avoid

overwhelming ‖Â−1
0 ∆j‖ in Eq. (7).

For any matrix A, denote its largest and smallest eigen-
values by λmax(A) and λmin(A). Recall that Â0 = 1

k
Aj0 and

that in the sliding window model4, ∆j = Aj −Aj0, and that
all these matrices are symmetric by construction. Moreover,
if A is symmetric then ‖A‖ =

√
λmax(ATA) = |λmax(A)|.

Finally, λmax(A−1) = 1
λmin(A)

, and therefore

‖Â−1
0 ‖ =

∥∥∥∥ 1

k
A−1

0

∥∥∥∥ =
k

|λmin(A0)| =
k

λmin(A0)
.

Applying the above to the norm constraint:

‖Â−1
0 ∆j‖ ≤ ‖Â−1

0 ‖‖∆
j‖ =

k

λmin(A0)
|λmax(Aj −Aj0)|

≤ k

λmin(A0)
|λmax(Aj)− λmin(Aj0)| . (17)

The last step is obtained from [17]:

A,B symmetric =⇒ λmax(A+B) ≤ λmax(A) + λmax(B)

and since λmax(−B) = −λmin(B).
The bound in Eq. (17) depends on the distribution of the

data. Assume the elements of X are drawn i.i.d from N(0, 1),
then the Marchenku-Pastur law [22] limits the spectrum of
the Wishart matrix XTX.

Lemma 4. Let X ∈ Rw×m drawn as above such that m
W

converges to 0 < b ≤ 1 as W and m grow to infinity5. Let
M = 1

W
XTX, and denote its largest and smallest eignevalues

by λmax(M), λmin(M). Then almost surely

λmax(M)→
(

1 +
√
b
)2

, λmin(M)→
(

1−
√
b
)2

.

Bai and Yin [2] extended this result to any zero-mean dis-
tribution with unit variance and finite fourth moment [31].
These can be achieved using [5], for example.

Note A0 =
∑k

1 A
j
0 = X̃0

T
X̃0, where X̃0 ∈ RkW×m is the

concatenation of all local data matrices. Applying Lemma 4
to Eq. (17), we obtain

k|λmax(Aj)− λmin(Aj0)|
λmin(A0)

=
kW

∣∣λmax( 1
W
Aj)− λmin( 1

W
Aj0)

∣∣
kWλmin( 1

kW
A0)

=
|λmax( 1

W
Aj)− λmin( 1

W
Aj0)|

λmin( 1
kW

A0)
,

which converges almost surely to

fk(b) ,
|(1 +

√
b)2 − (1−

√
b)2(

1−
√

b
k

)2 =
4
√
b(

1−
√

b
k

)2 . (18)

In practice, Eq. (7) is the sum of 3 norms, so we require

‖Â−1
0 ∆j‖ < 1

3
. Solving 0 < fk(b) < 1

3
for b with k > 1 yields

m
W
≤ gk , 72k2 + k − 24k

3
2 − 4

√
3

√
108k4 + 15k3 − 72k

7
2 − k 5

2 .

For given k > 1, selecting W ≥ m
gk

guarantees ‖Â−1
0 ∆j‖ < 1

3

almost surely. The constant 1
gk

grows slowly: for k = 2, the

window size W must be at least 1
g2
≈ 111.06m; for k = 10,

W ≥ 1
g10
≈ 129.02m; and for k = 100, W ≥ 1

g100
≈ 139.22m.

In fact, gk converges: limk→∞gk = 1
144

, so a window size of
W ≥ 144m is sufficient for any k.

4We discuss the worst case, when Aj , Aj0 do not overlap.
When they do, ∆j ’s effective window size is less than W .
5Trivially, if W = m

b
.


