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Abstract The Bayesian method is widely used in image
processing and computer vision to solve ill-posed problems.
This is commonly achieved by introducing a prior which,
together with the data constraints, determines a unique and
hopefully stable solution. Choosing a “correct” prior is how-
ever a well-known obstacle.

This paper demonstrates that in a certain class of motion
estimation problems, the Bayesian technique of integrating
out the “nuisance parameters” yields stable solutions even
if a flat prior on the motion parameters is used. The advan-
tage of the suggested method is more noticeable when the
domain points approach a degenerate configuration, and/or
when the noise is relatively large with respect to the size of
the point configuration.

Keywords Motion estimation - Bayesian analysis -
Nuisance parameters

1 Introduction

Numerous restoration and parameter estimation algorithms
overcome ill-posed problems by assuming a prior probabil-
ity over the space of admissible solutions. It is well-known
in the computer vision community that a suitable prior—for
example, one which assigns higher probability to smoother
surfaces or slowly changing optical flow fields—helps to
“stabilize” the problem and often yields a unique solution.
But it is also well-known that there is no perfect prior. In-
stability also hinders feature-based motion recovery, even
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in relatively simple cases. The problem is quite simple to
define: given noisy measurements of “domain points” {p;}
and “range points” {g;}, one seeks a motion (or equivalently
a transformation) T from a certain parametric family such
that on the average, T (p;) is close to g; (there exist more
sophisticated methods, to be discussed shortly). This prob-
lem is highly ill-posed in some cases, and it is desirable to
stabilize the solutions. That may be achieved by choosing
a prior which, for example, penalizes large motions—alas,
that will throw us back to the problem of choosing a “good”
prior.

The goal of this paper is to show how some simple mo-
tion estimation problems can be stabilized not by a prior,
but by integrating out “nuisance parameters” in the Bayesian
spirit. 1-3 below informally summarize the main features of
the suggested method:

1. The probability densities of the parameters are obtainable
in closed form, but some of the expressions are involved.

2. The suggested approach yields a distribution with a
unique maximum likelihood (ML hereafter) estimate in
some cases in which there exist an infinite number of so-
lutions, all of which are equivalent under the so-called
“algebraic” and “geometric”’ motion recovery methods.

3. A transformation is assigned a high likelihood when it
not only brings the domain points close to the corre-
sponding range points, but when it has a large “support”,
in the sense that it brings a large measure of points which
are close to the domain points, to points which are close
to the range points. If the range points are in a degen-
erate configuration, the ML estimate is also degenerate,
and it collapses the entire domain space to a linear affine
variety (subspace or translated subspace) spanned by the
range points. As the points approach degeneracy, the ML
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estimate does not oscillate, but also smoothly approaches
degeneracy.

1.1 The Structure of the Paper

The main goal is to calculate the probability density
f(T|p,q) for a transformation 7, where p resp. g is
the noisy measurement of a domain resp. range point. If
this problem is solved, and if measurement noise is inde-
pendent for distinct domain-range pairs, then the density
f(Tpi,qi };’: 1) can be calculated by multiplying the den-
sities for the individual pairs. It turns out that in some cases
the calculation for a single domain-range pair cannot be car-
ried out directly, but that can be overcome by first calcu-
lating the density when the number of degrees of freedom
(d.o.f.) of the domain points is equal to the d.o.f. of the trans-
formation, and then using this result to calculate for a single
pair. Thus for example in Sect. 3 the density of a, b for the
transformation x — ax + b is calculated for two domain-
range pairs, and this result is used in Sect. 4 to calculate the
density for a single pair.

Linear and affine transformations from the line to itself
are discussed in Sects. 2, 3, 4. In Sect. 5 linear transforma-
tions from the plane to itself are analyzed, and concluding
remarks are offered in Sect. 6. Appendix carries some tech-
nical points related to Sect. 2.

1.2 Related Previous Work on Motion Estimation

Much of the previous work concerning motion estima-
tion given matching features concentrated on what are of-
ten called the “algebraic method” and “geometric method”
(e.g. [7], pp- 76-78). Given domain {p;} and range {g;}
points, and an admissible family of transformation T, the
algebraic method searches for 7 € T which minimizes
YT (pi) — qi ||2. The geometric method—which is usu-
ally superior to the algebraic—seeks two “legal” point
sets, {p;} and {g;}, such that there exists a 7 € T with
T(pi) =q; (.e. {p;} and {g;} are “legal” with respect to
T) and Y, (15 — pill® + 1@ — qi1%) is minimal. A rigor-
ous study of these problems and others in 2D and 3D is
given in [3, 7, 10, 11, 14, 19, 20], which also describe and
reference a great deal of previous work. Whenever the al-
gebraic and geometric methods yield identical results—as
in the case when the d.o.f. of the domain points equals the
transformation d.o.f.—I’1l refer to them as “classical meth-
ods”. Torr [19], who addresses 3D motion, offers an illu-
minating treatment of Bayesian recovery of geometry and
motion, and also discusses the possibility of integrating out
the nuisance parameters which is pursued in this paper, but
he eventually assumes “local linearity” of a certain mani-
fold (which is directly related to the motion parameters),
and does not carry out the explicit integration. Most other

Bayesian studies on motion estimation have not touched
on the nuisance parameters. Some notable exceptions are
[15, 17, 18]. In [16], integration over the nuisance parame-
ters is applied to curve fitting.

The method presented here (at least for the problems
studied) offers a stable solution in the case of degeneracy
or near degeneracy (Sects. 4, 5). It is different from previous
work on degeneracy in that it does not pursue any model
selection [19, 21, 22, 24], but “automatically” recovers a
degenerate/near-degenerate transformation when appropri-
ate.

The papers [6, 8, 9, 13] share some common grounds
with this paper—mainly the idea of integrating out the nui-
sance parameters—but they proceed differently. Also, they
address only straight line fitting.

1.3 Previous Related Work in which I Cooperated

Some of the ideas in this work were presented in the
Dagstuhl workshop on “Theoretical Foundations of Com-
puter Vision: Geometry, Morphology, and Computational
Imaging”, 2002 [12]. Integrating out the nuisance parame-
ters was applied to the recovery of epipolar geometry in
work which appeared in the 2003 International Conference
on Computer Vision [4] (of which an extended version ap-
peared in [5]) and to shape fitting in [23]. Some related work
was also presented in the workshop on Bayesian inference
and maximum entropy methods, Garching 2004.

2 A Toy(?) Problem: Linear Transformation from % to
Itself

Recovery of motion may typically be viewed as the recov-
ery of a transformation between two real vector spaces. Start
with the simplest case—a linear transformation from the line
to itself. This is a surprisingly subtle problem. The advan-
tages of tackling it are twofold: first, it captures the method’s
spirit. Second, recovering one dimensional transformations
between sets of epipolar lines can assist in the recovery of
3D motion (e.g. [2], p. 219). Although these transformations
are non-linear, they can be approached using the method pre-
sented in Sects. 2—4.

Assume then that a linear transformation from the line
to itself, x — ax, is given, as well as noisy measurements
of a domain point p and range point g. As [6, 13] insight-
fully point out, the problem of estimating a is different than
estimating a line which passes through (or, in the general
case, close to) the measurement points. Clearly, both the al-
gebraic and geometric methods will yield g/p as the opti-
mal estimate of a. However, it is easy to devise examples
in which this estimate is not a good one. Assume for exam-
ple that p = 0.001, g = 0.1, and the measurement noise is
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Fig. 1 If noisy estimates of a domain point p and range point g are
given, the classical approach will rank the transformation f as better
than g, since f maps p to g, while g does not. However, if the noise
variance is large with respect to the size of the point configuration,
or when the domain points approach a degenerate configuration (see
Sect. 5), the paradigm described here will rank g as better than f,
since it has a wider “support”—i.e. it moves a larger measure of points
which are close to p to locations close to g

o = 1. The resulting estimate is a = 100, and obviously it
is not satisfactory; for example, it is extremely sensitive to
changes in p. Intuition tells us that, since the noise is so large
relative to the size of the points, a much smaller a should
probably be chosen (the so-called “shrinkage”, see [6, 13]
and references therein). Following the regularization para-
digm, we can impose a prior which penalizes large a’s. But
that annoying question rears its head again: what prior to
use?

The approach suggested in this paper tries to minimize
the effect of the prior defined on the space of transforma-
tions. Instead, it integrates out the “nuisance parameters”
corresponding to the “real” domain and range points. Before
going into the formalities, some intuition. In the previous
example—p = 0.001, ¢ = 0.1—why is @ = 100 such a poor
estimate? After all, it does bring p exactly to ¢! The problem
is, of course, with the noise; we don’t know what the “real”
domain and range points are: we only have a distribution on
their locations—in a “probability cloud” around p and g re-
spectively. We should therefore find a transformation which
brings a large measure of the “p cloud” into the “qg cloud”.
But multiplying by 100 moves most of the “p cloud” way
too far from the center of the “g cloud”. This is in essence
the well known overfitting problem: if the fitted model (in
this case, the single parameter a) tries too hard to accommo-
date the noisy data, it may well give bad results away from
the data. A schematic description of this idea is provided in
Fig. 1.

The framework presented in this paper proposes to over-
come the overfitting problem not by restraining the fit via
the application of a prior, but by integrating out the nuisance
parameters, i.e. the “real” domain and range points. Denot-
ing these nuisance parameters by p, ¢ respectively, the joint
probability density of a, p is
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Fig. 2 The measurement (p», ¢2) carries a “concentrated” support for
the parameter a, while (p1, g1) supports a large interval of slope values
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where Bayes’ rule was invoked in the second equality. At
this stage assume a “flat prior” on p,ap =g.!

(The denominator f(p,q) can be assumed to be a con-
stant, as the measurements were taken already.) Therefore,
assuming Gaussian noise with variance o2, the density is
proportional to | plexp(— M)’ and (up to a nor-
malizing factor), the density of a is obtained by integrating
out p:

> —p 5 )2
f(“|P’6I)=f Iﬁlexp(_(p p)+@p—q >dﬁ

oo 202
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A very short discussion of this integral is deferred to
Appendix. Minka [13] also suggests to integrate out the nui-
sance parameter, but his approach—and results—are differ-
ent. Note that no range nuisance parameter has to be inte-
grated out—it is determined by a and the domain nuisance
parameter.

When is the probability density of a large? For the inte-
gral in (1) to obtain a large value, there should be a large
measure of points p satisfying: (1) p is close to p (where

This assumption is tricky in that it indirectly imposes a prior on a.
For example, a prior on p, § which is uniform in a circle centered at the
origin (of any radius) and zero outside it, induces the prior 1/ (1+a?).
Such priors—which may be dictated by the real world constraints of
the problem—should in general be considered, but the thrust here is on
how the integration over the nuisance parameters affects f(a).
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Fig. 3 Probability density plots for a,p = q = o0 =1 (left) and
p=¢q = 10,0 =1 (right). The optimal value for a in the classical
methods is of course 1. In the example on the left, where |p| and o
are of the same order of magnitude, the distribution is centered around
the ML value of 0.463. As the noise becomes smaller with respect to

“close” is with respect to the magnitude of the noise), (2) ap
is close to ¢, (3) | p| is large. The intuition behind conditions
(1) and (2) is clear—if a is to be trusted, then there should
be a large measure of (p, ¢) pairs which are close to (p, ¢)
and such that % = a. What about (3)? There is a simple in-
tuitive explanation for this condition: if |p| is small for a
large measure of p which are close to p, there will also be
a large measure of pairs close to (p,q) “supporting” val-
ues a’ which are quite different from a—this because for
noise 7;, )y(iZ; is, on the average, closer to ¥ when |x| is
larger. Thus |p| can be viewed as a “trust factor” assigned
to the integration variable p, which measures how strongly
it supports the “naive” estimate 9., Such “trust factors” will
appear in all the cases addressed in this paper. They have the
effect of further reducing the likelihood of “large” transfor-
mations: in the case of x — ax, for example, large values
of a are “supported” by small p, but these small p are as-
cribed less importance in the integrand, due to the | p| factor.
This is just intuition—formally, the “trust factors” are there
because of the appropriate Jacobians.

2.1 Discussion and Some Examples

There are a few ways to proceed, once the density of a
is given. One can for example follow the ML paradigm
(choose the most likely a), or average over all a. I do not
touch on these questions here (although the ML estimate
will often be mentioned, it being an indicator of the distrib-
ution’s properties). Some examples are provided, to give the
feeling of what the density looks like. Further questions—
such as the nature of the density for one and more domain-
range pairs—(is it unimodal?) are to be further investigated.
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|pl, the distribution approaches the classical one: the distribution on
the right is highly peaked at 0.98, which is close to the classical esti-
mate of 1. Note that in both cases, the ML transformation a,s; avoids
the overfitting problem: ay p is not equal to ¢ but smaller than it

3 Affine Transformation from % to Itself: Two Pairs

An affine transformation from the line to itself is defined
by x — ax + b.Given two domain/range pairs, (p1, g1) and
(p2, g2), classical methods yield the solution

q1—q2
a=—>

_ pig2—
p1—p2 '

pP1— P2

b

Clearly this solution will become more unstable as the noise
grows larger relative to |p1 — p2| .

The approach used in Sect. 2 can be immediately ex-
tended to this case, yielding the following expression for the
probability density of a, b, with py, p standing for the nui-
sance parameters corresponding to the “real” domain points:

fa,blp1.q1, p2,q2)

o0 o0
=/ / |p1 — D2
—00 J —O0

a2 a2 a2 a2
X exp (_ (P1=PD"+P2—P3) ;{-’(;11’1 q1)"+(@p2—4q2) >dﬁ1dﬁ2 2)

Where the source of the |p; — p»| factor is the Jacobian
of the transformation. The intuition behind this equation is
similar to that behind (1). Note that higher weights are as-
signed to “stable” configurations, i.e. those in which py, p»
are further apart—in accordance with the observation that
such pairs yield a more accurate estimate, as the denomina-
tor in the classical solution for a, b is more resistant to noise.
Thus | p; — pa| is a “trust factor” equivalent to |p]| in (1).

The explicit form of the integral in (2) is rather cumber-
some, and will not be included here. Like the p.d.f. in (1), it
can be normalized to sum to 1, but the details of the normal-
ization will be left out hereafter. Two examples of the p.d.f.
(see Fig. 4).
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Fig. 4 Left: probability density plot for a,b when p; =1,q; =2,
p2=2, g2 =3, 0 =1. The ML is obtained at a = 0.37, b = 1.95,
while the classical methods choose a = b =1 as optimal. Right: prob-
ability density plot for a,b when p; =1,q1 =2, pp =10, g = 11,

4 Affine Transformation from R to Itself: One Pair

How to recover x — ax + b when only one domain-range
pair (p1, q1) is given? In the classical approaches, there are
an infinite number of solutions, all equally good, which cor-
respond to the equations of the straight lines going through
(p1,q1). What happens when one tries to integrate out the
nuisance parameters in order to evaluate f(a, b|p1,q1)? It
would be nice to proceed as in Sect. 2, where f(a|p, q) was
computed by integrating over f (a, p|p, g), which was com-
puted by Bayes’ theorem and by computing f (ap, p|p, q).
Alas here it is impossible: f(a, b, p1|p1,q1) cannot be re-
ducedto f(ap1+b, p1|p1,q1), because there is no Jacobian
to transform from three variables to two (the opposite is pos-
sible, by using the square root of |J J'|, where J is a 2 x 3
Jacobian). One way to overcome this problem is to add fur-
ther nuisance parameters (pz, g2), and reduce the problem
to that of Sect. 3. A “flat” prior on (p3, q2) is defined by the
limit ¢ — 0 of - exp[—c(p% + q%)]. So, up to a constant fac-
tor, the probability density f(a, b|p1, q1) equals the limit at
c— 0of

c//// expl—c(p3 +g)1I1p1 — pal

£ 2 SN2 2k 2
X exp <_ (P1=pP1) "+ (p2—pP2)"+(@p1—q1)"+@pr—q7) )dﬁldﬁzdpquz

202

where the integral is over *. Up to a multiplicative factor
depending on & and o, this integral equals

_ (apl;rb;ql )? ]
11
so*(a ) (3)

(@ +1)3

exp|
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o = 1. The ML is obtained at @ = 0.96, b = 1.19. When the magni-
tude of the difference between p; and p, grows with respect to the
noise, the ML estimate converges to the classical solution a = b =1

It is easy to verify that (3) obtains its maximum when a = 0,
b — q1: the power in the exponent, which is always < 0, can
be zero only when apj + b = g1, and among all such combi-
nations, the one with ¢ = 0 minimizes the denominator. So
the numerator obtains its maximum and the denominator its
minimum whena =0, b — ¢q.

Is this a surprise? Hardly: as before, a higher probabil-
ity density is assigned to “small” and “stable” transforma-
tions. Clearly, the constant transformation x — ¢ is the
“most stable” which takes pj to g;. It happens also to be
degenerate—is that bad? I believe not; there is no a-priori
preference among the transformations, and there is therefore
no real reason for the ML estimate to be non-degenerate.
Is (3) important? Hopefully so, since one is not only inter-
ested in the ML estimate, but in the entire distribution over a
and b. Suppose that a few domain-range pairs are present—
one may then consider multiplying the corresponding exem-
plars of (3), which would yield a more interesting distribu-
tion and ML estimate.

What about the simple (classical) solution which, given
(api+b—qi )2 ) 9

202 '
It does not look good, as it does not penalize transformations

(p1,q1), assigns to a,b the density \/2170 exp(—

with a large a: as long as ap + b = ¢, the transformations
represented by a, b have an equal probability density (which
means that the distribution cannot be directly normalized).
However, adding the nuisance parameters (p», g2) radically
changes the density. The calculation is quite similar to the
one carried in the beginning of this section: calculate the
density when (p2, g2) are added, integrate out (p2, g2), and
take the limit when the prior on them approaches a flat prior.
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Up to a multiplicative constant, the result is

exp[— (alezrﬁz—ql)z]

(@2 +1)z

“

4.1 Interpretation of Results as Priors on a

Although a flat prior was assumed on a, one may try and
view the results as a combination of classical fitting (e.g.
trying to minimize ) ;_,(ap; +b — gi)?) and a prior on a.
For example, (4) can be viewed as a prior that penalizes large
values of a: the logarithm of the density is

YU (api +b—q)?
202

NP [ A SR N I S C S CRNC PR S R S S A S R
-2 =1 0 1

a

—[glog(l +a2) +
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Fig. 5 Contour plot for probability density in (3). There is a unique
peak at a = 0, b = 3. The contours depict equi-density (brighter is
higher)
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Fig. 6 Left: probability density plot for a,b, classical methods

le?g exp(—%)). The density is peaked

along the line satisfying 2a 4+ b = 3. Right: contour plot for prob-

(density given by

In addition to the penalty defined by the “data term”
—Zlﬂ:l(a+;rb_q")2, there is a —75log(l + a®) summand
which penalizes large a’s. This summand somewhat resem-
bles Jaynes’ prior [8] —37" log(1 4 a?), which was derived
using a transformation group argument. Gull [6] suggests
that the rotational symmetry used by Jaynes is not relevant
to the line fitting problem, and derives a different, more
complicated prior—which includes a —37" log(la]) term.
The prior induced by (4) is different from both Gull’s and
Jaynes’.

Lastly, the prior induced by (3) has a different shape from
Gull’s and Jaynes’ prior, as well as the prior induced by (4):
the density’s logarithm is

Y (api +b—gqi)?
202(1 +a?)

3n 5

As opposed to all the other cases herewith, a appears not
only in a summand which is disjoint from the “data term”,
but is also mixed with the data term.

4.2 Examples

Plots of the three densities for p1 =2, g1 =3, 0 =1 (see
Figs. 5, 6).

Remark One may be misled to assume that the ML trans-
formations are always “trivial”. That is not the case. Given
more points, in a configuration which is far from degener-
acy, and if the noise is small relative to the total size of the
configuration, the distribution is “reasonable” in the sense
that its ML estimate converges to the ML estimate of the
classical methods.
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ability density in (4). There is a unique peak at a = 0, b = 3, but
the overall shape of the distribution is different from that in Fig. 5
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5 Linear Transformation from %2 to Itself: Two Pairs

Computing the probability density for a linear transforma-
tion T : R2 — M2 proceeds very much like the previous
cases. Two domain pairs have a total of four d.o.f., hence
they suffice to calculate the density in a straightforward fash-
ion. Assume that noisy measurements of two domain-range
pairs are given: (p1,q1), (p2, q2), and denote the nuisance
parameters by p; = (p}, ﬁiy), i =1, 2. The density is

f(Tlp1, P2, q1,92)

L'
/// (p1p2 P]Pz)
trustfactor
X exp [_ I R R Ll LA } APLAPdPIdp)

&)

where the integration is carried over %t*. The integral can be
computed in closed-form. As for the 1D cases, T has a high
density if it is supported by a large measure in domain-range
space of points which are close to the measured domain-
range pairs, but this support is again weighted by a certain
“trust factor”, which is an objective quality of the domain
points. Here the “trust factor” reflects the fact that in order
to obtain a reliable estimate to a linear transformation (in
the plane) under noise, we should have two domain points
which are not only far from the origin but also far from being
linearly dependent. The “trust factor” in (5) is the determi-
nant squared of the two domain points, and for it to be large,
the points have to be in a stably non-degenerate position, i.e.
far from the origin and also far from being collinear with the
origin.

5.1 Examples

The simplest example which emphasizes the difference be-
tween the method presented here and the classical methods

-l

T T T T 7T T T — 1 T T T 71

-10 -5 0 5 10

is the following: let the measurements be given by

p1=(a,a), P2 = QCa, 2a),

g=@), q=Qx20)
where « is a real number. This example may appear arti-
ficial and limited, but the results extend to cases in which
the domain points approach degeneracy ([12] and Sect. 5.2
here).

The classical methods have an infinite variety of equally

good transformations to choose from—( | ) is fine, but so is

01
(_1%0 _22)(1)0), and they have the same probability density. On

the other hand, a direct computation (omitted here) proves
that the suggested method has a unique ML estimate, which
equals ( s 5) where § is a positive number which approaches
% as 2 — 0, and o is the noise variance. This is a degenerate
matrix, which takes the entire plane to the line x = y. Is this
“wrong”? No: as for the one-dimensional case, there is no
a-priori assumption on the transformations, and the chosen
degenerate transformation performs well, in that it moves a
large measure of points which are close to the domain point
(o, @), to the vicinity of the range point (o, «)—and same
for (2a,2w). If o is relatively large with respect to «, the
“shrinkage effect” results in smaller values of § (compare
with Fig. 1 and discussion therein).

5.2 Behavior for Nearly Degenerate Configurations

To make matters a little more interesting, let us perturb the
points a little. Take o = 1. The domain and range points are
then

p1=U+n1,1+n2),
q1 =1 +ns,1+ne),

P2 =2+ n3,2+ny),
g =2+n7,2+ng)

(6)

where each n; is taken to be Gaussian noise with a stan-

dard deviation 0.1. Denote T = (! ;). T can be solved

for explicitly in the classical paradigm, since it then has to
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Fig. 7 Histogram of aj; values for the input in (6), with the noise variance equal to 0.01. Left—classical method, 1,000 inputs. 49 values with
absolute values >10 were discarded. Right—suggested method, same inputs. The suggested method is far more stable
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satisfy T(p1) = q1, T (p2) = q». The solution for ap;, for
example, is

n4 + 2ns + ngns — 2ny — n7 — npyny

ng +2n1 +ning — 2ny — n3 — npnj

Clearly, this is a highly sensitive estimate, which oscillates
wildly as the noise changes. On the other hand, the sug-
gested estimate is very stable under such perturbations: his-
tograms for the ML value of a;; for the two methods are
depicted in Fig. 7. As noted before, the ML value is pre-
sented since it is a good indicator of the distribution’s shape.
In the classical methods, it is very unstable, which reflects
an undesirable sensitivity to the input, while in the suggested
method it is very stable.

F(TIpr.gn) = lim f/////// exp(—c(llp2 I + 4212))(

Experiments carried out in [12] have demonstrated that
when the domain configuration is close to a degenerate one,
then this behavior of the classical method, and the suggested
method as well, persist when the number of domain-range
pairs increases.

5.3 Linear Transformation from %2 to Itself: One Pair

Given only one domain-range pair (p1,q1), we can pro-
ceed exactly as in Sect. 4: assume a prior on (p2, g2) which
approaches a flat prior in the limit, and integrate (5) over
(p2, g2). The result is the following octal integral:

Ax AY AV AxN2
by — Pip3)

[ 151 — pil? + 12 — p2lI> + IT (P1) — qilI> + IT (H2) — q2lI?
X exp| —
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} dpidpydpsdp>dqsdq; dpydp)

This integral can be computed in closed-form expression,
which is not especially illuminating, and is not included in
this paper. Then, the density for any number of domain-
range points can be computed by multiplying the expres-
sions for the individual pairs.

6 Summary and Future Work

e The Bayesian notion of integrating out nuisance parame-
ters was applied to the recovery of linear and affine trans-
formations between low-dimensional vector spaces. The
nuisance parameters vary over all the possible domain and
range points. The method assumes a flat prior on the space
of transformations.

e The method results in closed-form expressions which
are non-trivial, and I could not find a simple method to
find the ML estimate, for example (save for some simple
cases).

e The method returns results markedly different from the
classical methods when:

1. The magnitude of the domain points is not large with
respect to the noise.
2. The range points approach a degenerate configuration.

In these cases, the classical methods strongly overfit
the noise, and are also highly unstable—a very small per-
turbation in the input can radically change the results. The
results of the suggested approach were better.

e The suggested method generally assigns a higher prob-
ability density to transformations with small coefficients
in the linear terms (for the 1D case) and to matrices with
small eigenvalues (in the 2D case)—the “shrinkage” ef-
fect.

6.1 Future Work

Many open questions remain:

e How to use the resulting density (i.e. if one transforma-
tion should be chosen, is the ML, or the expectation, a
good choice)? Related question—when is the density uni-
modal?

e How should the performance of transformation recov-
ery methods be evaluated? A very common method is:
choose a transformation 7 and a set of domain-range
points (p;, g;) such that To(p;) = g;, add noise to (p;, g;)
to obtain (p;, g;), compute the T-density from (p;, g;),
and check whether T is a good representative of this den-
sity. Alas it is clear that if for example the domain points
approach a degenerate configuration, this is not a good
method. The analysis presented in this paper suggests that
perhaps the “trust factor” should be used to weigh the
transformation corresponding to (p;, g;) when conduct-
ing such an analysis.

e How can the method presented here be extended to more
general transformations (e.g. projective)? A first attempt
at this direction was suggested in [4], but there’s a lot
more to be done.

@ Springer
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e Higher dimensions: the idea presented here can be ex-
tended to affine transformations in higher dimensions.
Since the corresponding integrals will still be Gaussian,
they have closed-form solutions.

e Outliers: these can be handled in a standard way, by in-
corporating a RANSAC technique [1] with the method
suggested here. It remains to see how this will work in
practice.

Acknowledgements 1 thank Padmanabhan Anandan, Alexander
Goldenshluger, Liran Goshen, Ilan Shimshoni, and Michael Werman
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Appendix: Equation (1)

The integral in (1)
o (p—pP*+@p—q9?*\ .
|plexp( — o dp
o0 o

is of the general form

o
/ x| exp[—(Ax? + Bx + C)ldx
o0

where x substitutes for p and the exponent is replaced by a
general quadratic (with A > 0). The integral equals

(2VA+ Bﬁexp(%)erf(%)) exp(—C)
2A3/2

and the original integral can be recovered by replacing
A, B, C with the appropriate expressions in a, p, g, 0.

The integral is easily normalizable. It can be proved using
a direct calculation that

00 OO _ 2 A N2
/ / |ﬁ|exp<— (p—p)P*+@p—q) )dadﬁ:Znaz
—OQJ —0OQ
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so it is trivial to normalize it so as to define a proper distrib-
ution on a (i.e. which sums to 1).
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