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Describing Complicated Objects
by Implicit Polynomials

Daniel Keren, David Cooper, Senior Member, IEEE, and Jayashree Subrahmonia

Abstract—This paper introduces and focuses on two problems.
First is the representation power of closed implicit polynomials of
modest degree for curves in 2-D images and surfaces in 3-D range
data. Super quadrics are a small subset of object boundaries that
are well fitted by these polynomials. The second problem is the
stable computationally efficient fitting of noisy data by closed
implicit polynomial curves and surfaces. The attractive features
of these polynomials for Vision is discussed.

I. INTRODUCTION AND PREVIOUS WORK

A. A Short Overview and Motivation

This work is to be combined with a general scheme for
recognition and description of objects consisting of the fol-
lowing stages:

1) Segmentation into “volumetric primitives.” This might

be based on differential properties of the curve or surface
[24], or on “interest regions” [23].

2) Fitting geometric models to each primitive. Super-
quadrics have been widely in use for this 3], [24]. The
model suggested here is closed implicit fourth-degree
polynomials for 2-D curves and 3-D surfaces.

3) Recognition of objects using invariant features of the
primitives, coupled with statistical techniques [11], [12],
[21], [23]. For example, all or some of the primitives
of a complex object could be represented by implicit
polynomials, and the object indexed into a data base by
aligning the primitives into a standard position or using
polynomial invariants. This is treated in another paper.

This work concemns stage 2) above.

1) Why Fourth-Degree Polynomials?: This work is re-
stricted to closed fourth-degree polynomials for the following
reasons:

1) They are relatively simple and do not require an exces-
sive number of coefficients to describe. There are 14
independent coefficients for 2-D curves and 34 for 3-D
surfaces.

2) They are rich enough to contain other volumetric prim-
itives that have been extensively used, such as con-
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ics and super-quadrics, and mathematically are easier
to manipulate than super-quadrics. In this work we
demonstrate that fourth-degree polynomials give good
approximations to super-quadrics.

3) They can represent complex shapes including objects
composed of a few disconnected components, objects
that intersect themselves, and objects with holes.

4) Using richer geometric models, such as these polynomi-
als, can make the difficult problem of segmentation and
object recognition simpler, because an object does not
have to be segmented into many patches each consisting
of a simpler model.

5) The algorihtm used for fitting is very robust to noise.

6) Unlike splines, implicit polynomials can “fill in” where
data is missing due to occlusion.

However, there is nothing unique about fourth-degree, and
the algorithms presented here can be extended to any de-
gree.

2) Main Contribution of this Work. Fitting implicit polyno-
mials of degree higher than two is a relatively new area. The
most complete work we know of is the excellent one by Taubin
[20]. However, a difficulty with implicit polynomials is that
their zero sets can be either unbounded or bounded but very
large; in either case they describe the data well but their zero
sets contain many points which are far away from the data
points. In this work a paradigm for fitting polynomials whose
zero set is bounded, stable, and “tight” around the object is
presented. Also, an exact characterization of stably bounded
curves is given. A nice range of shapes that can be represented
by fourth-degree implicit polynomials having a bounded zero
set is illustrated.

B. A General Overview

This paper introduces and focuses on two problems. The first
is the representation power of implicit polynomials of modest
degree for curves in 2-D images and surfaces in 3-D range
data. Let p(z,y) be a polynomial in z and y. By an implicit
polynomial curve we mean the zero ser {(z,y) : p(z,y) = 0},
and similarly for polynomials in z,y, and z. The second
focus is the stable computationally efficient fitting of the most
general closed implicit curves and surfaces to data that may
be noisy.

The significance of the problems treated in this paper is
the following. Implicit quadratic polynomials have proved to
be very useful in computer vision for representing spheres,
cylinders, cones, planes, and their 2-D corresponding curves
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in images [4], [6], [8]-[10], [15], [16], [18]. Now we go to
a subset of the higher degree polynomials, namely the subset
that represents closed curves and surfaces.

These implicit representations have their merits vis-a-vis
explicit representations (e.g., splines) and the two complement
each other nicely. Implicit representations are attractive for the
following reasons:

1) The capability to describe irregulary shaped objects by a
small number of parameters. For example, a popular tool
for implicit representation in Vision are super quadrics
[3], [7], [13]. In Sections II-B and III we show that
super-quadrics are well represented by fourth-degree
implicit polynomials, and, as can be seen from the exam-
ples in this paper, many shapes that can be represented
by polynomials would be difficult to approximate even
by the union of a few super-quadrics.

Object recognition by checking to see whether a data

set is well fit by a specific implicit polynomial is fast.

This is because there is a simple expression for very

accurately approximating the distance from a data point

to the zero set of the polynomial.

3) The coefficients of these polynomials when fit to data

appear to be relatively insensitive to noise or to modest

changes in the subset of the boundary used. Because

of this stability, invariants of the coefficients (e.g.,

functions of the coefficients that are invariant to object

translation, rotation, and general affine transformations)
can be used for computationally fast object recognition.

These Euclidean invariants are appropriate for recog-

nizing objects in range data where object diameter is

small compared to sensor distance, and affine invariants
are appropriate for recognizing objects described by
curves in aerial images when object diameter is small
compared with object to camera distance and the objects
are roughly planar, e.g., outline of an airplane on the
ground. There are still occasions in which restricting the
polynomial to be one having a bounded zero-set does
not completely stabilize the coefficients. The Bayesian

recognition and estimation techniques presented in [19]

handle these residual cases easily.

Other works have addressed the importance of invari-

ants [11], [23].

The ability to conveniently translate operations in “ob-

ject space” to natural operations in polynomials (for

instance, union of objects corresponds to multiplication
of polynomials).

5) Closed implicit polynomial fitting to noisy data has a
low computational cost. '

6) Implicit polynomials serve as inside—outside functions
[31: (z,y) is inside the object iff p(x,y) < 0. This
provides a trivial rule for deciding whether a point is
inside the object or not. Inside—outside functions are also
very efficient in describing obstacles for robots and for
many application in Graphics, e.g., ray tracing.

7) Closed “tight” polynomials faithfully describe the object,
while unrestricted polynomials sometimes only contain
the data.

2

~

4
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The relation of the work in this paper to the existing
technology is as follows.

There has been much more research on explicit representa-
tion, and only recently are implicit representations receiving
the attention they deserve in Vision, Graphics, Robotics,
and Computer Aided Geometric Design. In Vision, previous
research was confined to fitting curves in the plane and
surfaces in 3-D with conics, e.g., implicit polynomials of
degree 2 [4], [6], [8], [10], [15], [16], [18] which are restricted.
A breakthrough in using implicit polynomials in Vision is the
work of Taubin [20], [23], where high degree polynomials are
successfully fit to 2-D and 3-D data. Taubin also computes
new invariants of polynomials.

Taubin’s algorithm, however, suffers from the following
problem: the zero set of the fitted polynomial is often un-
bounded. These unbounded fits contain the bounded data they
are fit to, but take arbitrary shapes away from the data.

This poses two basic difficulties: first, the criterion for
checking if a point belongs to an object loses much of its
meaning, because the zero set and the object are not the
same—the object is a small bounded portion of the zero set
which is unbounded in the plane or in 3-D space. However, to
test whether a point belongs to the object or not we substitute
it in the polynomial, thus measuring its distance from the
zero set. Second, we would like to recognize if two objects
are the same by comparing the invariants of their polynomial
representation. However, these are determined by the global
behavior of the zero set, and we can run into situations where
two polynomials that are totally different in the large will
describe the same object—a highly undesirable phenomena.

We have taken two approaches to the recognition problem.
In [19] we have shown that the stability problem results
because not all terms in the polynomial are required for
the representation. Hence, these can vary greatly with slight
changes in the data set. The other approach, presented here, is
to restrict consideration to the subset of implicit polynomials
that have closed bounded zero sets. The added burden of
being closed provides additional shape complexity that seems
to constrain all the terms in the polynomial. Hence, our
contribution here is in characterizing these closed implicit
polynomials, and in introducing computationally fast fitting
algorithms that provide stable fits.

It has recently come to our attention that Taubin et al. [22]
have also been working on the topic of polynomials having
closed zero sets. Although their work overlaps ours, their
fitting algorithm is different and they do not treat the problem
of necessary and sufficient conditions for a fourth-degree curve
to have a stably bounded zero set. Also, they use a different
minimization scheme, and a different method to minimize the
area (or volume) of the resulting fit.

II. DESCRIPTION OF CLOSED OBJECTS USING POLYNOMIALS

A. Finding the Fitting Polynomial

A trivial but instructive example for defining objects by
polynomials is the case of a circular object, say a circle of
radius | with center at the origin (unit circle). For a point



40 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 1. JANUARY 1994

(z,y) to be inside the circle it is necessary and sufficient
that z2 + y2 — 1 < 0. Other objects that can be described
by second-degree polynomials are ellipses. Hyperbolas, for
instance, do not describe bounded objects—we need a closed
bounded curve to do that! In general, for a polynomial p(x, y)
to describe an object O with boundary B the following should
hold:

1) the set {(z,y) : p(z,y) = 0} is equal to B;

2) (z,y) € O iff p(z,y) < 0.

For a polynomial p(xr,y) we shall call the set {(z.y)
p(x,y) = 0} the zero set of p. Thus the zero set of 22 + 42— 1
is the unit circle.

Let us note at this point that polynomials with an unbounded
zero set can describe curve patches, but in this work we are
more interested in describing closed bounded objects. Bounded
curves cannot exactly match some families of curves—Ilike
hyperbolas—but this is not crucial, because for every family of
geometric primitives used, there are many objects that cannot
be described exacrly. The important issue is to have a family
of primitives that is large and flexible.

Since second-degree polynomials can describe only circles
and ellipses, let us proceed to higher degrees. The standard
notation for a polynomial of degree n will be adopted:
plz,y) = EO§i+j§n ai;xty?, where 0 < i, and the a;; are
real numbers. The following simple lemma shows that the next
class in the polynomial hierarchy is not suitable for describing
bounded objects.

Lemma I: The zero set of a third-degree polynomial is
unbounded.

Proof: Suppose that a3, the coefficient of x3, or ags,
the coefficient of y3, is nonzero (if both are, a rotation of axis
will make them nonzero). Suppose without loss of generality
(WLG) that a3 # 0. Now take any yq and substitute it instead
of y in the equation p(z,y) = 0. This results in a cubic
equation in z, but every cubic equation has a real solution.
This means that the zero set of p(z,y) is unbounded in the y
direction. It is trivial to verify that this simple proof carries
on to any odd degree polynomial.

Next on the list are fourth-degree polynomials. Their zero
set can be bounded, e.g., z* + y* — 1 = 0, or unbounded,
e.g., #* —y* = 0. It is not surprising that the high powers
of the polynomial determine if its zero set is bounded or not.
Let us call those powers, e.g., ajr? + as1x%y + agea?y? +
a137y® + agsy”, the leading form of p(z.y), or py(z. y), and
the sum of the lower powers—e.g., cubics, quadrics, linear
terms, and the constant—the lower terms or p3(x,y). Let us
also define a polynomial to be stably bounded if a small
perturbation of its coefficients leaves its zero set bounded.
For reasons of numerical robustness we are interested only in
stably bounded polynomials. Theorem 1 gives necessary and
sufficient conditions for a fourth-degree polynomial to have
a stably bounded zero set. The proof is given by way of a
sequence of lemmas.

Lemma 2: If the leading form of p(a.y) assumes both neg-
ative and positive values, the zero set of p(.r, ) is unbounded.

Proof: It is necessary to prove that outside of any circle
around the origin there is a point in which p(r,y) assumes

a value of zero. Suppose there exist two points, (z1,y;) and
(2.y2) such that ps(z1,y1) > 0 and py(x2, y2) < 0. Call the
line going through the origin and (x,y;) L1, and the same
for Lo. Noting that ps(Az, Ay) = Apy(x.y), it follows that
moving far enough from the origin p(z,y) will be positive
on L; (this is because the leading form dominates the lower
form as « and y grow larger) and negative on L,. Take a
point POS on L, that is outside of the previously mentioned
circle such that p (POS)>0, and similarly NEG on L, with
p(NEG) < 0. It is possible to connect POS and NEG with a
curve that lies outside of the circle, and by the Mean-Value
Theorem there is a point on that curve where p(z,y) assumes
zero. Since this can be carried out for every circle, the zero
set is unbounded.

The next lemma shows that to insure stable boundness a
stronger condition should be enforced:

Lemma 3: If the leading form p4(z, y) of p(z, y) assumes a
zero at a point other than the origin, then p(z,y) is not stably
bounded.

Proof: The proof is almost the same as for the previous
lemma. Note that if ps(z,y) = 0 then py is zero on the line
passing through the origin and (x,y). So, restricted to that
line p(x,y) is a cubic (in one variable) but the zero sets of
cubics are never bounded. An exception can occur only if
the cubic part of p(x,y) is also zero on that line, but that
is not a stable property; look, for example, at the polynomial
(22 =922 422492 -1 = 2* =202y 4yt 4 22442 — 1. Its zero
set is of course bounded—indeed it lies within the unit circle;
but an arbitrarily small perturbation of this polynomial, e.g.,
ot =202y + 4 + 1071923 + 22 4 42 — 1, will make the zero
set unbounded. Here the leading form does not assume both
positive and negative values, so the previous lemma implies
the zero set is bounded—alas not stably bounded, as p4(z,y)
does assume a zero.

Formally, if the line in question is y = bz, the cubic
part of the polynomial will assume a value of zero there iff
azo + a21b + a2b® + ag3b® = 0. Evidently this is not a stable
property, as an infinitesimal change in the coefficients can
cause b not to be a root of the cubic equation.

Lemma 4: If py(x,y) is of constant sign and zero only at
the origin, the zero set of p(z.y) is stably bounded.

Proof: Assume WLG that the leading form is always
positive (except at the origin where it is zero). Then it
assumes some minimal (strictly positive) value on the unit
circle (this is because the leading form is continuous and the
unit circle is compact). Call this minimal value m. Since for
every (xr.y) the point (z,y)/||(z.v)| is on the unit circle, it
follows that ps((x,y)/||(z.y)||) > m, therefore py(z,y) >
m(||(x. y)||)* = m(x2+y?)2. This assures that p(:, ) cannot
have zeros whose distance from the origin is arbitrarily large,
since again py(x,y) dominates p(x,y) for z,y — oc. Now,
because of continuity, a small enough perturbation of the
coefficients will leave p4(z.y) bounded away from zero on
the unit circle, hence p(«x,y) is stably bounded.

Summarizing these simple proofs, we arrive at the conclu-
sion that the zero set is stably bounded iff the leading form
does not change sign. Let us assume WLG that if this is the
case, it is always positive (note that multiplying the coefficients
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by —1. or any constant for that matter, does not change the
Zero set).

In order to find conditions for stable boundness of the zero
set, the following simple lemma is helpful:

Lemma 5: 1If the leading form of p(x.y) can be written as

agort + anz’y + and’®y? + apry® + aey’
= (a%ry y?) Al ey y*)T. (1)
where A is a positive definite matrix, then the zero set is
stably bounded.

Proof: As known from the theory of positive matrices
[2], a positive definite matrix A satisfies vAvT > A|jv}|? for
some positive constant A. Using this together with (1) results
in ps(z,y) > Mz + 22y® + y*). Therefore the leading form
is positive except for the origin, and by Lemma 4 the zero set
is stably bounded.

The converse is also true.

Lemma 6: If the zero set of p(x,y) is stably bounded,
there exists a positive definite matrix A such that py(x.y) =
(z?zy y*) A(z’zy y*)T.

Proof. As follows from Lemma 3, if the zero set is stably
bounded, p4(x,y) does not have any real roots. Let us write

agort + a31w3y + a22-’E2y2 + (113417343 + uo4y4
= a0yt (X* + a3 X® + X2+ a1 X + ap)
(1403/4P(X)7

where X = «/y and a3 = a3y /a4, etc. Since P(X) does not
have real roots, it can be written as found at the bottom of the
page, where b and d are nonzero.

To prove that this 3 x 3 matrix is indeed positive definite,
one can use the criterion of the diagonal submatrices [2], e.g.,
that the determinants of the 1 x 1, 2 x 2, and 3 x 3 submatrices
along the diagonal are positive. But these determinants are
equal to 1, b* + d2, and (abd — bed)? + b2d* + b*d?, which
are all positive (remembering that b and d are nonzero). To
complete the proof, multiply by a4oy*.

Note that the above matrix is also symmetric. All in all we
have the following theorem

Theorem 1: The zero set of p(x,y) is stably bounded iff
there exists a symmetric positive definite matrix A such that
pa(z.y) = (Pryy?)A(x2eyy?)T.

An interesting fact is that this representation is nonunique.
For instance,

1 0o -1
3

= 2%y + oyt = (Payy?)| 0 —% 0 | (2®2yy®)T
1

1
3

and this matrix is not even positive semi-definite; however

10 -3
1
=2t oyt = @y 0 L 0 f(@teyy?)T
3
-5 0 1

4

and that matrix is positive definite. However, the nonunigness
is of no concern at all, because it is the polynomial we are
after, and the matrix A is not important as long as it gives the
correct polynomial.

Summarizing, given an object O with boundary B, we look
for a fourth-degree polynomial p(x:,y) such that

1) pi(z,y) can be expressed as (w2xyy?)A(xZzyy?)T

with A symmetric positive definite;

2) the zero set of p(x,y) approximates B.
We know what the first condition means. How is the
second satisfied? The first guess is: find p(x,y) such that
Z(J,Dyy“)eBﬁ(aﬂo,yg) is minimal. This, however, results in
a far from optimal description of B because p%(rg.yo) is
a poor measure for the distance of (xg,yq) from the zero
set of p(z,y). A much better measure, suggested by [18]
and extended in [23], is p*(wo,y0)/ V2 p(xo,yo) (where
72p(x0.yo) stands for the norm of the gradient squared).
So the expression to be minimized is

>

(xo0.y0)EB

772(1’0- o)

. 2
V2p(xo, yo) @

Taubin [23] solves the problem by approximating (2) with the

expression
Z P (0, 0)
(x0.y0)€B

Z V2 plo-yo)

(x0.y0)€B

3

and then minimizing (3) by generalized eigenvector tech-
niques, followed by an iterative scheme based on (2) for
improving the polynomial fit. Taubin’s work results in ex-
cellent fits, but he does not worry about the zero set being
bounded; hence a common outcome of his fitting algorithm is
that the zero set contains B but often has additional unbounded
parts (see Fig. 1). A simple example is that of a square;
Taubin’s algorithm describes it as the union of four straight
lines, with the corresponding p(, y) equal to the product of the
four linear polynomials describing these lines. So the square is
represented as the union of the infinite extension of its edges.
Naturally, this is not suitable for object description.

The question is how to incorporate into Taubin’s algorithm
the condition that the zero set be bounded. What should be
done is simple: look only for polynomials p(x,y) such that
p4(w.y) can be expressed as in Theorem . The question is

P(X)=(X —a—-bi)(X —a+bi)(X —c—di)(X — ¢+ di)

1 —(a+c¢)
=(X2X1)| —(a+¢)

(a+c)? + b2+ d?
ac —(a?c + b2e + ac® + ad?)

ac
—(a?c+b%c + ac® + ad?)
(a® + b?)(? + d?)

(x2xnT
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Bounded description of an arbitrary shape
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Bounded fit to a square
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Fig. 2. Fits to

how to parametrize positive definite matrices. Taubin suggests
using the following result [2]: if a matrix A is symmetric
positive definite, it has a symmetric square root B.

Hence it is enough to look at all p(z, y)’s where py(z, y) can
be written as (z2xy y?)B%(z2zy y?)T where B is symmetric.
(Note that many B’s can minimize the error function, but this
does not matter.) Thus the strategy chosen was to minimize the
error measure of (2) while conforming to the above condition.
This is done by minimizing not over the space of unconstrained
polynomials, but only over the space of p(x.y) such that
p3(z,y) is unconstrained and py(x,y) is as above. Technically,
we look for the optimal B (six parameters) and p3(2.y) (ten
parameters). Note that in (2), fourth powers of the elements of
B appear. This does make the minimization problem nonlinear,
but that seems a reasonable price to pay in order to enforce
boundness of the zero set. Following other work [6], [8]., [23]
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Unbounded fit
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Complicated objects described by fourth degree polynomials
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square and arbitrary objects.

we constrain the coefficients. The constraint was chosen to be
independent of Euclidean transformations, and in the case of
fourth degree curves amounts to
2 2 2 2
%31, %29 | %13 G0a _
6 4 6 24
because the above is a Euclidean invariant of the polynomial.
It is possible to reduce the number of parameters by one
using the fact that if p(x, y) is stably bounded then, following
Lemma 6, py(z,y) decomposes as

2
%40
24 T

Kz —(a+bi)yllz — (a - bi)yl[z — (¢ + di)y][z — (c — di)y]

for some K, a,b, ¢, d. This results in five parameters compared
to the six of the symmetric matrix B. More tests have to be
performed to compare these two ways of parametrizing stably
bounded polynomials. In the Appendix we mention a third way
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Two objects described by a single fourth-degree polynomial
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Fig. 4. Bad choice of epsilon.

of forcing p4(z,y) to be of the form (z2xy y?)A(z2zy y?)T
for a positive definite A.

Another problem affecting the running time of the fitting
algorithm is that the expression in (2) is expensive to calculate.
Most nonlinear minimization techniques require numerous
computations of the function and its derivatives. If many points
are present, this means computing the sum of the function over
its gradient squared in all these points, requiring enormous
time. However, it is possible to overcome this problem using
the following iterative algorithm.

1) Minimize E(Iovyo)Esz(zo,yo). This is quite fast, be-
cause the sum of the squares of the polynomial at the
points can be written as FM FT where F is the vector of
the polynomial’s coefficients and M is a scatter matrix
of the points [23]. This is much faster than using (2)
directly. Note that this step incorporates the condition
that the fit will be bounded, so it minimizes over the
elements of a symmetric matrix that is raised to the
second power. Since the distances are also squared,
the expression to be minimized has degree four in
the elements of the original matrix. Call the optimal
polynomial P;(z,y).

2) Assign to each data point p; a weight w; = v?—Pll(pj'

3) Minimize 3 w; P?(p;). This is also quick—it is exactly
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Four objects described by a single fourth-degree polynomial
Y

T T T T

& 8¢
8
T T T

) I |

[

8
R

1

15.00

w S

8 8

T 1771
1

-10.00
-15.00
-20.00
~25.00

L AL L
) N TN O N B

8
T
1

-35.00 -
«40.00 -
45,00 -
-50.00 1 1

+100.00

5 Q

Fitting a few objects with one polynomial.

the same process as in 1), with M replaced by a
weighted scatter matrix.

4) Go back to 2) and update the weights using the mini-
mizer of 3) instead of P;(x,y).

5) Iterate until the error of fit, measured by (2), does not
decrease substantially.

(Note that we are using (2), but only a small number of
times—usually less than five iterations are needed).

This is almost identical to Taubin’s and Sampson’s al-
gorithm; however, we use a different normalization of the
coefficients, and force the resulting polynomial to be bounded.

This algorithm is suboptimal in the sense that it does not
minimize (2), but it is much faster and results in the same
quality of fits. Running times will be discussed in Section III.

In some cases the fitting algorithm presented here resulted
in zero sets that are bounded but much larger than the fitted
object. A simple heuristic to overcome this problem was to
look at matrices not of the form B2, but B2 + eI, where ¢ is
a small positive number and I the 3 x 3 identity matrix. This
resulted in “tighter” fits, the reason being that for all (z,y)

(zzyy®)(B? + el)(z®zy y?)T > (A + €)(a? + 2% + )

(where ) is the square root of the smallest eigenvalue of B?),
and as the leading form is magnified by the addition of the
¢, the zero set tends to be more compact. A large ¢ forces
the fit to “stick” to the data and prevents spurious pieces
of the zero set from occurring, and causes the fit to be of
a small area or volume, thus contributing to stability in the
case of small data sets and noise; if not for the €, we might
run into cases where fitting a very small piece of data will
result in a very large fit (like fitting a conic to a small part of
a large ellipse). The importance of adding € is demonstrated
in Fig. 4 for the 2-D case; if € = 0 is used, we get not only
the vase resembling shape but two spurious curves. A similar
phenomenon is demonstrated in Fig. 17 for the 3-D case.
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The fitting procedure seems to be extremely robust to noise.
In Fig. 5 the same data set as in Fig. 1 is presented with
Gaussian noise of standard deviation 2 added, and with the
appropriate fit.

Some examples are provided of bounded versus unbounded
descriptions. In Fig. 1 an object is shown with a bounded and
unbounded description. In Fig. 2 a bounded approximation of a
square is presented. It is easy to see that no polynomial p(z, y)
with a bounded zero set can exactly describe the square (if it
would, the polynomials defining the edges of the square would
have to divide p(z,y), hence the zero set would contain the
infinite extensions of the square’s edges). Also in Fig. 2, an
assortment of objects that can be exactly described by fourth-
degree polynomials is presented, and in Fig. 3 the power of
polynomials is demonstrated by showing two and four disjoint
objects that are represented by a single polynomial.

1) Choosing €: The question arises how to choose a correct
e. If it is too small, it will not force the curve to be close to
the data and we might end up with large spurious pieces of
curve far away from the data. If it is too large, the zero set
tends to shrink. Fortunately, all our experiments showed that
there is enough freedom in the choice of ¢ so as not to make
it a problem. If an object is centered around the origin, and its
size is normalized so it lies in a 100 x 100 box, the choice of
e = 1078 always worked (same for 3-D data).

2) Description of 3-D Objects: Everything that was said
about polynomials p(z,y) extends to p(x.y, z). Boundness of
the zero set can be satisfied by using the identity, e.g., for a
fourth-degree polynomial:

(22xyzzy’yz 22)A(x? oy 2z y2yz 27T = ayoou?
+ (L310z3y

+ (Lg()l:ITJZ + ...

where A is a 6 x 6 symmetric positive definite matrix, and
proceeding with the same line of thought as for p(z,y). In
Section III results for 3-D fits will be surveyed.

B. Comparison to Other Models: Super-Quadrics

Another analytical model used to describe nonpolygonal
objects in Graphics, Vision, and Robotics is the super-quadric
[3], {71, [13]. As the name implies, these are extensions
of ellipses and ellipsoids (and indeed are also called super-
ellipsoids). In the plane, all super-quadrics can be described
by a scaling, rotation, and translation of the “twisted circles”
Co={(zy) : 2°+y = 1}. If e = 2, C, is a circle; for

Description of a super-quadric, parameter = 0.6

SUPER-QUADRIC
BOUNDED ZERG SBT

Description of a super-quadric, parameter = 0.4

SUPER QUATRIC
BOUNDED 2800 ST

50.00

Fig. 6.  Fits to super-quadrics.

€ > 2, it is a circle that is “pushed out,” approaching the unit
square as € grows; for small €, C. is a nonconvex star-shaped
set (see Fig. 6).

For description purposes, super-quadrics suffer from two

limitations:

1) they are symmetric, while most objects are not;

2) they are too restricted, so usually a complicated object
has to be broken into many disjoint parts, each of them
described by a super-quadric.

They do have two advantages over implicit polynomials:

1) they have less degrees of freedom (6 for the 2-D case,
11 for 3-D);
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2) they result in a representation that is both implicit and
explicit.

Let us compare polynomials and super-quadrics. Since poly-
nomials can also be scaled, rotated, and translated, then to
compare the description power of polynomials to that of
super-quadrics it is enough to check if the C.’s are well
approximated by polynomials. The approximations for ¢ = 0.6
and ¢ = 0.4 are presented in Fig. 6. For larger values of ¢ the
approximations are so good that one cannot distinguish the
super-quadric from the fitting polynomial by looking at them!
These super-quadrics with larger €, which are convex, are the
ones used most frequently in Vision [5].

It can be seen that the polynomials give a reasonably good
description of the super-quadrics, although they miss the sharp
protrusions coming out of the sides of the super-quadrics; but
that can be argued to be an asset, because we do not expect
too many real objects to look like the super-quadric in Fig.
6. (Implicit polynomials can, however, represent spikes, as
shown in Section III.)

Tests have thus led us to the conclusion that fourth-degree
polynomials are a more general tool for describing objects
than are super-quadrics. They are also simpler and do not
involve transcendental functions as the super-quadrics do.
Three-dimensional super-quadrics were also fit by polynomi-
als; results are presented in Section III.

In general, it is impossible to describe a super-quadric
exactly by an implicit polynomial. In [14] it is proved that if
the shape parameter (e.g., €) is rational, then the super-quadric
can be represented exactly in this manner; however, the degree
of the implicit polynomial might be very high. If one is willing
to settle for a good approximation, fourth degree is enough.

C. Limitations of Fourth-Degree Polynomials

If polynomials of arbitrary degrees are allowed, then every
object can be described, but it is better to work with degrees
as low as possible. Let us state a famous theorem in algebraic
geometry [1] that can help decide whether a fourth-degree
polynomial can describe a given object.

Theorem 2: Beazoutr—If C,, and C,, are zero sets of poly-
nomials of degree n and m that do not share a common
component, they can intersect in at most nm points.

How is Beazout’s Theorem useful? Suppose we are given
an object O with boundary B, and observe that a line intersects
B at five points. Because a line is described by polynomial
of degree 1, the Theorem implies that O cannot be described
by a fourth-degree polynomial. Fig. 7 gives an example that
uses a circle (second-degree polynomial) to arrive at the same
conclusion: the fact that there are ten intersection points means
that to describe the object, a polynomial of degree at least 5
should be used.

In Fig. 3 it was demonstrated that a fourth-degree polyno-
mial can describe four disconnected objects. This is an upper
bound:

Lemma 7: A fourth degree polynomial cannot represent
five (or more) disconnected closed components.

Proof: Suppose the contrary—that there is a fourth-
degree implicit curve whose zero set is the union of boundaries

Fig. 7.

25.00 T T T 3 BOUNDAR Y_PATCH
‘COMPLETION

15.00
10.00
5.00
0.00
-5.00
-10.00

-15.00

1 H 1
-50.00 0.00 50.00

Fig. 8. Completion of a (magnified) boundary patch.

of five disconnected components. Then, choose a point inside
each component. As is well known, there is a second-degree
implicit curve that passes through these five points. Thus,
the fourth-degree curve has to intersect the second-degree
curve in ten points (going in and out of each component),
a contradiction to Bezout’s Theorem.

D. Behavior of Fitting Under Occlusion

A vision system usually does not have all the information
on the objects in advance, and it gathers more and more
information during its operation. A question thus arises how
to relate to an object when only partial information about its
boundary is given. This question does not have a deterministic
answer. Suppose, for instance, that we are seeing some part of
an object’s boundary and it looks like half a circle. A natural
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Fig. 9.

guess, consistent with the intuitive notion of symmetry, is that
the object is a circle; but, of course, it may be many different
objects of widely varying shape. What we should have is
a scheme that “fills in” the missing part of an object while
conforming to the following rules:

1) the object’s boundary contains the observed boundary
patch;
2) the object’s boundary is smooth;
3) the object’s area is not “too big.”
Let us elaborate on condition 3. Suppose the partial in-
formation resembles a small patch of a very large circle.
Symmetry would tell us that the object is this huge circle;

0.00

Three iterations in the fitting procedure.

but that may well lead to an object much larger than the real
one.

Conditions 2 and 3 might loosely be described as instances
of “Occam’s Razor” rule: do not assume anything is compli-
cated unless you have to.

We suggest that fitting the boundary patch with a bounded
polynomial can reasonably fulfill conditions 1, 2, and 3.
Experiments have led us to conclude that the great flexibility
of polynomials allows them to “fill in” the missing part of
the boundary while not generating an object of excessive area.
Symmetric models, such as super-quadrics, might well satisfy
conditions 1 and 2, but not 3.
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TABLE 1
FITTING TIME IN SECONDS
Packman figure Two spheres Super—quadric 1 Super-quadric 11
(175 points) (884 points) (441 points) (441 points)
time error time error time error time error
Iteration 1 0.9 4.9 17.3 13 10.3 0.14 10.1 0.26
Iteration 2 1.1 14 43.2 0.000003 12.7 0.08 13.2 0.22
Iteration 3 1.4 0.68 - - = - 15.7 0.15
Y
- -] BYE
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-1000 E
00 - E
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“am - 4
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Fig. 12.  Fit to eye.
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Fig. 11.  Fit to face. -150.00 |-
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Hopefully, Fig. 8, which shows a boundary patch and 25000 q
its completion by a fourth-degree polynomial, will clarify 0000
this informal discussion. In that figure, a noisy incomplete 1 L

boundary patch is shown. A symmetric or super-quadric model
would probably “fill in” the missing part creating an area larger
than the one resulting from description by a polynomial. The
incomplete boundary piece is magnified by a factor of 1.1 in
order to show the data points because in reality the polynomial
description completely overlaps the boundary patch.

-300.00 -200.00 -100.00

Fig. 14.

100.00 200.00 300.00

Unrestricted fit to face.

Another point to observe is that as more and more infor-
mation on the object’s boundary is gathered, the describing
polynomial can be computed quickly, because the polynomial
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Fig. 15.  Unrestricted fit to lip.
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Spike and fit to spike.

of the preceding boundary patch can be used as an initial
approximation.

A similar attempt to obtain “volume minimizing fits” was
carried out in [3] for super-quadrics, where the error function
is multiplied by the volume of the fitted super-quadric, thus
biasing the fit to have a smaller volume. In our case directly
computing the volume is hard, but the addition of ¢ enables to
control the volume without complicating the fitting procedure.

Another example of fitting to occluded data is given in the
next section.

1II. EXPERIMENTS

Experiments were run on two- and three-dimensional data
to test the fitting algorithm. The minimization scheme to
solve the nonlinear optimization problem was Powell’s method

Fig. 17.  Volume minimizing versus ordinary fit.

Fig. 18.

Fit to 3-D data.

[17]. Implementation was quite simple, and the programs for
fitting 2-D and 3-D data consist of about 500 and 800 lines
in C, respectively, which were compiled and executed on
a Sparc station. A nice feature of the algorithm is that no
initial guess is needed—all iterations started with the zero
polynomial.

Results are presented for one 2-D data set and three 3-
D data sets. For each data set we present the accumulating
running time (seconds) with respect to iterations, and the error
of fit after that iteration. That error was defined 1o be the
average distance of the data points from the fitted curve or
surface.

The first example consists of 175 po{nts in the shape of
a packman. The first three iterations are shown in Fig. 9
superimposed on the data. After the third iteration, there is
no significant improvement in the error. The error is larger
than in the other examples, but that is because of the very
nonsmooth nature of the data points.

The third example consists of 442 points that lie on a sphere
of radius 50 around the origin and 442 points on a sphere of
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Fig. 19.  Data points and fit to lightbulb.

Fig. 20.

Occluded data and fit for eggplant.

radius 100 around the origin. Since the union of the spheres
can be exactly described by an implicit polynomial of degree
four, the resulting error is very small.

The fourth example (super-quadric I) consists of 441 points
on the surface of a super-quadric parametrized as

x = 50cos™(¢) cos®4(#)
y = T0cos”*(¢) sin®(6)
z = 100sin"(¢).

The fourth example (super-quadric 1) consists of 441 points

— e

Fig. 21.

Cartesian robot sensing data.

on the surface of a super quadric parametrized as

T = 50 cos'#() cos?5(8)
y = 70 cos'8(¢) sin?>*(8)
z = 100sin'®(4).

It is known [3] that super-quadric I is a convex shape that
looks like an ellipsoid “pushed out” and super-quadric II is
a star-shaped object with spikes (compare Fig. 6 for the 2-D
case) so it is not surprising that the approximation to super-
quadric I is better (see Table I). Compared to the size of
the super quadrics, the errors are reasonable. In [3] the time
given to fit a super-quadric to 100 points is one minute on
a VAX 785; the computer used in our experiments is faster.
Considering that the space of fourth-degree polynomials is
much larger than the space of super-quadrics, running times
are reasonable.

The computation of the error function, and hence the fitting,
can be easily made to run is parallel.

Some examples of real data are now presented. In Figs.
11-13 some parts of a human face are fitted by fourth-degree
polynomials; in Fig. 10, the face is shown. In Fig. 11, the edge
pixels of the face’s contour are given super-imposed with the
fit. In Figs. 12 and 13 the data for the eye and for the lower
lip are given with the fits superimposed.

In order to show how crucial the bounded fitting is, we
computed unrestricted fitting for the face and the lip, and the
results are presented in Figs. 14 and 15. Once again, the fits
contain the data but have spurious “branches.”

Next, some 3-D examples are given. In Fig. 16 3-D sparse
data are given together with their polynomial fit. Note that the
“spike” is well fit by the polynomial, although quantization
problems do affect the display. In Fig. 17, the importance of
adding ¢ to the diagonal of B? (Section II-A) is demonstrated.
When ¢ was not added, this resulted in a zero set that is much
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larger than the extent of the data. As noted, this is a common
problem in fitting implicit models, such as super-quadrics. In
Fig. 18 fits for data from the surface of a pear, an eggplant,
and a light bulb arc given, as well as as a complicated zero
set with holes. In Fig. 19 the fit for the lightbulb is given with
the data points superimposed on the surface.

In Fig. 20, it is demonstrated how polynomials “fill in”
missing information. We tried to fit not the complete data for
the eggplant, but only a part of it (shown superimposed as dots
on the polynomial surface). The points shown are those having
z values larger than 12 (the eggplant’s points have z values
ranging between —30 and 30). There are 288 points with these

10,00 2000

Slices through fits to data and occluded data, 1.

z values out of a total of 942 points on the eggplant’s surface.
In Figs. 22 and 23 we show how the occlusion affects the
fits. Two slices through the eggplant data are shown, with
slices through the fitted polynomial surface at corresponding
heights. Together with these the slices of the occluded eggplant
are presented; as can be seen there is much less data. The
corresponding slices of the fit to the occluded eggplant are
given. Finally, the fits to the complete data and the occluded
data are given.

Data were collected in the LEMS laboratory using an IBM
RS/1 Cartesian robot (Fig. 21). Running times were about the
same as those given in Table I. The error of the fit was very
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Fit to occluded slice

T T T T T FIT_SLICR2 T T T T ¥IT_OCCLUDED_SLKCE2
20.00 Suicez 2500 _{'ocaLupep_sLice2
15.00 200~ -
10.00 1500 4
5.00 1000 4
5.00 - =
0.00
000 B
-5.00
500} —
-10.00
10.00 - -
-15.00
15.00 4
2000
2000 —
25.00 2500 i
30.00 3000 |- 4
x I ] ] 1 1 x
-20.00 10.00 000 1000 2000
Fits to slice and occluded slice
Y
T T T T T FT_sLicR2
2800 — ¥1_0CCLUDED_sLicez
2000 - -
15.00 |- .
10,00 .
5001~ 4
0| 4
S0 e
1000~ -
-15.00 - -
<2000 - -
25,00 - -
30.00 - —
1 1 | 1 1 x
2000 -1000 0.00 1000 2000
Fig. 23.  Slice through fits to data and occluded data, II.

small: if the objects were normalized to lie in a 100 x 100 x 100

cube, the typical error (distance of data from surface) was less
than 0.3.

IV. CONCLUSION AND FURTHER RESEARCH

Of the three goals presented in the beginning of this paper
(segmentation, description, and recognition), the second was
described. It was demonstrated that unrestricted polynomial
curves and surfaces can fit the data very well but usually
contain points far removed from the given data set. The class
of polynomial curves and surfaces introduced in this paper fit
the data well and remain only in the vicinity of the data.

Many experiments were carried out on real 2-D and 3-D
data illustrating the quality of the fits and the complexity of
the shapes that can be represented. Further work is being
conducted on the topics of segmentation and recognition of
2-D and 3-D data.

APPENDIX

In Section II, the question of how to force the lead-
ing term of the polynomial, ps(z,y), to be of the form
(22ryy?)A(z?zy y*)T for a positive definite A was ad-
dressed. In addition to the two methods suggested in Section
II, a third that was tried is not to parametrize the space of
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positive definite matrices, bat 10 search for a fit in the space
of all polynomials while sdding o the error function of the fit
a penalty erm for matrices thal are ol positive definite. Sech
& penally term is casy 10 CONSINBCL, SiNCE 4 MaliY i3 podilive
definite iff all the determinants on the disgonal are positive.

However, as we implemented it this method seemed o
suffer from convergence problems, and many times got stack
in & matrix that was nol positive definite (and resulied in an
unhounded polynomial).

This can be attributed 1o the geometric structure of the space
of coeffickents.

Lemma 8: The space of cocfficients of fourth-degree
curves that are stably bounded, when viewsd as a subspace
of B2, is comnected.

Proaf: As noted in Section [1, that space can be expressed
dd the continuous mmage of the space B® x R1%, where ®° i
identified natwrally with the space of all symmetric matrices
whose square gives the leading form, and BY is identified
with the lower degree iomms. More explicitly, the fanction that
assigns 1o any point in R® x R a polynomial is

{(Pu P2 P Pas Poo Po )y (900 00900 40 T30 e 07 80 09 10 }

= ayx" + Dayr®y + (203 + a)2y" + 20sxy” + agy’

+ @z + @'y + gy’ + g’ + gr” + gery
+ar’ + (T + @ + Qo

where the matrix with elements a, ; is the square of the matrix
with elements py . It s trivial o venfy that the operstion of
suaring matrices is continuous in the coefficicnts; this is with
(Py. Po Py Py P, o) identified with the symmetric matrix

| I O Y
A=ip p P

P Ps

and using the representation {r2ryy® JA{ 2 xyy®) for the lead-
ing form.

MNow, this is cerainly continuous. Since the space
R ﬁmumﬂuﬂd its continuous image is also connecied,

However, although the space is connected, it is mot linear,
hence an oplimization wlgonithm searching in that space can
wander oul of it and result in & point not Belonging 1o it
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