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Abstract. A popular non-parametric model for interpolating various types of data
is based on regularization, which looks for an interpolant that is both close to the
data and also “smooth” in some sense. Formally, this interpolant is obtained by
minimizing an error functional which is the weighted sum of a “fidelity term” and
a “smoothness term”. The classical approach is to select weights that should be
assigned to these two terms, and minimize the resulting error functional. However,
using only these “optimal weights” does not guarantee that the chosen function
will be optimal in some sense. For that, we have to consider all possible weights.
The approach suggested here is to use the full probability distribution on the space
of admissible functions, as opposed to the probability induced by using a single
combination of weights.
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1. Introduction

In many areas of science and engineering, regularization [1,2] is used to reconstruct
functions from partial data. In the field of maximum entropy, a similar idea is used
for reconstruction of missing or corrupted data [3-7].

Regularization chooses among the possible functions one which approximates
the given data and is also “smooth”. A cost functional M(f) is defined for every
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function f by M(f) = D(f)+ AS(f), where D(f) measures the distance of f from
the given data, S(f) measures the smoothness of f, and A > 0 is a parameter. TtlE
f chosen is the one minimizing M ().

In the r:me -dimensional case, one can minimize

M(f) = Z /(@ 2) : i) +/\f f2. du. Due to lack of space only the one-dimensiona
i=1

case will be presented here, however this work was extended and applied to func-
tions of two variables as well.

The Bayesian interpretation of this approach is: we are given the data D and

want to find the function f which maximizes Pr(f/D) x Pr(fo)Pr(f). Assum-
ing a Caussian noise model with variance o2, Pr(f/D) x - exp( ﬁ:_r > [f(zi) -

yi]?). Adopting a physical model, it is common to define Pr(f) ox exp(—A f f2.du).

Hence Pr(f/D) o exp(—M(f)), and the function minimizing M () maximizes the
likelihood. Since the model is Gaussian, the MAP function is also the MSE func-
tion.

The question is, how does one choose A and ¢7 There are various methods
for doing that, and some are mentioned in the following section. However, all
regularization schemes we are familiar with choose one combination of weights
and use them alone to interpolate the function; but, this approach fails to find the
maximum likelihood (MAP) estimate for the interpolant f, as it uses only one set
of weights A and o to construct f. However, the MAP estimate should maximize
the following:

f Pr(f/D,w)Pr(w/D)dw

where w varies over the set of all possible weights.

If Pr(w/D) has some nice properties - for instance, it is unimodal, symmetric,
and concentrated around the pair of weights wy,,, which maximize Pr(w/D) - it
may be reasonable to approximate this integral by approximating the integrand
with a rectangular function around wy,,;. However, the distribution Pr(w/D) can
be complicated and this approximation will then fail [8,9]; see also an example of
such a data set and the corresponding probability distribution it induces on the
weights, in this paper (Figure 4).

In this paper, it will be shown how to find the function f maximizing
f Pr(f/D,w)Pr(w/D)dw

We also address the questions of computing the MSE function, and the point-
wise uncertainty associated with it.

These three quantities — the MAP, the MSE, and the uncertainty — are perhaps
the three most important estimators for a statistical entity, and it 1s therefore very
important to rigorously compute them.
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2. Previous Work

A very popular method for determining the smoothing parameter A is Generalized
Cross Validation, GCV (bootstrapping) [10,2]. In [11], a few methods for choosing
the smoothing parameter are analyzed.

A different approach, which also chooses an “optimal” smoothing parameter
and uses it, is that of Bayesian model selection which, to the best of our knowledge,
was first suggested in the pioneering work of Szeliski [9]. There, the following ques-
tion is posed: given the data D, what is the most probable value of the smoothing
parameter A ¢ More recent work in this direction was done by MacKay [8]. Another
method for choosing the smoothing parameter is presented in [12]. In [13], the be-
havior of the smoothing spline over a range of smoothing parameters is studied,
and is then used to construct a confidence interval for the smoothing parameter.

The problem with methods that use a single set of weights is that the choice
of the values of A and ¢ i1s sometimes very sensitive to the data. Since these values
are crucial to the shape of the fitted curve or surface, it turns out that sometimes a
small change in the data drastically changes the shape of the fitted curve or surface
(see Figure 1). Another problem is that although it can be proved that GCV has
some nice asymptotic properties, the choice of the “optimal” values of A and ¢
1s heuristic in nature. Nontheless, the algorithm performs well in general and is

widely used; there are very sophisticated numerical methods for implementing the
GCV algorithm.

Work which proceeds in a direction somewhat similar to the one given here
is presented in [3,4]. However, this work is in the realm of entropy and therefore
the mathematical framework is rather different from ours; for instance, there is no
analog to the calculation of the MSE estimate given here.

Finally, recent work reported in [14,15] concerns the problem of computing the
MAP solution, in a Bayesian framework, by integrating over the space of smoothing
parameters and noise. For “integrating out” these two parameters, a uniform prior
for them 1s assumed.

3. Computing the MAP Estimate

In order to compute the MAP estimate, we have to maximize Pr(f/D) over all
functions f. Using Bayes’ rule, Pr(f/D) o< Pr(D/f)Pr(f). In order to compute
this, one needs to integrate over all values of A, &, resulting in

/n V”Ie:cp(—)t/ffudu)Prior(l)d,\-fﬂ %ExP(”ﬁZ[f(ri)—yi]z)f’rior(a)da

where the v/ in the first integral normalizes the probability distribution on the
function space [16].

The expression above has to be maximized over the space of admissible func-
tions. Let us write it more compactly as Fl(/ ffudu)Fg(Z[f(m;) - u)?),
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where Fi(a) = f ﬁexp(—kn)Pr:’ar(}.)dk and
0

g 1 g
Fa(B) _/u Fexp(—m}}:’rwr{a)dm

Note that, obviously, Fy() and F»() are monotonically decreasing.
It is possible to turn this optimization problem to a one-dimensional optimiza-

tion by setting /ftfudu to a constant a, and then minimizing 5" [f(z;) — y;]? over

all functions f such that fffudu = @,

Using Lagrange multipliers, this problem transforms into one resembling “stan-
dard” regularization: find a A such that the function f minimizing E[f(z,-)—-y;]2+

A / f2 du satisfies ]ffudu = «, where X is the Lagrange multiplier.

We have proved that the f minimizing Z[f(:c,-) -2+ [ f2.du is given by
f(z) = (Hz (2),...Hz (2))(A+ M)~ )(y1...yn)*, where

0<Eé<zx: (z—1)€(z*-224€%)

HI{E) - { r<E<]: I(E-l}(’f“i‘f:_zﬂ

and A;; = H;,(z;). Let us denote the data vector (y;,...yn) by Y. After some
manipulations,

[ frudu=Y' A+ AD"HAM +AD )y

so, we have to find for which A this expression equals a. Diagonalizing A by an

orthonormal U, UAU® = D, and denoting Z = UY, the expression for / 2 du

>
(d;i + A)?
where d; are the diagonal elements of D. Finding a A for which this equals « is fast,

as this function is monotonically decreasing in A and we can solve the problem by
binary search.

After finding A, we have to compute Y [f(z;)—y;]?, where f minimizes Z[f(ri)

reduces to

Uil2 + A f ffudui Without going into all the technical details, let us just state that

this equals 8 = ||AU*(D + AI)~'Z — Y||?, another expression which can be com-
puted fast since it involves inverting a diagonal matrix, and since AU" needs to be
computed only once.

Now, all that’s left is to compute Fy(a)F2(f8). Fi() and F2() are one-dimensional
integrals with rather simple integrands, and can be computed fast (or perhaps
stored in a table).

What remains is to maximize Fj(a)Fy(3) over a (recall that § is not a free
parameter, as it is determined by a).
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The algorithm therefore tries to maximize a function C'(a) which is defined as
follows:

1) compute Fi(a)
2
2) compute the (single) A, which satisfies ﬁh’ = a. This is fast because,

as noted, ) (;i;_ﬁ%, i1s monotonically decreasing in A (A is positive definite, so
d,' > 'U)

3) define 8 = ||AUY(D + Ao I)™'Z - Y||?

4) compute Fy(3)

5) return Fy(a)F2(3)

and we have to maximize C(ﬂ') for 0 SaXl (finttrpﬂlatt)iu du, where fintcrpafnte

is the interpolant which passes through the data points. This range covers all the
relevant functions, because finterpotate 18 the interpolant of the type we’re studying

which maximizes f f2 du (it corresponds to A = 0).

This is a one-dimensional optimization problem, which we solve numerically.
The solution is reasonably fast, taking a few seconds on a workstation.

4. Computing the MSE Estimate

An estimator which for some purposes 1s more useful than the MAP estimate is
the MSE estimate. Its value at z is defined by E; = ff(:)Fr(f/D)'Df.

In order to compute this integral, the following approach is taken. Let us define
a probability structure M) , on the space of admissible functions. In this space,
we assume the measurement noise is o, and the prior distribution of the function

fis Pr(f) exp(—}.fffudu). Under this probability, which is Gaussian, the

MSE function, denoted (fopt)r o, is equal to the MAP function and there is a
closed-form expression for it (given in the previous section). It can be proved that

Ex= [ 1@Pr(f/DYOf = [ [ (Fpt)aol@)Pr(d o/ D)dAdo

After computingPr(M) ,/D), the following expression for E, can be derived:

d=mn

[ =lA+ vI|=3(Hg, (2)...He (2))(A + v)" 1YY (A + v])~ YT dy
[ ZelA+oI|73[Y (A+vD)~1Y1] 5" do

5. Computing the Uncertainty Associated With the Interpolant

In [17,2,16,8,18,9], the problem of assigning a measure of uncertainty to the reg-
ularizing interpolant 1s addressed. This i1s very important, because usually one
wants not only to know the curve (surface) which is optimal in some sense, but
also to know how reliable this curve (surface) is. We chose to extend the method
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suggested in [16], defining the uncertainty of the interpolant at the point z as
[[f(z) = E;)?Pr(f/D)Df As was the case with E,, we obtain a closed-form solu-
tion, but its computation is non-trivial.

6. Examples

A simple pattern — one cycle of a sinusoidal function — is contaminated with Gaus-
sian noise, and then the resulting data is interpolated using the GCV algorithm
and the methods suggested in the previous sections. The instability of the GCV
is demonstrated by noting that changing the value of the data at a single point
radicaliy changes the shape of the fitted curve (Figure 1). In Figure 2, The MSE
(left) and MAP (right) estimates for these two data sets are presented. In Figure 3,
the MSE estimate and confidence intervals for two data sets are given. On the left,
the data is a sample of the z-coordinates of a hand-written word. On the right,
the interpolant and confidence intervals are given for data unevenly sampled from
a sinusoid with noise added to it. One can see that the uncertainty is larger in
areas which are far from the sample points. The uncertainty at the endpoints is
zero, because we constrain our functions to be zero at the endpoints.

Finally, we give an example which explains why one has to integrate over all
possible weights. In Figure 4, two data sets are shown, superimposed. As one can
see, they are almost identical. Also, the (scaled) joint probability distribution of
the weights A, o for one of the data sets is plotted. It has two distinct peaks,
which are rather far apart; the location of the peaks correspond to the location of
the most probable weights for the two data sets. Therefore, the interpolants for
the data sets which use only the most probable weights are drastically different,
although the data sets are almost identical.

Figure 1: Instability of GCV: for two data sets differing in one point, GCV gives
two very different interpolants.
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Figure 2: The MSE (left) and MAP (right) estimates for the data sets of Figure 1.
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Figure 3: MSE function and confidence intervals for an evenly and unevenly
sampled data set.

Figure 4: Two nearly identical data sets superimposed, and the (scaled)
probability distribution for one of them.

7. Conclusions and Further Research

This work suggests a straightforward approach for solving three basic problems in
curve and surface reconstruction, which are very common in many areas: finding
the MAP interpolant, finding the MSE interpolant, and computing the uncertainty
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associated with the interpolant. The solutions are obtained by considering a two-
dimensional set of data-driven priors on the function space, and not a single prior
as in the standard regularization approach. This leads to a more general solution,
which appears to be more stable to perturbations in the data.
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