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Abstract

“rc length parameterization can be thought of as the
most natural amiong all possible parameterizations of a
giver curve. Beyond having several nice mathematical
properties, this parameterization is useful for computer
graphics applications: drawing a curve given in this form
and computing its length, are particularly easy. Unfor-
tunately, for the curves used mostly in computer graph-
ics, namely cubie splines, the arc length parameterization
cannul, in general, be expressed as any elementary fune-
tion. As ¢ resuit practitioners are forced into employing
approximate numerical methods which are in many cases
complex, computationally intensive, and susceptible to
error accumulation due to their iterative nature.

This paper explores the following new direction to this
problem. Instead of the traditional classes of curves, such
as polynomials and rational functions, we promote the
usage of a new class of curves which are all given in an
explicit arc length parameterization form. On a par with
polynomials, it is possible to select a subclass of curves
which has any desired number of degrees of freedom. Qur
results show that several important settings of the general
interpolation problem can be solved using curves from
this class.
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1 Introduction

1.1 Curves and Arc Length Parameteri-
zation

The vost commeon vy of deseribing curvee in computer
graphics, comgnter Jlled design. compurer vision, and
other areas of computer science which deal with the ge-
ometric properties of objects, is the so-called parametric
representation. A plane curve, for instance, is described
as a pair of functions of one variable, (z(t),y(t)), and
a range [tg,1;]. As t ranges between t, and t;, the
point {(z(f),y(t)) traverses a curve in the plane. The
curves most commonly used in graphic applications i
cubics or cubic splines in which both z(t) and y(t) are
polynomials of degree 3 of the parameter. Of a lesser us-
age, but also very important, are the general polynomial
curves, in which these two functions are polynomials of
an arbitrary degree and the rational curves, in which they
can be anv rational function.

There are many different parameterizations for any
given geometrical curve. Let (') be a monotonically
increasing function, and let t; and t] be such that,
s(ty) =ty and s(t}) =t;. Then,

(z(t). w(t))  tE[te, 4]

and

(zos(t'),yos(t')) ' €ltsty]

are equivalent parameterizations [1] of the same curve.

An tnirinsic parameterization, which depends only on
the geometry of the curve, is given by substituting the
curve length, measured from its beginning, for the pa-
rameter. A simple example for a curve already given in
the so called arc length parameterization form [11] is the
straight line

¢+ (cosfl, sinff)t , (1)



where ¢ is some fixed vector and @ is an arbitrary scalar.
Arc length parameterization of a curve can be con-

Structed from any other differentiable parameterization

by the following conceptually simple two-step process:

1. Rectification The cumulative arc length of the
curve (z(t), y(t)), measured from the point { = a,
15 computed by

(= [ VAR dr @)

We call £(t) the arc length function of the curve.

2. Inversion To produce the arc length parameteriza-
tion, the function £-!, a functional inverse of arc
length function, must be determined. (This function
is well defined and monotonically increasing except
for very degenerate cases in which the curve “stalls”
i.e., there exists an interval of length greater than
zero in which both functions z and y are constant.
Hereafter, we limit the discussion to regular curves
in which the derivative vector never vanishes ) The
arc length parameterization is now given by the func-
tions zo £=! and yo¢~! and by the interval [0, (1)),

For example, applying the above process to the rational
curve,

1 -1 2
c+ k :
{l+£2 1 + 12

> te[-1,1) (3)
using only elementary mathematical tools, reveals that it
15 actually half a circle

c+ kisint,—cost) te[0,x (1)

1.2 Machematical Properties of Arc

Lengih Parameterization

A necessary and sufficient condition for a curve to be in
arc length parameterization form is that for all A

ft)=1 . (5)

By substituting (2) for £() and taking the derivative with
respect Lo I, we get another hecessary and sufficient con-
dition for are length paramelerization

I;z{f} +yl2[:] =1 {ﬁ]-

The ﬁaffﬂgm_r_lh [15} of the curve r(f) = {z(1), y(1)) is its
parametric derivative r{t) = (z'(1), ¥'(t)). Equation (G)
IS cqul}'ﬂe.nt to the condition that the hodograph lies on
the unit circle centered af ¢),e origin

IF(t)| =1 . (7)
T!lusf, we have that the arc length parameterization is
nothing but the Parameterization describing a traversal

al unit-speed of the geometric curve. Indecd. the arc
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length parameterization was called in the literature ([5]
the unit-speed representation of a curve.,

Some other well known properties of this representation
are, that at any point on the curve, the direction of the
tangent to the curve is the same as that of r'(t). Further,
the second derivative r”(t) is perpendicular to r' (t) and
points to the center of the tangent circle while the radius
of that circle is 1/|r"(t)|. The curvature of the curve at
any of its points is given by

K(t) = [r"(1)] . (8)

1.3 Application of Arc Length Parame-
terization

Arc length parameterization is also lucrative from a prac-
tical point of view. In the following, we have enumerated
some of the reasons why it is considered advantageous.

1. When tracing or rendering a curve, it is important
to move along it at a constant rate. Otherwise, the
points which define the curve will be spread along it
at non-regular intervals. Suppose that #(t) is not a
constant, and and that ¢ is simply incremented by
a fixed constant in each rendering step. Then, the
curve will be dense when length increases slowly as
a function of ¢, and sparse when it increases quickly.
This, of course, has an undesirable effect on the ap-
pearance of the curve.

2. Consider the problem of computing the intersection
of two curves ry(t) and ra(u). Usually, it is impossi-
ble to solve this problem by equating ry (t) and ra(u),
and analytically solving for ¢ and u, as there is no
explicit solution for the resulting equatinns, Instead,
numeiicai methods are used. These usual'y zoass:
of updating the two parameters ¢ and u as weli as (he
two curves until the distance between ry (1) and ro(u)
is smaller than some pre-set threshold. It is impor-
tant to maintain a more or less fixed rate at which
the two curves gain length as ¢ and u are updated.
If this rate is too fast, then the intersection point
might be skipped; if it is too slow, adverse affects on
the computation time may be observed.

d. In animation, one of the fastest growing disciplines
of computer graphics, it is essential that the speed
at which objects are moved along a path can be de-
termined by the animator and not by the particular
mathematical parameterization used for describing
this path. Further, if an animated object such as
a rod or a string changes its shape, it is in many
cases vital to preserve its size. This means that it is
necessary to gain control of the length of the contour
curves. Such control is readily available in are length
parameterization with which the length of the curve
segment the two parameter points t; and s is sim ply
ly — 1



4. The generation of ornamental patterns is done by
the production of offset curves [10, 4, 3] (also called
parallel curves [13, pp. 42-43]) to a curve given
by a designer. The offset curve of a curve r(f) is
r(t)+dn(t) where n(t) is the unit normal to r(t) and d
is a scalar determining the distance of the offset. Off-
set curves are also a valuable tool in robotics and in
cartography. As explained above, offset curves take
a particularly simple form, r{t) + dr'(t), for curves
given in arc length parameterization.

Despite the practical benefits they carry and the math-
ematically spruce features they exhibit, arc length param-
eterized curves are rarely used in practice. Our biblio-
graphic search failed to yield any indication of such us-
age except, of course, for the trivial cases of the straight
line (1) and the circle (4). Part of the reason for this is
that such curves are rarities. Other than the trivial cases,
there are also few sporadic (see [14] for a briel historic
survey) higher order curves such as

(12, %) (9)

&

(10]

t € [0, 0]
giving rise to

(90 +4)%° -8
27

which can be readily inverted. The representation power
provided by the few examples listed above is usually not
sufficient.

With regard to the commonly used families, polynomi-
als and splines, it is fairly easy to see by examining the
leading coefficients, that there are no polynomial curves
other than the straight line which satisfy condition (6).
Further, as Farouki and Sakkalis [6] showed, this condi-
tion cannot even be satisfied by rational curves.

é(t) =

1.4 The Difficulties of Rectification and
Inversion

How difficult is it to rectify and inverse a polynomial or
a rational curve in order to obtain its arc length param-
eterization? The answer is not very encouraging. For
polynomial curves of degree n > 3, the integral required
for rectification (2) is not in general any elementary func-
tion. For n = 3 this is an elliptic integral [8], for n = 2
it is an elementary function describing the parabolic arc,
and for n = 1 it is a linear function. General polyno-
mial curves susceptible to rectification are only those of
degree n <= 2. There are 2n — 3 degrees of [reedom in
determining the shape of a polynomial curve of a degree
n. For general quadratic curves, n = 2, we get a single
degree of shape freedom. Regrettably, the arc length for
the general quadratic curves is quite unweildy:

0ty = (2+4)VatT+bt+c+

dac—b"

S In (Enf +b+ 2 /alat” + b1 + cr‘,l\J

(11)

for some constants a, b and ¢. The inversion of such a
function is intractable by elementary methods.

The situation for general rational curves is no simpler
since the function £(t) is algebraic only in very demanding
conditions. As a result of these difficulties, practitioners
resorted to using numerical methods for computing the
arc length [16, 9], and for equally spaced tracing of a
curve [17, 18, 7).

Another approach of coping with the problematics of
arc length parameterization is that taken by Farouki and
Sakkalis [5] who coined the term Pythagorean hodographs
for polynomial curves for which £(t) is also a polynomial.
A general method for the construction of such curves and
an investigation of their fundamental properties also ap-
pears in [5]. A study of the applicability of Pythagorean
hodographs for practical use in interpolation problems is
given in [2]. It is possible to compute an explicit arc
length parameterization. To do so, write the polynomial
equation

s—£1t)=0, (12)

and carry out the inversion by expressing iis roots as a
function of s.

Pythagorean hodographs of degree n have n—2 degrees
of shape freedom. For n = 3, Equation (12) is quadratic.
By solving it, we get a class of arc length parameterized
curves which has a single degree of shape freedom. Two
degrees of shape freedom can be obtained by analytically
solving the cubic equation that (12) becomes when n = 4.
However, this solution is prohibitively complicated.

Quintic Pythagorean hodograph curves yielding three
degrees of shape freedom were required in (2] for solv-
ing the interpolation problem considered there. For these
curves, arc-length parameterization can still be obtained
but only at the cost of using the mammoth explicit solu-
tion of the quartic equation! As there is no closed form
solution for quintic and higher degree polynomial equa-
tions, it is impossible to generate richer classes of ex-
plicitly and elementarily arc-length parameterized curves
using Pythagorean hodographs.

Yet another approach taken by Sakkalis and Farouki [l
was to find curves other than the Pythagorean
hodographs for which £(t) is an algebraic function. They
were able to show, that whenever this happens, {(t) 1s a
square root of a polynomial. They also gave a full char-
acterization of these algebraically rectifiable polynomials.
Specifically, algebraically rectifiable cubics are essentially
of the form (t?, kt®) which is the generalization of (9). For
these we have

(k22 4 4)3/2 — 8
27k? :
and with the simple inversion
2Tkt + 8)2/3 — 4
3k '

we get yel another class with one degree of shape freedom
of arc length parameterized curves.

ft) = (13)

) = (14)




There are two classes of algebraically rectifiable quar-
tics, both of which have two degrees of shape freedom.
The first class has a relatively simple characterization by
choice of parameters. Howewver, its arc length function
cannot be inverted as it is the square root of an eighth de-
gree polynomial. The characterization of the second class
of algebraically rectifiable quartics, as well as that of the
algebraically rectifiable quintics and higher, is more com-
plicated because a selection of a curve from these classes
can only be carried out by solving a set of non-linear
equations. Needless to say, the inversion of the arc length
function for these classes is infeasible as well.

2 The New Family of Arc Length
Parameterized Curves

The frustration in finding simultaneously simple and rich
mathematical representation for a natural geometrical
property, has lead us to initiate the research with the
following objective: “Introduce a family of differentiable
curves with an infinite number of degrees of freedom such
that all curves in the family have a simple arc length pa-
rameterization.” We have succeeded in constructing such
a family and it is our hope that the entailing research will
propound its exploitation in modeling and other interpo-
lation applications.

As explained above, polynomials and rational curves
proved fruitless in the context of the set objective. We
have taken the approach of examining curves whose hodo-
graph is rational, i.e.,

1) DO(t)

l-l'{!:lz ﬁ_'& {I_EI:I
v(t) w(t)

where wi?), {1} and w{f] are polynomials+~ A necessary

and sufficient condition for r(f) to be in it$ arc length
parameterization form in this case is

a®(t) + B%(t) = »*(1) .

This condition 1s remarkably similar to the famous dio-
phantic Pyvthagorean equation

(16)

a‘.!_'_&E:ci :

(17)

Not surprisingly, it can be shown [12] that the general so-
lution of the polynomial Pyvthagorean equation (16) par-
allels that of the diophantic Pythagorean equation (17)

a(t) = wolt) (wilt) — wi(t))
Blt) = Ewu{f]u::[”w:{ﬂ_’ . (18)
v(t) = wolt) (wilt) +wi(t))

where wg(t), wy(t) and w2(f) are arbitrary polynomials,
For the purpose of (13), it is safe to assume that wy(t) =
1, that wy (1) and wa(t) are relatively prime, and that the
leading coefficient of (say) wy is 1. Thus, we can write

A11) = wi(t) — wi{t) 2wy (t)wa(t) >
et J_<w¥[f}+ wilt) wi(t) +wi(t)/

(19)

Conversely, the above form could have been reached by
starting with the circle curve

1—u? 2u
r{u}=<1+ui‘l+uj>
which satisfies |r{u) = 1| for all u and in particular also for
u = wy(t)/wa(t). By carrying out this substitution (21)
can be derived. The approach based on the polynomial
Pythagorean equation that we have taken shows that all
unit speed rational hodograph curves can be obtained
from (20) by such substitution.
Arc length parameterized curves with an arbitrary
number of degrees of freedom can therefore be con-
structed by integration

< wi(r) - wi(r) |

wi(r) + wi(r)

(20)

2un (7)wa(T)
[ Sty aame) - e

The integrands are both rational functions and there-
fore, by a fundamental theorem of the integral calculus,
given the roots of the polynomial wi(7) + wi(7), a stan-
dard procedure yields an expression of the integrals as
elementary functions.

For w; of degree n; and wy of degree ng, there are
ny + ny + 3 degrees of freedom in the construction (21):
ny + ns + 1 for the polynomials coefficients, and two for
the integration constants. Of these, only n; 4+ ny = 1
are available for determining the shape of the curve. Two
others are accounted for translation, one for rotation, and
another one for the freedom in the parameterization cor-
responding to the substitution ¢ — 1 4+ C which shifts the
point from which the parameter is measured.

This construction can be generalized to higher dimen-
sions. For example, for three-dimensional curves, we need
the constiuct solutions for _ A

a?(t) + 5(t) + (1) = v7(1) , (22)

where a(t), 3(t), (1) and v(t) are polynomials. This can

be done by the generalization of (18)
aft) = wo(t) (wh(t) + wi(t) - wd(t))
.ﬁ{ﬂ - Zwﬂﬁ}wt(ﬂu:ﬂ[t} {EEJ
¥(t) = 2uwplt)ws(f)ws(t)
v(t) = wolt) (wi(t) + wi(t) + wi(t))

With this, it is possible to write the three-dimensional
equivalent of (19). By coordinate-wise integration, we
get a construction of curves in arc-length parameteriza-
tion form with an arbitrary degree of freedom. The ex-
trapolation for even higher dimensions is straightforward.

We should not overlook the fact that the functions re-
sulting from an integration of rational functions, as ele-
mentary as they may be, are still unwieldingly compli-
cated. Fortunately, for the two-dimensional case, there is
a more elegant construction of the same family of curves
with a simpler characterization of the curves in it. Let
us view the curves as residing in the complex plane with
the z and vy axes unified respectively with the real and



the imaginary axes. A planar curve in this perspective
is a complex function of a real variable. Rewriting (19)

with it, we get
(w’t — wi(t 4+ i 2w (twa(t )
wi(0) + wil) ST+ o4

w2(t) + 2wy (t)wa(t) — wi (i

wi (t) + wa(t) »

wy (1t +1.H.l1{i”
G (@) + fwa(0) (wn (8) = FaD))
wy (£) + 1wa(t
wylf) — itﬁ'j f

r'(t)

il

For a complex polynomial p(t), let p(t) denote its conju-
gate, i.e., the polynomial obtained from p(t) by replac-
ing all coefficients by their complex conjugate. Clearly,
wy(t) + fwa(t) = wy(t) —iwa(t). We can therefore
put (24) in a more concise form

g W(t)
w(t)

(1) = ¢ (25)
where @ is an arbitrary real constant and w(t) is an
arbitrary complex polynomial whose leading coefficient
is 1. It will prove convenient to select w(t) by its roots
£1,...,En rather than its coefficients. Observe that the
roots of W(t) are £;,...,E,.

We proczed by writing

ok iy w(t) = w(t)
ik (”'W)

The degree of W(t) — w(t) is less than n. Therefore, La-
grange's fractional decomposition can be applied, to ex-
pand r'({) about its poles, &,..., &,

it = e 14 j—'!-—
LEren £

where R; is the residue of r'(t) at the pole &

(26)

(27)

W(Ei) — w(&) 29(¢&:)
R_;‘ ] = - :
[1&-& @& o

(For simplicity of the presentation we assumed that w(t)
has ne multiple roots.) With this formulation, the inte-
gration is rather straightforward

r(t)=e’ > Rjln(t —&)+C .

Jj=1

(29)

Recall that the complex function In(-) defined as
Inre'® = In(r) + 0

for a non-negative r and real #, has multiple branches.
Any of these branches could be legitimately selected for
each of the terms In(t — &;) in (29). No confusion will
arise since real ¢ guarantees that no crossing of a branch
boundary will occur. It is also easy to check that branch

31

selection corresponds to an additive constant. It is there-
fore sufficient to use the principal branch only.

Let us use the notation G; for the class of curves ob-
tained from n degree polynomials with n distinct roots.
Counting again the degrees of freedom, we have 2n for
£1,...,£n, two for the integration constant C, and cne
for the rotation § amounting to a total of 2n 4+ 3. Out

.(24) of these, three are accounted for rigid motions: The in-

tegration constant C corresponds to translation, and #
corresponds to rotation. Also, as before, one degree of
freedom corresponds to a shift in the parameter, leaving
only 2n — 1 degrees of “shape freedom” in G,,.

It should be understood that scaling is always counted
as one of the degrees in shape freedom. (In our case,
scaling can be simply carried out by multiplying all £;, £,
j=1,...n by a common factor.) Consequently, the class
Gy has essentially only one curve which can be rotated,
translated, and scaled as necessary for purpose of fitting.

3 General Arc Length Parameter-
1zed Curves

3.1 Degrees of Freedom

Suppose that r(t), t € [—oo0, 0] is 'n arc-léagth parain-
eterization form, i.e., satisfying the property j1'(t)| = 1.
This property is not dependent on the location of the
origin nor on the orientation of the axes. Further, this
property 1s preserved by uniform scaling of the curve,
as described by kr(i{/k) for some constant k. A single
curve r(t) in arc length parameterization form gives rise
to a family of arc-length parameterized curves which en-
Joys four degrees of freedom. When using a curve for an
interpolation problem, two more degrees of freedom are
available which are the selection of the beginning and end
points of the interval. The class of curves spanned by r(t)
can be written as

[ta.t1] , (30]

where ¢ is an arbitrary vector and @, k, {p and t; are
arbitrary scalars satisfying —vr <@ <x, k> 0and tp <
t;. (A rotation of = about the origin i1s equivalent to
scaling by a factor of —1. Hence there i1s no need to
consider negative k's.) If r{f) has no axes of symmetry
then it also gives rise to an auxiliary class

[to. t1] .

(The non-analyvticity of the conjugate function is not a
concern here since T is nothing but a short hand for a
pair of two real functions.) However, this will be of only
marginal interest to us.

In counting degrees of shape freedom of a given class
of curves, all of the six enumerated above are specifi-
cally excluded. It should be remarked that not even all
these six are available for the two trivial examples of arc
length parameterized curves. Circles are invariant under

ePkr(t/k)+ ¢

e kTt /k) + ¢ (31)



rotation—circle arcs therefore have just five degrees of
freedom. Lines are invariant under scaling and transla-
tions in the direction of the line—line segments therefore
have only four degrees of freedom. These are not sufficient
for solving interesting interpolation problems.

Note however, that a single curve r(t) which is not in-
variant under translations, scaling, or general rotations,
spans an interesting class of curves. Although this class
has zero degrees of shape freedom, the six degrees it has
may allow curve fitting in the setting of an interpola-
tion problem with six constraints. Important interpola-
tion problems of this type are those in which the two end
points ol the curve (four constraints) are given, together
with two additional constraints: the slopes at the two end
points, slope and curvature at one of the end points, or
slope at one of the end points together with the length of
the curve connecting them.

3.2 Slopes at Two End Points

Perhaps the most fundamental curve fitting problem is
one in which we sesk a curve segment which connects two
points while assuming given derivatives at these points. A
procedure for this can be used for a first order continuous
interpolation of a sequence of points, where the slopes at
each point in the sequence are given. To obtain such a
procedure for the class with zero degrees of shape freedom
spanned the by the arc length parameterized curve r(t),
we must be able to solve the following set of equations

ekr(to/k) +e¢ = po (32)
e’kr(to/k)+¢c = p, (33)
e r'(ta/k) = &' (34)
v’ fk) = & (35)

for the unknowns k, 8, 1o, t; and ¢, where pp and g, are
the two points and #p and @, are the slopes in them. By
subtracting the first equation from the second we elim-
inate the unknown c¢. By also applying the substitu-
tien ug = tg/k and u; = £1/k the set of equations takes
the form

ek (r{u;) —r{ug)) = p1-po (36)
E.l-ﬂ].n'["u} - EIE{. {E-r]
efr'(u) = & | (38)

Only the first of the above equations is vectorial. By
examining its magnitude part we can eliminate the un-
known k,

P1— Po
r{uy) = r{up)
Since the selection of the direction of the = axis is ar-
bitrary, we may assume without loss of generality that
arg(p1 — po) = 0. By dividing both sides of {36) by their
absolute value we obtain:

o (x(11) = r(ug))
[r{uy) — r{ug)|

k=

(39)

=] . (40}

Dividing (37) and (38) by the above we get two scalar
equations with unknowns up and u,:

r(u)e(ur) —r{uo)| _ 6, . _
r{u;]-—r[uu} ok, / -—ﬂ,l

Although these equations do not have in general an ana-
Iytical solution, numerical solution is in many cases fea-
sible. The right-hand side of the equations is nothing
but the angle between the slopes at the end points and
the line that connects these points. The left-hand side of
the equations does not depend on the input constraints.
We can therefore use these equations to span the range of
boundary conditions in which r(t) yields a solution to the
interpolation problem: This is done by tracing the pair
(f0,8:) as up and u; change in their respective domains.
For example, one could fix ug and draw the paramet-
ric curve of (g, #;) as u; changes, then increment ug by
some ¢ and repeat the process. This trace yields a map
between (ug,u;) and {fy,8,). If this map is stored, then
it also gives a good initial approximation to be used for
a numerical solution to the equations.

Note that if there is a closed form for the inverse of the
function ', then equations (37) and (38) can be used to
express ug and uy as a function of #:

=1 {ei{!u—ﬁ'])

p-1 (eica,-a]J

Let r be the complex function of real argument defined by
rer'~!. By substituting the above two equations into (40)
we get

o B (ef(Pa=0)) _ j (eil0a=0))

£ If' {E‘.l‘el—ﬂ:} - E [EI'{-FL—B‘]}| =1 ;

(41)

g = (42)

(43)

g —

(44)

thereby reducing the cuive fitting problem to the task of
solving a single (perhaps transcendental) equation with
a single unknown. In contrast with the two equations
and the two unknowns formulation presented above, this
equation takes a different form for different values of the
boundary conditions of the interpolation problem. Thus,
no pre-processing can be used to compute initial approx-
imation for the solution.

4 Interpolations using the class G,

In this section, we present the application of curves in
Gy for solving interpolation problems. The setting used
for the demonstration is that of two given end points and
specified tangents at these points. The derivative vector
of functions in the class G, is in the form:
vif) = e'-at—_:j
t—§
where £ is some complex number.
For any parameterization, if ¢ € [—09,00], then the
substitution ¢t — t 4+ C for any constant C, gives rise to

(45)



the same point loci. We can therefore assume, without
loss of generality, that R(£) =0 and (£) = L. Thus,

ienn _ inb+iL

r(t) = e T T (46)
Integration yields

v(t)=e"” (t+ 2iLIn(t —iL))+C . (47)

In the interpolation problem we are given pp and pi,
points in the plane, and tangents’ slopes #; and 8,. We
are to find i, &3, L, @ and C such that the following
boundary conditions are satisfied:

r(te) = po (48)

r{t1) = p (49)

r(tg) = e'®° (50)

r(t,) = ' . (51)
Substituting (46) into (50) and (51) yields

e (52)

ot ::‘:_:E s {53]'

The effects of scaling are tacitly accounted for by using a
canonical reparametrization

u=t/L . (34)
With this parameterization,
yid ug + i = . gif (55)
tig — 1
LT o i (56)
By — 1
or in angular form
0+ 2arg(ug+1) = G (57)
4+ 2arg(uy +1) = & :

By subtracting (48) from (49) and using the canonical
parameterization we have

lil—i
.)=P1—Pc--
Ug — &

e"’L(u. — ug + 2iln (58)
The above is an equation of complex values. Therefore,
both the absolute value and the angular part of both sides
must be equal. We can therefore ignore the absolute value
now. Later, when the value of ug, u; and @ is determined,
the absolute value equation can be used to easily deter-
mine the value of L. The angular form of (58) is
) — 1

0+ arg(uy — ug + 21 1n( i =10.

lig — i

(59)
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Now we can use (57) to express ug and u; in terms of 6.
Doing so and substituting into the above will give us a
one-variable transcendental equation for 8

2Insin 2= _ 9 nsin iz
g tan 3 & =0 .(60
v (ﬂ]—gn-l'l]ﬂtl-:h—-mt.—-;l l: }

This equation can be easily solved numerically for specific
values of 8y and #;. (Some results we have, which are ex-
cluded from this research proposal, give indication as to
when the solution exists and when it is multiple.) It is
important to understand that once such an interpolating
curve is found, admittedly with some numerical iterative
effort, all subsequent manipulation and rendering of the
curve can be done analytically. This is in contrast to
cubics, in which the curve could be determined analyti-
cally, but then, each rendering step requires a numerical
iterative process.

4.1 Examples

We have numerically implemented an algorithm which,
given two slopes, constructs an arclength parametrized
curve with these slopes. Without loss of generality, we
assume that the curve starts at (0, C) and ends at (1,0).

* The curve belengs to the aforedescribed class Gy; hence,

using the previous notation, po = (0,3}, p1 = (1,0). the
input consists of 8y, #;, and the values of u,, uy, k8, C are
sought. In Figures 1 and 2, two examples are provided.

Figure 1: G; curve with 6 = 0.5, 8, = —0.3. The solution
is ug = 1.15,u; = 3.08,k=0.53,8 = —092,C=-0.13 -
0.50/.
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Figure 2: G, curve with , = 0.5, 8, = —=2.0. The solution
is ug = =5.79, u; = =0.15,k=0.21,0 = 0.84,C = 0.98 -
0.02r1.

9 Conclusions and Further Re-
search

A novel family of curves was described, which allows to
construct arc length parameterized curves between two
arbitrary points, with given slopes at the curves' two
endpoints. A numerical routine for finding the curves
was developed and implemented. Future work may in-
clude solving more general problems, such as extending
the concepts introduced here to three-dimensional curves,
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