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Abstract
We define a generalized distance function on an unoriented 3D point set and describe how it may be used to
reconstruct a surface approximating these points. This distance function is shown to be a Mahalanobis distance
in a higher-dimensional embedding space of the points, and the resulting reconstruction algorithm a natural
extension of the classical Radial Basis Function (RBF) approach. Experimental results show the superiority of our
reconstruction algorithm to RBF and other methods in a variety of practical scenarios.
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1. Introduction

Three-dimensional (3D) scanning is the process of acquiring
a digital copy of a physical object. A 3D scanner is used
to sample points on the surface of the object (the so-called
underlying surface) and acquire their Cartesian coordinates,
after which a surface reconstruction algorithm is applied to
generate a surface based on this sample set.

The problem is, of course, ill-posed, as this is basically an
interpolation or approximation problem. Most current meth-
ods can be roughly classified into two approaches. The first is
based on Voronoi diagrams and their Delaunay duals, starting
with [Boi84], and later developed extensively (e.g. [KSO04,
ACK01, AB98]). These triangulate the input point set in hope
of achieving a triangle mesh approximating the underlying
surface. But this method is sensitive to noise and requires a
dense point set to give good results.

In the alternative approach of implicit functions, most no-
tably those expressed using Radial Basis Functions [CBC∗01,
DTS02], a scalar function d(x, y, z) is defined on R

3, such

that d approximates the signed Euclidean distance from the
underlying surface [CBC∗01, SAAY06, SGS05, WCS05].
The construction of d is essentially an interpolation (or ap-
proximation) of zero values on the input data points, and the
underlying surface is then extracted as the zero set of d . The
key to good results using this method is a well-behaved func-
tion d , one that achieves zero values on the data and close
to it, and whose absolute value increases with distance from
the data. A function not having these properties may result
in many spurious components in the zero set. Because essen-
tially no additional information, apart from the approximate
location of the zeros of d , is present in the input, nothing
really prevents points distant from the data having small val-
ues. Thus, in practice, to achieve reasonable results, this ap-
proach usually requires extra information, beyond the surface
samples. This is typically supplied in the form of so-called
inside–outside points, which provide hints to which points
are inside the surface (hence tagged with negative values of
d), and which are outside the surface (hence tagged with pos-
itive values of d). This type of data is typically not available,
and even if it is, it is difficult to decide what precise values of
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d to assign these extra off-surface points. Furthermore, the
surface may not be closed, or it may have one-dimensional
parts protruding from it, in which case it will not have a
clear-cut ‘inside’ or ‘outside’.

In the case that normal information is available at the
samples, this can be used to generate inside/outside points
close to the surface, or provide information on the gradient
of an indicator function, namely a function that has the value
1 inside the surface and 0 outside. Kazhdan et al. [KBH06]
show how computing such an indicator function reduces to
solving a Poisson equation. Once an indicator function is
obtained, extracting the level set d = 1/2 yields the desired
surface. Alliez et al. [ACSTD07] show how to estimate and
use unoriented normal information from point sets.

In this paper, we describe a novel construction of an un-
signed distance function from sample data (without normal
information). This function obtains very small values on the
data, which increase smoothly and monotonically with dis-
tance from the data. Thus, almost no spurious components
will be present in the reconstruction. The price we pay for this
almost ideal function is twofold: higher computational com-
plexity in its construction and extra difficulty in extracting the
surface than when using a signed distance function, because
no precise constant value can be considered the represen-
tative value of the surface. The common Marching Cubes
algorithm is not so useful and we must resort to more sophis-
ticated surface extraction techniques.

2. Radial Basis Functions

We start by reviewing the implicit function approach based on
so-called radial basis functions (RBF). Consider the problem
of fitting a surface to a set of N points X = {xi}N

i=1 ⊆ R
3,

given no additional information on the surface. A popular
approach is to find some approximation to a signed distance
function from the surface, and then define the surface as its
zero set [CBC∗01]. The main (and only) assumption is that
the function obtains zero values close to the data. The distance
function d is usually represented as a linear combination of
RBF

d(x) =
M∑

j=1

αjϕ(||x − cj ||),

where C = {cj }M
j=1 is a set of centre points and ϕ is a positive

definite function. This means that d is a linear combination
of k basis functions, each obtained using the same ‘template’
function ϕ, of one variable, centred at cj . Its value depends
only on the Euclidean distance of x from cj . The centres
are usually selected in some strategic manner, and then the
αj ’s can be found by solving a linear system derived from its
desired values at the data points (usually zero).

One inherent difficulty in this approach is that the zero
constraints result in a homogeneous linear system, so the

trivial solution aj = 0 will result. The simplest way to avoid
this is to provide off-surface points with non-zero values,
but this is undesirable, because these non-zero values are
somewhat arbitrary, and can have an adverse effect on the
solution.

To show how a trivial solution may be avoided without
off-surface points, we present a different interpretation of
the RBF approach, which will provide a natural non-trivial
solution, and also eventually lead to our generalized distance
function. Assume first that we have RBF centres at all data
points. Define a map � : R

3 → R
N by

�(x) = (ϕ(||x − x1||), . . . , ϕ(||x − xN ||)�.

This maps the N input points X ⊆ R
3 to N-dimensional

points �(X) = {�(xi)}N
i=1 ⊆ R

N . Because it consists of
N points, the set �(X) will always lie on an (N − 1)-
dimensional hyperplane H in R

N , which is the simplest pos-
sible surface imaginable in this space. Thus, we may assume
that the underlying surface we seek is the set of all points in
R

3 which are mapped to H by �, namely, all x such that

d(x)
�=

N∑
j=1

αjϕ(||x − xj ||) + αN+1 = 0 (1)

for an appropriate coefficient vector α = (α1, . . . , αN+1)T .

This same assumption is made in the traditional RBF ap-
proach. It is easy to see that this vector belongs to the right
nullspace of the following N × (N + 1) matrix A:

Ai,j =
{

ϕ(||xi − xj ||) j ≤ N,

1 j = N + 1.

The dimension of this nullspace is at least one because
A has more columns than rows. It will be larger than one
only if the basis functions are degenerate in some way (e.g.
if two data points coincide). Thus, taking α to be a null
vector of A results in Equation (1) defining a non-trivial RBF
interpolant d from which we can extract the surface as its
zero set. It is also straightforward to see that d(x) is actually
proportional to the signed distance of a point �(x) ∈ R

N

from the hyperplane H . Note that this distance is measured in
R

N , as opposed to R
3, so it is not the true Euclidean distance

from the underlying surface in R
3, but an approximation.

3. Generalized RBF

We can generalize the approach described in the previous
section to the case where: (1) we use M ≤ N centres C =
{cj }M

J=1 (i.e. fewer basis functions) which do not necessarily
coincide with the data set and (2) the surface is modelled as a
hyperplane H of dimension M − l in R

M . H may be defined
as the intersection of l hyperplanes of dimension M − 1, each
containing the N points of �(X). This dimension reduction
can be viewed as obtaining a tighter fit to X. Thus, we need to
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find l independent coefficient vectors αk = (αk
1, . . . , α

k
M+1),

1 ≤ k ≤ l satisfying (1), namely, l independent vectors in the
right nullspace of A, which is now the N × (M + 1) matrix

Ai,j =
{

ϕ(||xi − cj ||) j ≤ M,

1 j = M + 1.

Unfortunately, because M + 1 ≤ N, such vectors most
likely do not exist, so instead we use l vectors minimizing
||Ax||, namely, the l lower right singular vectors of A. The
quality of fit of the hyperplane represented by a singular
vector can be inferred from the respective singular value:
smaller values mean the projection of points in �(X) on that
vector are closer together or that their distances from the
hyperspace defined by that vector are smaller.

To simplify matters a little, we redefine �(X) so that the
mapped set is centred in all M dimensions, eliminating the
component αM+1 in (1)

�(x) = (ϕ(||x − c1||) − μ1, . . . , ϕ(||x − cM ||) − μM )�

where

μj = 1

N

N∑
i=1

ϕ(||xi − cj ||)

is the M-vector of the means of the basis functions on the
data. This allows us to exchange (1) for l equations of the
form

M∑
j=1

αk
j (ϕ(||x − cj ||) − μj ) = 0 (2)

where 1 ≤ k ≤ l. Now a set of l equations of the form (2)
represent a linear subspace V of R

M of dimension M − l (a
hyperplane containing the origin). The associated matrix B

(analogous to A) is now

Bi,j = ϕ(||xi − cj ||) − μj

and V is perpendicular to the solutions αk of (2) in the
least-squares sense, namely, the l right singular vectors of
B corresponding to the smallest singular values. Note that
the column sums of B vanish, thus, when M ≥ N , B’s small-
est singular value also vanishes. V is spanned orthogonally
by the M − l right singular vectors of B corresponding to
the largest singular values and V ⊥ by the l right singular
vectors of B corresponding to the smallest singular values.
The generalized distance function D(x) will be defined as
the squared distance of �(x) to V which is just the sum of
the squared lengths of the projections of �(x) on each of the
dimensions of V ⊥, as illustrated in Figure 1.

4. The Mahalanobis Distance

It is possible to slightly modify the straightforward definition
of D as a simple Euclidean distance in R

M to be a weighted

Figure 1: Embedding the (black) data points in an appro-
priate higher-dimensional space using � makes them ‘look’
like a linear subspace. The distance D(x) of a point x to the
data is then its (possibly weighted) distance to this subspace.

Euclidean distance from V in R
M which takes into account

the quality of the fit of V to �(X) in each of V’s dimen-
sions. Consider the following M × M covariance matrix �

of �(X)

� = B�B. (3)

This covariance matrix may be used to define the following
Mahalanobis distance function [DeJ00] in R

M , commonly
used in statistics:

D(x) = (�(x)T�−1�(x))1/2.

The covariance matrix is frequently used in principal com-
ponent analysis (PCA) to determine the principal directions
of scattered data, and the spread in each such direction. These
directions and spreads are given by the eigenvectors and
eigenvalues of the covariance matrix, and the Mahalanobis
distance weights the standard Euclidean distance by the in-
verse variances along the principal directions. Intuitively, this
means that given a point cloud with covariance �, and a new
point p, the distance of p to the point cloud is computed such
that the distance along a more variable direction contributes
less to the total distance (because variation in this direction
is an inherent property of the point cloud itself).

This distance function is intimately related to the spec-
trum of �. Because � is symmetric positive semi-definite, its
eigen decomposition and singular decomposition are equiv-
alent, and we may write

� = USUT, S = diag(σ1, . . . , σM ) (4)

where σ1 > · · · > σM are the eigenvalues and U is the matrix
of eigenvectors of �. Thus, �−1 = US−1UT and

D(x) = (�(x)TUS−1UT�(x))1/2 =
(

M∑
k=1

σ−1
k 〈�(x), αk〉2

)1/2

,

where αk are the columns of U , and 〈., .〉 denotes inner prod-
uct. Because � = BTB, the eigenvectors of � are identical to
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the right singular vectors of B and the squares of the singular
values of B are equal to the eigenvalues of �.

As in the previous section, we may choose to model the
point cloud as the subspace of R

M of dimension M − l.
Similarly to PCA, this is the subspace formed by the M − l

eigenvectors of � having the largest eigenvalues. Thus, the
l eigenvectors of � having the smallest eigenvalues form
an orthogonal basis of the complementary V ⊥, and we call
it the approximate nullspace of �. All this is equivalent
to using the rank-l approximation to �−1 minimizing the
Frobenius norm. By the Young–Eckart theorem [GVL96],
this approximation is obtained by eliminating (i.e. setting to
zero) the M − l smallest eigenvalues of �−1 (which are the
largest eigenvalues of �) Thus, D(x) can be approximated
as

D(x) =
(

M∑
k=M−l+1

σ−1
k 〈�(x), αk〉2

)1/2

. (5)

We call this distance function the ‘MaD distance function’
(MaD is short for Mahalanobis Distance), and remind the
reader again that the traditional RBF method is the special
case l = 1 (with the slight caveat that D(x) will be the ab-
solute value of the RBF function). Note also that the simple
Euclidean distance function defined in the previous section
is obtained when all σk in (5) are simply taken to be ones.

The observant reader will note the similarity between our
method and kernel PCA methods [SGS05, SSM98, WCS05].
In kernel methods, each point in the data is mapped into a
high-dimensional space, called the feature space. By choos-
ing the mapping correctly, various relations might be found
within the data in the feature space that would be hard to
find otherwise. For example, PCA can be used on the fea-
ture space to gather information about linear relations in the
high-dimensional space, which are non-linear relations in the
ambient data space. Our approach can be viewed as mapping
the data into a ‘feature space’, where the features are some
form of closeness (‘affinity’) to each of the given data points.
There is also a connection between our approach and Support
Vector Machines (SVM) [SC08], where linear classifiers are
sought in a high-dimensional feature space.

There is also an alternative way to derive the MaD function
as the weighted average of relevant positive functions, where
larger weight is given to those functions obtaining small
values on the data xi . See the Appendix for details.

5. The Reconstruction Algorithm

Having covered the basic theory behind our method, we are
now in a position to describe our reconstruction algorithm. It
consists of two main steps: First, the MaD is sampled on a hi-
erarchical grid covering the volume of interest. Secondly, the
local minimum surface of the function is extracted. The first
operation is quite straightforward, albeit having relatively

high complexity. The latter operation is not as straightfor-
ward, and requires some sophistication. In the sequel, we
describe the details of each of these steps.

5.1. MaD calculation

The algorithm involves first choosing the number of centres,
M, and the dimension of the approximate nullspace, l. Then
the M × M covariance matrix �, as defined in (3), is con-
structed. This costs O(M2N), where N is the size of the input
data set. Next, the l eigenvectors of � with smallest eigen-
values must be computed. This costs O(lM2). Computing the
MaD over the sample grid involves evaluating (5) at each
grid point. The complexity of this is O(lM2G), where G is
the number of grid points. A typical number for G would
be 5123 = 1.4 × 108. However, it is impractical and quite
unnecessary to sample the entire grid at full resolution. Be-
cause high accuracy is required only near the surface, we
employed the following refinement technique. Initially, the
MaD is sampled on a coarse square grid, forming a voxel
space. Voxels whose centres have function values which fall
under a certain threshold are then further sampled on a finer
grid. This can be continued recursively on an octree-type
structure. Moreover, the sampling at the higher levels may
make do with just a few eigenvectors [a small value of k in
(5)]. Extra eigenvectors can be added while refining the grid,
making the computation even more efficient.

5.2. The watershed transform

The most difficult part of the algorithm is extracting the
surface. In 2D, we can imagine the MaD as an elevation map
of mountains and ridges. The curve we seek is a collection of
points for which the MaD is small, so must lie in the ridges
of the map. As a start, we would like detect these ridges in
the map. In image processing, this is done using a technique
known as the watershed transform. It is used to segment an
image by intensity to different valleys. Intuitively, if a drop
of water falls on a mountain it will slide down away from
the watershed, or drainage divide, and not cross any other
such line. If we apply the watershed transform to the negative
of the MaD, the mountains become valleys and watersheds
become ridges, so the watershed transform of the negative
of the MaD will reveal the set of ridges. We outline here the
mathematical definitions, and then adapt to the 3D case. See
[RM00] for a more detailed treatment. Let f be an image.
Define the topographical distance between two points p and
q in the image as:

Tf (p, q) = inf
γ

∫
γ

||∇f (γ (s))|| ds,

where the infimum is over all paths γ from p to q. Now let
mi be a minimum of f . Then the catchment basin of mi ,
CB(mi), or watershed segment, is the set of all points, which
are topographically closer to mi plus the absolute height of
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mi than to any other minimum of f

CB(mi) = {x|∀j �= i, f (mi) + Tf (x,mi) < f (mj )

+Tf (x,mj )}.

The watershed lines are defined as the boundaries of all water-
shed segments. We will call the 3D equivalent of a watershed
line a watershed surface.

If we take the negative of the MaD on the region of interest,
then the area or volume bounded by the underlying curve or
surface is the union of some watershed segments. The main
question is which segments exactly. We elaborate on this
next.

5.3. Identifying the segments

We distinguish between two types of segments according to
their relationship to the underlying surface: interior segments,
which reside within the surface, and exterior segments, which
reside outside the surface. We seek this classification of the
segments.

Identifying the interior segments is not a trivial task. We
use the following heuristic: We maintain a score for the seg-
ments. The segments touching the boundary of the region of
interest are the hard exterior, and assigned a score of zero.
Positive score will mean the segment is an interior segment,
while negative score will mean exterior segment. We search
next for points that we know, with high degree of certainty,
lie between exactly two segments. This is done by examining
a sphere with a small radius around the point and counting
the segments that intersect that sphere. After finding these
points we iterate over them, and examine their neighbouring
segments. If one of the segments is an exterior segment we
increment the score of the other segment by one, and if one
of them is an interior segment we lower the score of the other
by one. Hard exterior segments do not have a score and will
always be exterior segments.

This process is illustrated in Figure 2. We start by classify-
ing just the hard exterior segments (light blue). Points 1 and 2
then raise the score for some of the interior segments (green),
but point 3 lowers the score for an interior segment, erro-
neously classifying it as exterior (yellow). However, points
4, 5, 6 later raise the score of this segment enough to become
positive, correcting the classification error. Finally, points 7
and 8 correctly lower the score of two exterior segments.

After several iterations, all of the interior segments touch-
ing the surface will have been identified, while the other inte-
rior segments will remain unclassified. The outer boundary of
the known interior segments is output as the reconstruction.
Although this approach is somewhat heuristic, it appears to
give satisfactory results in many cases.

Figure 2: An example of the steps in identifying the interior
segments. Unidentified segments are shown in white, hard
exterior in light blue, positive score in green and negative in
yellow.

6. Experimental Results

In the following section, the RBF method will refer to the idea
described in Section 3, that is using only the first eigenvector
of the matrix A as the coefficient vector for the interpolant.

6.1. Implementation

Our software, implemented in MATLAB, first computes the
covariance matrix �, using one centre per data point (unless
specified otherwise). As we shall show later, we need only
a few vectors from the approximate nullspace of �, which
we computed using a variant of the ‘inverse iteration’ method
described by Toledo and Gotsman [TG08]. Next, we evaluate
the MaD on a voxel grid of low resolution represented by a
multi-dimensional array. Each member of the array is then
duplicated four or eight times (depending on the dimension)
resulting in a grid with twice the resolution. The MaD is
then recalculated for voxels on the finer grid, which have
values below a certain threshold. The process is then repeated
until the desired resolution is reached. We usually choose the
threshold as the lowest quartile for the 2D case and lowest
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Figure 3: Reconstructing the ‘hand’ curve from a 2D data
set of 162 points: (a) The input point set. (b) The colour-
coded MaD where blue and red colours indicate lower and
higher values, respectively. (c) Segmentation of the water-
shed transform. (d) The reconstructed curve as the boundary
of the interior segments.

octile for the 3D case of the recalculated values. This makes
the number of recalculated values for each level roughly the
same. However, lower values could also be safely used, with
shorter running times.

Once the MaD is computed, the program uses the water-
shed function from MATLAB’s image processing toolbox
to obtain the watershed transform of the MaD on the grid.
An example of the output for the hand data set is shown in
Figure 3(c). The program then creates a new grid where vox-
els inside an interior segment will have the value 1 and voxels
in an exterior segment will have the value 0. This grid acts
as a sampled indicator function for the object.

The surface can now be extracted as the 1-isosurface of the
indicator function. This, however, will result in a very jagged
surface. Faced with the same problem, Hornung and Kobbelt
[HK06] applied Laplacian smoothing to the resulting mesh.
We chose instead to smooth the indicator function with a
simple, small averaging filter and extract the 0.5-isosurface.
This seems to produce better results and also does not shrink
the mesh.

6.2. MaD versus RBF

To better illustrate the different steps of the reconstruction
algorithm, we first apply it to the reconstruction of curves

Figure 4: Comparison of (left) MaD and (right) absolute
value of RBF on hand dataset using very wide Gaussians
centred at all data points, with standard deviation containing
all the points.

from 2D data sets. Figure 3 shows the three steps of the
algorithm for the hand data set, containing 162 data points.
Using radial Gaussians centred at all the data points, we were
able to obtain a perfect reconstruction.

In this particular example, we used ‘narrow’ Gaussians
which makes the reconstruction more local, and the first
eigenvector very dominant. Thus, if only the absolute values
of RBF are used, then MaD and RBF will produce very
similar results. However, as MaD can use any number of
eigenvectors, it is less sensitive to the width of the Gaussians.
Figure 4 compares between the MaD and RBF unsigned
distance functions using the same centres as in the previous
example, but with wider Gaussians. A good heuristic for
Gaussian width (standard deviation) is five to six times the
average distance between a point and its nearest neighbour.

6.3. Manifold dimension

Our approach provides a significant advantage over signed-
distance approaches when the dimension of the underlying
manifold surface is not standard. For example, the zero set
of the RBF distance function will always have co-dimension
1. This means that even if the data set is sampled from a
curve in 3D, the RBF method will always result in a surface
containing that curve. In contrast, the MaD method can adapt
to this situation by setting l > 1. Figure 5 shows the ‘helix’
data set with a 2D slice of the MaD and absolute value of
RBF. As evident in the figure, RBF can produce only a 2D
manifold as its zero set, while MaD has small values only
very close to the helix. The surface in this case was obtained
by extracting a ‘very close to zero’-isosurface because there
is no easy way to extract one-dimensional data. Using the
watershed transform will produce the same result for both
cases. This data set has n = 100 points and we used all
possible eigenvectors for MaD (l = 100).
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Figure 5: Reconstructing the ‘helix’. (Left) the input data
set. (Top) Coded-coded MaD (left) and RBF (right) distance
functions in the cross section plane shown in purple in the top
image. Note that the MaD has significant minima only close
to the input data points. (Bottom) Surface extracted from the
MaD (left) and the zero set of the RBF (right).

Figure 6: Distance measure from the open ‘spiral’ using
MaD (left) and RBF (right). A ‘close to zero’-isoline is
marked in red.

6.4. Manifold topology

Because, in the RBF method, the surface is extracted as the
zero set of a signed distance function, it must be a closed
manifold, that is have no boundaries. The MaD method is
not limited to closed surfaces. A demonstration of the dis-
tance from a 2D spiral data set is shown in Figure 6. For

Figure 7: The distance map produced by each of the first
nine eigenvectors of �, from top to bottom, left to right.
Notice how the spiral closes differently in some cases.

MaD, the values close to zero (shown in blue colours) follow
the spiral, in contrast to RBF, where the result is a closed
curve. To understand this better, we plot in Figure 7 the first
few eigenvectors of � independently. It seems that in each
of these plots the spiral is closed in some different way.
However, when summed to form the distance function, they
cancel out to produce a clean result.

6.5. The optimal dimension of V

The dimension of V is determined by M—the number of
centres (which determines the size of the matrix �) and l—
the dimension of the approximate nullspace (the number of
smallest eigenvalues of �) used

dim V = M − l

so aiming at a target dimension, we must decide on M and l.
On one hand, a small M will result in a smaller �, which can
significantly reduce runtime. On the other hand, the mapped
points will not be guaranteed to reside on a hyperplane, which
is our basic assumption. Larger values of M causes the map-
ping in R

M to be ‘flatter’ to a degree that when M is equal
to the number of points n, the mapping lies on a single hy-
perplane. Because the quality of the reconstruction is more
important than the runtime, we typically prefer a larger value
of M and, consequently, also a larger value of l.

We have noticed that in some cases the spectrum of � has
a noticeable ‘bend’, as evident in Figure 8. We presume that
the eigenvectors corresponding to the eigenvalues beyond
the bend are in fact a basis of the true ‘nullspace’ of � (the
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Figure 8: The spectrum of � for the data set in Fig. 9
(on a logarithmic axis). Note the ‘bend’ around the 80th
eigenvalue, meaning that the remaining l = 60 eigenvectors
having smallest eigenvalues form a basis for V ⊥.

Figure 9: The MaD distance using an unweighted sum of the
first eigenvectors. From left to right on the first row are the
maps using 1, 2, and 5 and on the second row are the maps
using l = 10 and l = 60 eigenvectors which, according to
Fig. 8 form a basis for V ⊥. The rightmost map is the weighted
MaD.

linear space V ⊥ mentioned in Section 3). Hence, there is
no point in weighting these eigenvectors and the calculation
can be made easier. In fact, usually only a few eigenvectors
are needed to produce a satisfying result, as demonstrated in
Figure 9.

6.6. 3D examples

Figure 10 shows the reconstruction of the 3D skull data set,
containing approximately 10 000 points. It is not closed and
is sampled non-uniformly. For the MaD reconstruction we
used the first unweighted 100 eigenvectors, a number which
was chosen somewhat arbitrarily, and the result does not
critically depend on this number. We compared the MaD
reconstruction to simple RBF, and to a number of state-of-
the-art reconstruction methods, including RIMLS [OGG09],
IPSS [GG07, OGG09] and Poisson reconstruction [KBH06].
The implementations used for the latter three were those
included in the MeshLab [ML] software package. Despite
the fact that these methods require, and use, normal data
in their algorithms, and MaD does not, so the comparison is

Figure 10: Reconstruction of the ‘skull’ data set using dif-
ferent algorithms.

somewhat biased against MaD, Figure 10 shows that we were
still able to achieve results comparable, or even superior to
the competition. The RBF result was so bad that there was no
point in showing it. Figure 11 shows a closeup on the forehead
area. None of the methods is perfect, but MaD seems to have
achieved, all in all, the best reconstruction.

Another example is shown in Figure 12, where we recon-
structed the screwdriver from a point cloud containing 2700
unoriented points (a random 10% sample from an original
27 000 points). For RIMLS and Poisson we had to estimate
normals by local PCA. The results of both contained artefacts
for every set of parameters we chose. Although there might
be a combination of parameters that generates a good result,
our MaD reconstruction gave perfect results with practically
no tuning. Note that the missing tip of the screwdriver is also
not present in the input point cloud.

6.7. Performance

We used the method of Toledo and Gotsman [TG08] to com-
pute the l vectors in the approximate nullspace of �. For
example, the computation of l = 100 eigenvectors for the
skull data set of Figure 10, which contains about 104 points,
requires 390 s in MATLAB on a 2.4 GHz machine with 4 GB
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Figure 11: Closeup on the forehead region of the ‘skull’
model. Both RIMLS and APSS have issues and Poisson re-
construction loses features. MaD reconstruction seems to be
best.

Figure 12: Reconstruction of the ‘screwdriver’ data set. The
close-up shows the tip of the screwdriver with the MaD re-
construction overlaid.

RAM. Computation of the MaD took 270 s for each level of
resolution with octile threshold (i.e. the lower eighth of the
range), starting with a resolution of 1003 and refining twice
to reach a resolution of 4003. Although the total runtime of
20 min is not very fast, it should be noted that our imple-
mentation was not optimized. Furthermore, this part can be
easily rewritten to run on the GPU. The next steps (watershed
transform, etc.) require only a few seconds.

Figure 13: Normal estimation using PCA and MaD. The
green lines show the MaD estimate and blue lines the PCA
estimate. The black line is the true normal. The circle shows
the region of influence used for the PCA procedure.

6.8. Normal estimation

Estimating surface properties, such as normal vectors, from
a point cloud, is an interesting and important application in
its own right. This can be done locally, using techniques
such as PCA on a neighbourhood of points, without actually
reconstructing the entire surface, or from the surface after
reconstruction. We now show that it is possible to obtain a
robust estimate for a surface normal also from our MaD dis-
tance function. Because the MaD takes into account global
properties of the data as well as local properties, it is espe-
cially effective in regions where different parts of the surface
come close to each other, where a local method may easily
get confused. MaD seems to be able to distinguish between
the different parts of the surface. A similar observation was
made by Luo et al. [LSW09] using their diffusion metric
for estimating gradients. The normal direction is the princi-
pal direction of the Hessian of the MaD function [DoC76].
We compare this normal estimation procedure with simple
PCA estimation: for each point we compute the direction of
minimal spread of all the points contained in a circle can-
tered at the point. Although this is not an optimal estimate,
its weaknesses are a characteristic of all local approaches.
The comparison can be seen in Figure 13. For the most part,
the PCA and MaD estimates agree with the true normals.
However, in the (zoomed in) area where the curve almost
intersects itself, the PCA estimation is completely off.

We compare normal direction computed with MaD and
k-nearest-neighbour PCA on the dancer sets of Figure 15.
The error relative to the normals obtained from the original
triangle mesh are shown in Table 1.

6.9. Noise and outliers

The interpolation properties of our method can be con-
trolled by the number and position of centres used. When
all the points of a data set are used as centres (which is
the default), the mapped points will all lie exactly on a
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Table 1: Normal estimate error of two algorithms on the ‘dancer’
data set.

No. of points 5000 2500 1250 625
MaD 0.0259 0.0421 0.0428 0.0716
PCA 0.0490 0.0771 0.1236 0.1827

Figure 14: Reconstruction with noise and outliers. The left
image in each row shows the data set. The centre image
shows the MaD and the right image shows the reconstructed
curve. (a) Clean dense data set, (b) Noisy data set, (c) dense
data set with outliers and (d) noisy data set with outliers.

((n − 1)-dimensional hyperplane (represented by �’s first
eigenvector). Hence, the extracted surface will most likely
pass through them, and therefore each point will lie on some
watershed surface. The resulting surface will interpolate the
points, and in the presence of noise this is undesirable. In
these cases, we randomly choose a proper subset of the points
as centres and proceed as usual. Our experiments show that
selecting half of the points as centres will provide satisfying
results for most cases.

Outliers will have a different impact on the MaD. Once
points are mapped to the high-dimensional space there is no
way to distinguish between outliers and other points, since

Figure 15: Reconstruction with different densities. (Top) In-
put points, (middle) reconstruction using MaD and (bottom)
reconstruction using RIMLS.

the MaD of both will be close to zero. Therefore, in theory,
any treatment of outliers should be done before using our
method. However, in practice, outliers will cause additional
watershed surfaces to appear, but will not change the wa-
tershed surfaces which should be part of the final surface.
Selecting the correct interior segments will then eliminate
these extra surfaces, resulting in a correct clean surface. So
in fact, no additional handling is needed when our method is
confronted by outliers. Figure 14 shows some 2D examples
with various amount of noise and outliers.

6.10. Sparse and irregular data sets

Combining the power of the extra eigenvectors and the selec-
tion of segments allows our method to reconstruct surfaces
also from quite sparse data sets. We demonstrate this with
the dancer model in Figure 15, starting with 5000 points and
halving the number of points until reconstruction fails. As
evident in the figure, the number of points can be reduced
to 1250 without much damage to the reconstruction. At 625
points, the selection step will not select part of the hand and
the reconstruction fails. However, we can still use MaD to es-
timate normals for other algorithms which will better utilize
them.

As mentioned in Section 6.2, the MaD is much less sen-
sitive to the choice of Gaussian widths. This allows for an
irregularly sampled data set to be reconstructed without the
need to consider local density of points. We show an extreme
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Figure 16: MaD reconstruction of an irregularly sampled
data set.

Figure 17: The shortcut problem with min-cut. Regions
coloured in a brighter grey intensity represent lower values
of the MaD. The continuous blue line represents the desired
cut, while the dotted line shows the cut that might result.

case in Figure 16. The input data in this experiment was ob-
tained by first taking planar slices of the horse model and
then densely sampling the slices’ boundaries.

6.11. Watershed versus Min-Cut

An alternative method of extracting a surface from an un-
signed distance function was proposed by Hornung and
Kobbelt [HK06]. This is based on the minimal cut of a regu-
lar grid graph using a discrete distance function and may be
adapted to use our MaD distance function instead. The main
advantage of the min-cut method over the watershed method
is that segment selection, a difficult phase in the watershed
method, is avoided. However, in certain situations, especially
where the object is ‘thin’, the cut may pass through the thin
part and skip part of the point set entirely. This is illustrated
in Figure 17, where the continuous line represents the de-
sired curve, and the dashed line represents the cut that the
min-cut algorithm might generate. In contrast, the watershed
transform of the map will result in two interior segments,
which will be easily classified as such in the next phase of
the algorithm.

Figure 18: Reconstruction of the ‘helix’ data set (left panel)
without normal information and (right panel) with normal
information. The Gaussians (coloured in grey) used in the
latter are squeezed by 66% in the direction of the normal
relative to the Gaussians used in the former.

6.12. Using normal information

Our MaD method does not require normal information, and
does not even estimate any normal information as an indirect
part of the process. However, when reliable normal informa-
tion is available, we would like to be able to put it to use. A
simple way would be to orient the Gaussian basis functions
such that they are aligned with the complementary tangent
directions. This hints to the MaD that, locally, distances are
less important in the tangent directions. An example of the
difference this makes is shown in Figure 18, where it is
clear that the additional normal information contributes to a
sharper MaD function. However, we have seen cases where
normal information could have the adverse effect on noisy
and sparse sets, as points which are close to each other on a
surface might end up far away from each other when mapped
to R

M . So care must be taken in those cases and sometimes
it is better to ignore the normals.

7. Conclusion

We have presented a method to compute a distance function
derived from a given point data set, based on embedding the
data in a higher-dimensional space. In this space, the point
set, and the underlying surface it is sampled from, may be
modelled as a linear subspace, making all subsequent pro-
cessing very easy and intuitive. The resulting MaD distance
function is just a Mahalanobis (weighted) distance from this
subspace. The more conventional distance function resulting
from approximating the surface as a zero-set of a single linear
combination of RBF functions, is shown to be a very special
case of the MaD distance.

Embedding data in a higher-dimensional space using so-
called kernels, to enable easier processing, is a common tech-
nique in machine learning. It remains to be seen whether other
machine-learning techniques may be borrowed and applied
to geometry processing.
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The MaD method has proven to be quite versatile and
robust, justifying the extra computational overhead compared
to more traditional methods such as RBF. However, a number
of issues require further research. First and foremost, the
surface extraction procedure is still somewhat cumbersome,
and could benefit from some simplification. Secondly, the
computational complexity of the method should be reduced
in order for it to be more practical. We are confident this can
be done with some further optimization. Perhaps this can be
combined with the surface extraction procedure.

Appendix: A Different Interpretation
of the MAD Function

We present here an alternative derivation of the MAD func-
tion.

Given a set of data points {xi}N
i=1 and basis functions

{φj }M
j=1, we seek a positive distance function related to the

subspace spanned by these basis functions (denoted by �),
ideally having a very small absolute value on the data points.
The following function seems to have these properties:

D =
∫

φ
f 2 exp(− ∑N

i=1 f 2(xi))df∫
φ

exp(− ∑N
i=1 f 2(xi))df

.

This is because D is the weighted average of all functions,
which are the square of a function in �, such that the weight
exponentially decreases in the average value of the function
on the data points.

Now we show that D is precisely our MaD distance func-
tion by integrating over � through its coefficient space

D = c

∫
φ

f 2 exp

(
−

N∑
i=1

f 2(xi)

)
df

= c

∫
Rn

⎛
⎝ M∑

j=1

ajφj

⎞
⎠

2

exp

⎛
⎝−

N∑
i=1

⎛
⎝ M∑

j=1

ajφj (xi)

⎞
⎠

2⎞
⎠ da

= c

∫
Rn

(aTφ)2 exp(−aT�a) da

= φT�−1φ,

where c−1 = ∫
φ

exp(− ∑N
i=1 f 2(xi)) df and the last equality

is by application of the standard Gaussian integral for vector
a and matrix �∫

RN

aiaj exp
(−a��a

)
da = c−1�−1

ij .
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surface modelling as an eigenvalue problem. In Proceed-
ings of the Machine Learning (Bonn, Germany, 2005),
ACM, pp. 936–939.

c© 2010 The Authors
Computer Graphics Forum c© 2010 The Eurographics Association and Blackwell Publishing Ltd.


