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AbstractÐThis paper offers a novel detection method, which works well even in the case of a complicated image collectionÐfor instance,

a frontal face under a large class of linear transformations. It is also successfully applied to detect 3D objects under different views. Call the

collection of images, which should be detected, a multitemplate. The detection problem is solved by sequentially applying very simple

filters (or detectors), which are designed to yield small results on the multitemplate (hence, ªantifacesº), and large results on ªrandomº

natural images. This is achieved by making use of a simple probabilistic assumption on the distribution of natural images, which is borne

out well in practice. Only images which passed the threshold test imposed by the first detector are examined by the second detector, etc.

The detectors are designed to act independently so that their false alarms are uncorrelated; this results in a false alarm rate which

decreases exponentially in the number of detectors. This, in turn, leads to a very fast detection algorithm. Typically, �1� ��N operations

are required to classify an N-pixel image, where � < 0:5. Also, the algorithm requires no training loop. The algorithm's performance

compares favorably to the well-known eigenface and support vector machine based algorithms, but is substantially faster.

Index TermsÐImage detection, smoothness, distribution of natural images, rejectors.

æ

1 INTRODUCTION

IN computer vision, the well-known template detection
problem can be formalized as: Given an image T (the

template) and a (usually much larger) image P , determine
whether there are instances of T in P , and if so, where. A
typical scenario is: Given a photograph of a face and a large
image, determine if the face appears in the image.

This problem may be solved by various methods such as

cross-correlation or Fourier-based techniques [25], [3], [19].

A more challenging problem is what we call multitemplate

detection. Here, we are given not one template T , but a class

of templates T (which we call a multitemplate), and are

required to answer the more general question: Given a large

image P , locate all instances of any member of T within P .

Obviously, if T can be well-represented by n templates, we

could apply the standard template detection techniques

n times and take the union of the results. This naive

approach, however, breaks down in complexity for large n.

The goal of this research is to develop an efficient algorithm

for multitemplate detection.
Typical cases of interest are:

. Given an image, locate all instances of human faces
in it.

. Given an aerial photograph of an airfield, locate all
instances of an airplane of a given type in it. If we do
not know the angle at which the airplanes are parked

and the position from which the photograph was
taken, then we have to locate not a fixed image of the
airplane, but some affinely distorted version of it. If the
photograph was taken from a relatively low altitude,
we may have to look for perspective distortions as
well. In this case, the multitemplate consists of a
collection of affinely (perspectively) distorted ver-
sions of the airplane, and it can be well-approximated
by a finite collection of distorted versions, sampled
closely enough in transformation space (obviously,
one will have to limit the range of distortions; say,
allow scale changes only at a certain range, etc.).

. Locate different views of a three-dimensional object
in a given image.

1.1 Structure of the Paper

After surveying some of the related research, we proceed to

define some relevant concepts and outline the idea behind

the suggested detection scheme. Then, the mathematical

foundations for the antiface algorithm are laid. Following

that, some experimental results are presented, and com-

pared with eigenface, Fisher linear discriminant, and

support vector machines-based methods.

1.2 Previous Work

Most detection algorithms may be classified as either

intensity-based or feature-based. Intensity-based methods

operate directly on the pixel gray-level intensities. In

contrast, feature-based methods first extract various geo-

metric cues from the raw image, then perform higher-level

reasoning on this geometric information.
Previous work on multitemplate detection includes an

extension of Fourier-based techniques [18]. There is also a

large body of work on the recognition of objects distorted

under some geometric transformation group, using
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invariants [34]. Some intensity-based methods use moment

invariants for recognition of objects under Euclidean or

affine transformations [11]. One difficulty with these

methods is that one has to compute the local moments of

many areas in the input image. Also, moment-based

methods cannot handle more complex transformations

(e.g., there are no moment invariants for projective transfor-

mations or among different views of the same three-

dimensional object).
Feature-based algorithms [10] have to contend with the

considerable difficulty of locating features in the image.

Methods that use differential invariants [34] and, thus,

require computing derivatives, have to overcome the

numerical difficulties involved in reliably computing such

derivatives in noisy images.
Of the intensity-based methods for solving the multi-

template detection problem, the eigenface method [24], [9],

[29], [30] has drawn a great deal of attention. This method

approximates the multitemplate T by a low-dimensional

linear subspace F , usually called the face space. Images are

initially classified as potential members of T , if their

distance from F is smaller than a certain threshold. The

images which pass this test are projected on F and these

projections are compared to those in the training set.
The eigenface method can be viewed as an attempt to

model T 's distribution. Other work on modeling this

distribution includes the study of the within-class versus

ªgeneralº scatter [2], [27], [26] and a more elaborate

modeling of the probability distribution in the face class

[12]. In [13], eigenfaces were combined with a novel search

technique to detect 3D objects and, also, recover their pose

and the ambient illumination; however, it was assumed that

the objects (from the COIL database) were already

segmented from the background and recognition was

restricted to that database.
The eigenface method has been rather successful for

various detection problems such as detecting frontal human

faces. However, our experiments suggest that once a large

class of transformations comes into playÐfor instance, if

one tries to detect objects under arbitrary rotation and

possibly other distortionsÐthe eigenface method runs into

problems. This was confirmed by one of the first researchers

to apply eigenfaces to detection [31].
In an attempt to apply the eigenface principle to detection

under linear transformations [32], a version of the method

was applied to detect an object with strong high-frequency

components in a cluttered scene. However, the range of

transformations was limited to rotation and only at the

anglesÿ50o to 50o. The dimension of the face space used was

20. We will show results for a far more complicated family of

transformations, using a faster algorithm.
Neural nets have been applied, with considerable success,

to the problem of frontal face detection [21] and, also, of

faces under unknown rotation [22]. It is not clear whether

the methods used in [22] can be extended to more general

transformation groups than the rotation group, as the

neural net constructed there is trained to return the rotation

angle; for a family of transformations with more than one

degree of freedom, both the training and the detection

become far more complicated because the size of the

training set and the net's set of responses, grow exponen-

tially with the number of degrees of freedom.
Support vector machines (SVM's) [16], [14], [15], [20], [23]

were introduced by Vapnik [33] and can be viewed as a

mechanism to find an optimal separating hyperplane, either

in the space of the original variables, or in a higher-

dimensional ªfeature space.º The feature space consists of

various functions of the components of the original

t vectors, such as polynomials in these components, and

allows for more powerful detection. The optimal hyper-

plane maximizes the margin between training sets for the

multitemplate T and its complement.
An SVM consists of a function G which is applied to each

candidate image t and it classifies it as a member of T or

not, depending on the value of G�t�. A great deal of effort

has been put into finding such a function which optimally

characterizes T . A typical choice is

G�t� � sgn
Xl
i�1

�iyiK�t; xi� � b
 !

;

where t is the image to be classified, xi are the training

images, yi is 1 or ÿ1 depending on whether xi is in

T or not, and K�� a ªkernel functionº (for example,

K�t;xi� � exp�ÿktÿ xik2�). Usually, only a relatively small

number of the xi are used and these xi are called the support

vectors. Thus, the speed of SVM's depends to a considerable

extent on the number of support vectors. The �i are typically

recovered by solving a quadratic programming problem.
As opposed to SVM's and neural nets, the method

suggested here does not require a training loop on negative

examples because it makes an assumption on their statis-

ticsÐwhich is borne out in practiceÐand uses it to reduce

false alarms (false alarms are cases in which a nonmember of

T is erroneously classified as a member).

1.3 A Short Description of the Motivation Behind
the Antiface Algorithm

A basic notion in detection and pattern recognition (see [5]

for a general introduction and, also, [1]) is that of a

discriminant function. For instance, if one wishes to quickly

determine whether a point in the plane, �x; y�, belongs to

the unit circle, the most efficient way is to compute the

value of x2 � y2 ÿ 1. That is, we make use of the fact that

there exists a simple function, which assumes a value of

zero on the set to be detectedÐand only on it. We could also

use this fact to test whether a point is close to the unit circle.
Generalizing, we may look at discriminant functions as

describing a set by

A �
\m
i�1

fÿ1
i �ÿ�i; �i�; �1�

where fi are the discriminating functions and the �i are

small. For the unit circle, for instance, one function is

required: f1 � x2 � y2 ÿ 1.
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Thus, to test whether a point (or, in our case, an image

viewed as a point in high-dimensional Euclidean space) x,

belongs to a multitemplate T , one has to verify that, for every

1 � i � m, jfi�x�j � �i. The decision process can be shortened

by first checking the condition for f1 and applying f2 only to

the images for which jf1�x�j � �1, etc. It will be shown later in

the paper (Section 3), that this progressive detection very

substantially reduces the running time.
This very general scheme offers an attractive algorithm

for detecting T , if the following conditions hold:

. A � T . This is crucial, as T must be detected.

. m is small.

. The discriminating functions fi are easy to compute.

. If y =2 T , there is a small probability that jfi�y�j � �i
for every i.

Since this work addresses image detection, from here on,

the term detector will replace ªdiscriminating function.º See

[1], in which the notion of a ªrejectorº is defined; it differs

from the work presented here mainly in the modeling of the

ªnonobjects.º
Images are large; it is therefore preferable to use simple

detectors. Let us consider then detectors which are linear

and act as inner products with a given image (viewed as a

vector). For this to make sense, the detectors have to be

normalized, so assume that they are of unit length and zero

average. If j < d; t > j is very small for every t 2 T , then

f�y� � j < d;y > j is a candidate detector for T . However, if

we choose such a few ªrandomº dis, this naive approach

will fail, as j < di;y > j is also very small for many images y

which are not close to any member of T .

Let us demonstrate this by an example. The object that

has to be detected is a pocket calculator, photographed at an

unknown pose, from an unknown angle, and from a range

of distances which induces a possible scaling factor of about

0:7ÿ 1:3 independently at both axes. Thus, T consists of

many affinely distorted images of the pocket calculator.

Naively, we may try to use, as detectors, a few unit vectors,

whose inner product with every member of T is small; they

are easy to find, applying a standard SVD decomposition of

T 's scatter matrix, and using the eigenvectors with the

smallest eigenvalues. In Fig. 1, we show the result of this

naive algorithm whichÐnot surprisinglyÐfails.

Fig. 1 demonstrates that it is not enough for the detectors to

yield small values on the multitemplate T : while this is

satisfied by the detectors depicted in Fig. 1, the detection

results are very bad. Not only are many false alarms present,

but the correct location is missed, due to noise and the

instability of the detectors. More specifically, the detection

fails because the detectors also yield very small results on

many subimages which are not members of T (nor close to

any of its members). Thus, the detectors have to be modified

so that they will not only yield small results onT 's images, but

large results on ªrandomº natural images.

To the rescue comes the following probabilistic observa-

tion: Most natural images are smooth. As will be formally

proven in the sequel, the absolute value of the inner

product of two smooth vectors is, on the average, large. If

d is a candidate for a detector to the multitemplate T ,

suppose that not only is j < d; t > j small for t 2 T , but also

that d is smooth. Then, if y =2 T , there is a high probability

that j < d;y > j will be large; this allows us to reject y, that

is, determine that it is not a member of T .

In the spirit of the prevailing terminology, we call such

detectors d ªantifacesº (this does not mean that detection is

restricted to human faces). Thus, a candidate image y will be

rejected if, for some antiface d, j < d;y > j is larger than some

d-specific threshold. This is a very simple process which can

be quickly implemented by a rather small number of inner

products. Since the candidate image has to satisfy the

conditions imposed by all the detectors, it is enough to apply

the second detector only to images which passed the first

detector test, etc. In all cases tested, this resulted in a number

of operations less than 1:5N operations, for an N-pixel

candidate image. In the typical case in which all the

subimages of a large image have to be tested, the first detector

can be applied by convolution.

2 THE ªANTIFACEº METHOD: MATHEMATICAL

FOUNDATION

To recap, for a multitemplate T , the ªantiface detectorsº are
defined as vectors satisfying the following three conditions:

. The absolute values of their inner product with T 's
images are small.

. They are smooth, which results in the absolute
values of their inner product with ªrandom imagesº
being large; this is the characteristic which enables
the detectors to separate T 's images from random
images. This will be formalized in Section 2.1.

. They act in an independent manner which implies
that their false alarms are uncorrelated. As we shall
prove, this does not mean that the inner product of
different detectors is zero, but implies a slightly
different condition. The independence of the
detectors is crucial to the algorithm's success, as it
results in a number of false alarms which decreases
exponentially in the number of detectors. This is
explained in Section 2.2.

Once the detectors are found, the detection process is

very easy to implement: An image is classified as a member

of T iff the absolute value of its inner product with each

detector is smaller than some (detector specific) threshold.

Typically, the threshold was chosen as twice the maximum

over the absolute values of the inner products of the given

detector with the members of a training set for T . This

factor of two allows detection not only of the members of

the training set, but also of images which are close to them.

A schematic description of the geometry behind antifaces

is presented in Fig. 2. The algorithm's ªpositive setº (the

images it classifies as members of the multitemplate), is

orthogonal to the direction around which random images

cluster, hence, there are relatively few false alarms. In the
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eigenface method, however, many random images will pass

the initial test which accepts an image based on its distance

from the face space; this is because the leading components

in the principal component decomposition of the multi-

template, will usually be closely aligned with the leading

components in the decomposition of random imagesÐas

both are largely smooth. While these images may be filtered

out during the later stages of the eigenface algorithm, they

still incur a heavy computational price.

2.1 Computing the Expectation of the Inner Product

We now proceed to prove that the absolute value of the

inner product of two ªrandomº natural images is large (for

the statement to make sense, assume that both images are of

zero mean and unit norm). The Boltzman distribution,

which has proven to be a reasonable model for natural

images [8], [6], assigns to an image I a probability

proportional to the exponent of the negative of some

ªsmoothness measureº for I. Usually, an expression such asRR �I2
x � I2

y�dxdy, or
RR �I2

xx � 2I2
xy � I2

yy�dxdy, is used [8],

[28]. It is preferable, for the following analysis, to work in

the frequency domain since then the smoothness measure

operator is diagonal, hence more manageable. The smooth-

ness of an n� n image I, denoted S�I�, is defined by

S�I� �
Xn

�k;l�6��0;0�
�k2 � l2�I2�k; l� �2�

and its probability is defined, following the Boltzman

distribution, as

Pr�I� / exp�ÿS�I��; �3�
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Fig. 1. Top: Two of the members of the calculator multitemplate which consists of affinely distorted versions of the key area in a pocket calculator.
Middle: Some of the ªnaiveº detectors for the pocket calculator multitemplate. Note that they contain strong high-frequency components.
Bottom: Failure of ªnaiveº detectors to find the target. Detection is marked by a small bright square at the upper left corner of the detected image
region; the image has been artificially darkened in order to make the detection results more visible.



where I�k; l� are the DCT (Discrete Cosine Transform)

coefficients of I. Since the images are normalized to zero

mean, I�0; 0� � 0. This definition is clearly in the spirit of

the continuous, integral-based definitions, and assigns

higher probabilities to smoother images. Hereafter, when

referring to ªrandom images,º we shall mean images

randomly sampled from this probability space. Now, it is

possible to formalize the observation ªthe absolute value of

the inner product of two random images is large.º For a

given image F of size n� n, the expectation of the square of

its inner product with a random image equals

E�< F; I >2� �
Z
Rn�n

< F; I >2 Pr�I�dI

using Parseval's identity, this can be computed in the

DCT domain. Substituting the expression for the probability

(3) and denoting the DCT transforms of F and I by F and I ,

respectively, we obtain

Z
Rn�nÿ1

X
�k;l�6��0;0�

F�k; l�I�k; l�
0@ 1A2

exp ÿ
Xn

�k;l�6��0;0�
�k2 � l2�I2�k; l�

0@ 1AdI ;
which, after some manipulations (see the Appendix), turns

out to be proportional to

X
�k;l�6��0;0�

F 2�k; l�
�k2 � l2�3=2

�4�

since the images are normalized to unit length, it is obvious

that, for the expression in (4) to be large, the dominant values

of the DCT transform fF�k; l�g should be concentrated in the

small values of k; lÐin other words, that F be smooth.
This theoretical result is well-supported empirically. In

Fig. 3, the empirical expectation of < F; I >2 is plotted

against (4). The expectation was computed for 5,000 different

F, by averaging their squared inner products with 15,000 sub-

images of natural images. The size was 20� 20 pixels. The

figure demonstrates a reasonable linear fit between (4) and

the empirical expectation.
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Fig. 3. Empirical verification of (4). ~d denotes the DCT transform of d.

Fig. 2. Schematic description of the antiface algorithm. Random natural
images cluster around the ªdirection of smoothnessºÐthat is, with high
probability, they lie in a double cone extending between the origin and
the point �1; 1; 1 . . . 1� (the smoothest image) on one side, and between
the origin and �ÿ1;ÿ1;ÿ1 . . .ÿ 1� on the other side. To separate the
multitemplate from random images, the detector's ªpositive setº should
therefore be as orthogonal as possible to the ªdirection of smoothness.º
This is achieved by using a smooth detector which is closely aligned with
the null space of the multitemplate and defining its ªpositive setº as the
set of images whose inner product with the detector is smaller in
absolute value than a given threshold. The eigenfaces method will incur
many false alarms, as the so-called ªface spaceº will contain many
smooth random images since its major axes are closely aligned with the
ªdirection of smoothness.º



2.2 Constructing Independent Detectors

It is unreasonable to expect that one detector can detect T
without many false alarms. This is because, for a single

detector d, although j < d;y > j is large on the average for a

random image y, there will always be many random images

I such that j < d; I > j is small, and these images will be

erroneously classified as members of T . The optimal

remedy for this is to apply a few detectors which act

independently; this implies that if the false alarm rate

(defined as the percentage of false alarms) of d1 is p1, and

that of d2 is p2, then the false alarm rate for both detectors

will be p1p2. Since the entire detection scheme rests on the

probability distribution defined in (3), the notion of

independence is equivalent to the requirement that the

two random variables, defined by I!< I;d1 > and

I !< I;d2 > , be independent, orZ
Rn�nÿ1

< I;d1 >< I;d2 > Pr�I�dI � 0

denote this integral by < d1;d2 >
� ; it turns out (see the

Appendix) to be

< d1;d2 >
��

X
�k;l�6��0;0�

D1�k; l�D2�k; l��
�k2 � l2�3=2

; �5�

where D1 and D2 are the DCT transforms of d1 and d2.

2.3 Computing the Detectors

To find the first antiface detector, d1, the following

optimization problem should be solved (here, we assume

that T is the given training set for the multitemplate):

1. d1 has to be of unit norm.
2. j < d1; t > j should be small, for every image t in T .

Note that every input image is also normalized, for
the condition to make sense.

3. d1 should be as smooth as possible under the first
and second constraints, which will ensure that the
expression in (4) will be large. We have also tried
maximizing the expression in (4) directly, but that
did not result in any performance improvement.
As a matter of fact, in some cases, it turned out
that opting for a smoother detector is slightly
better than directly maximizing (4)Ðprobably
because a smoother detector acts more continu-
ously; since the detector is built using a training
set, it is desirable that it act continuously, and,
thus, yield small results also on images which are
close to the training set.

The solution we implemented proceeds as follows: First,

choose an appropriate value for

max
t2T
j < d1; t > j;

experience has taught us that it doesn't matter much which

value is used, as long as it is substantially smaller than the

absolute value of the inner product of two random images.

Usually, for images of size 20� 20, we have chosen this

maximum valueÐdenoted by MÐas 10ÿ5. If it is not

possible to attain this valueÐwhich will happen if T is too
complicatedÐchoose a larger M. Next, minimize

max
t2T
j < d1; t > j � �S�d1�

and, using a binary search on �, set it so that

max
t2T
j < d1; t > j �M:

We have used the Nelder-Mead method [17] for the
optimization. The optimization is performed in the
DCT domain, and the inverse DCT transform of the optimum
is the desired detector (note that the detection itself is carried
out directly on the images; the DCT domain is used only in the
offline computation of the detectors).

After d1 is found, it is straightforward to recover d2; the
only difference is the additional condition< d1;d2 >

�� 0 (5)
and it is easy to incorporate this condition into the optimiza-
tion scheme. The other detectors are found in a similar
manner.

Note that d1 has to satisfy fewer constraints than the
other detectors, hence, it is smoother than them. Therefore,
it is applied as the first detector, as it will filter out more
input images than the other detectors. In the same vein, d2

is smoother than d3, hence, it is applied to the images which
passed the threshold imposed by d1, etc.

2.3.1 A Faster Algorithm for Suboptimal Detectors

Although the detectors are computed offline, it may be
desirable, in some cases, to use a faster algorithm. Then, one
may replace the target function

max
t2T
j < d1; t > j � �S�d1�

with the simpler X
t2T

< d1; t >
2 ��S�d1�

which may be optimized as above (yielding a different �).
While not optimal, the target function is now quadratic and
the detectors can be found by a standard SVD routine.

Empirical results indicate that, typically, if n optimal
antiface detectors achieve a certain detection rate, then
about 1:3n suboptimal detectors are required for achieving
the same rate. The results in Section 3 were all obtained
using suboptimal detectors.

3 EXPERIMENTAL RESULTS

The antiface method was tested both on synthetic and real
inputs. In Section 3.1, it is compared to the eigenface
method regarding the problem of detecting a frontal face
subject to increasingly complex families of transformations.
In these experiments, the test images were synthetically
created. In the other experiments, the method was applied
to detect various objects in real images: A pocket calculator
which is nearly planar and the well-known COIL database
of 3D objects, photographed at various poses.

Last, we briefly address the problem of detection under
varying illumination. The antiface method offers an
attractive solution, which proceeds by including the effects
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of different illumination conditions in the multitemplate;

this automatically cancels the illumination effect, allowing

fast, illumination invariant detection.

The number of detectors required for each experiment is

provided. Note that, since every detector acts only on

images which passed the thresholds imposed by the

previous detectors, the average running time for an N-pixel

input image is much smaller than kN , where k is the

number of detectors.

3.1 Performance as a Function of Multitemplate's
Complexity

In order to test the performance of the antiface method with

multitemplates of increasing complexity, the following

three multitemplates have been created, each of which

consists of a family of transformations applied to the frontal

image of the ªEstiº face (20� 20 pixels):

. Rotation only.

. Rotation and uniform scale at the range 0.7 to 1.3.

. The set of linear transformations spanned by
rotations and independent scaling at the x and y
axis, at the range 0.8 to 1.2.

In order to estimate the complexity of these multitemplates,

the scatter matrix for a training set of each was built and the

number of largest eigenvalues whose sum of squares equals

90 percent of the sum of squares of all 400 eigenvalues, was

computed. This is a rough measure of the ªlinear complex-

ityº of the multitemplate.

Ten images from each multitemplate were then super-

imposed on an image consisting of 400 human faces, each

20� 20 pixels and both the eigenface and antiface algo-

rithms were applied. These 10 images were not in the

training set.
Interestingly, while the eigenface method's performance

decreased rapidly as the multitemplate's complexity in-

creased, there was hardly a decrease in the performance of

the antiface method. Table 1 summarizes the results; by

ªaccurate detection,º we mean that all the ªEstiº faces (and

them alone) were correctly detected.

The high linear dimension of the multitemplates is well

in accordance with the observation in [4], concerning the

complexity of an image set containing affinely distorted

human faces.

3.1.1 Independence of the Detectors

For the case of linear transformations (the most complicated

multitemplate), the false alarm rates for the first, second,

and third detectors, were p1 � 0:0518, p2 � 0:0568, and

p3 � 0:0572, respectively; the false alarm rate for the three

combined was 0:00017Ðwhich is almost equal to p1p2p3.

This indicates that the detectors indeed act independently.

With four detectors, there were no false alarms.

3.1.2 Detectors and Results

Some of the images in the ªEstiº multitemplate are shown, as

well as the first six detectors (see Fig. 4), the detection result of

the antiface method (Figs. 5, 6, 7, and 8), and the result of the

eigenface method with a face space of dimension 100 (Fig. 9).

The first six detectors for the calculator multitemplate are also

depicted in Fig. 4 (compare to Fig. 1).

3.2 Detection of Pocket Calculator

In this set of experiments, the problem of detecting a pocket

calculator at an unknown pose, photographed from

different angles and distances, was tackled (see Fig. 1).

Here, too, the antiface method performed well and eight

detectors sufficed to recover the calculator in all the

experiments, without false alarms, which was substantially

better than the eigenface method. The average number of

detectors per pixel was 1.45 (Fig. 10).

3.3 Comparison with Fisher Linear Discriminant

The Fisher Linear Discriminant (FLD) is a well-known tool

for supervised clustering [5]. Given training data for two

classes C1 and C2, a vector v is sought so that when C1 and

C2 are projected on the subspace spanned by v, the ratio

between the distance of the centers of the projections and

their scatter is maximal.
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TABLE 1
Performance of the Eigenface and Antiface Algorithms as a Function of the Multitemplate's Complexity



In order to compare FLD to the antiface method, we have

used as training sets the ªEstiº multitemplate (Section 3.1),

and a large number of random images. In Fig. 11, the

distributions of the classes after projection on the optimal
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Fig. 5. Detection of ªEstiº face, antiface method, one detector; note many false alarms (detection is marked by a small white square at the upper left

corner of the detected subimage; there are no false alarms at the bottom and right stripes of the image, as the detection is only applied to the 20� 20

subimages which are entirely inside the compound image). The multitemplate consisted of 20� 20 images of a face (ªEstiº), subject to the

aforementioned class of linear transformations. There was no assumption on the location of the sought faces (hence, false alarms, which consist of

portions of various faces, were also possible, as all subimages were tested). The transformations used to create the 10 ªEstiº faces in the compound

image were not part of the training set used to construct the detectors. Other face images courtesy of Henry Rowley.

Fig. 4. Top: Sample 20� 20 pixel templates, ªEstiº face under various linear transformations. The range of rotations was 0ÿ 2�, sampled at

�=90 intervals, and at each angle the image was independently scaled in the x and y axes, at a range of 0:8ÿ 1:2, sampled at 0.05 intervals.

Altogether, there were 180� 9� 9 � 14; 580 images in the training set. Middle: The first six antiface detectors for the ªEstiº multitemplate. Bottom:

The first six antiface detectors for the calculator multitemplate.



v-subspace are shown. The ªEstiº projections are depicted

by asterisks and the training set of random images by a

plain line (the middle of the three narrower Gaussian-like

distributions). It is clear that, if we allow no false negatives

(that is, each instance of the ªEstiº multitemplate must be

correctly classified), then it is impossible to choose a

threshold which will enable reasonable classification since

FLD will recognize practically every input image as an

ªEstiº instance.

It is interesting to note that FLD does not fail in the

learning stage. To test its capacity to learn the concept of a

random image, two additional sets of random images (that

is, smooth, or ªrandom in the Boltzman senseº) were

projected on the same vector found using the first set

(Fig. 11). The projections of the three sets of random images

have a similar distribution. Thus, FLD fails not because it

cannot learn the concept of a random image from a training

set, but because there is no satisfactory way to separate the

multitemplate from random images by such a projection.

3.4 Detection of Objects from the COIL Database

The antiface algorithm was also applied to images

from the well-known COIL database which consists of

100 three-dimensional objects, placed on a rotating table,

and photographed from 72 different directions, at 5o

intervals (see www.cs.columbia.edu/CAVE/research/soft-

lib/coil-100.html). The problem of detecting the COIL

objects was addressed, for instance, in [13], [16], [20]. In

[16], [20], the authors built an SVM classifier for each

image pair and ran a tournament-like scheme for

detecting the correct object. In [16], a relatively large

amount of noise and distortion was added to the images,

and the system still performed well.

In [16], 36 views of each object were used for training and

the number of support vectors is specified as 1/3 to 2/3 of the

training images. The same approach was undertaken in [20],

which also includes extensive testing of SVM's with training

sets of varying size. Roobaert and Van Hulle [20] also

compare SVM's to a nearest-neighbor classifier and to the

system developed by Murase and Nayar at Columbia

University [13]; for 30 objects and 36 or eight views per

object, SVM's and Murase and Nayar's method's

performance is quite similar, and both do better than the

nearest-neighbor classifier.
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Fig. 6. Detection of ªEstiº face, antiface method, two detectors; note the sharp decrease in the number of false alarms, relative to one detector. The

second detector is applied only to subimages which passed the first detector's test.



In [13], [16], [20], it was assumed that the objects were

already segmented from the background and that the only

possible input images were the ones in the COIL database.

The experiment presented here is more general, in that it

attempts to detect each object without any assumption on the

background. We have built, for every object, a detector which

is trained on the multitemplate of the 36 images at angles

which are multiples of 10o (as in [16]) and used it to detect the

object at angles f5o; 15o; . . . 355og. The detection results were

quite good, with a false alarm rate of 2.3 percent. When in

error, the algorithm failed to distinguish between pairs of

very similar objects, such as two toy cars that share a very

similar appearance.

This example shows that the suggested algorithm has

reasonable extrapolation capabilities, as it is trained on a

relatively sparse set of images (rotations spaced 10o apart).

On the average, six antiface detectors were sufficient to

correctly detect the objects and 10 were required in the

worst case. As noted before, the average time for classifica-

tion of an N-pixel input image was less than

1:5N arithmetical operations. In terms of performance,

while noting that we incurred a small percentage of false

alarms, one should bear in mind that the problem

addressed in this work is more general than in [13], [16],

[20], which tackles only the problem of separating the COIL

images from each other, as opposed to detection in general

background setting (Fig. 12).

4 DETECTION UNDER VARYING ILLUMINATION

The antiface method can be extended to detection under

varying illumination conditions by creating detectors which

are insensitive to variation in the lighting. In this section, we

briefly touch on this extension, using a simple illumination/

shadow model. While the model is preliminary, hopefully it

is adequate to explain the basic idea.

We use the well-known fact that the light reflected from

a flat object with varying albedo can be described as

I��� � ����L���; �6�
where ���� represents the reflectivity, L��� is the incident

energy distribution, and � is the wavelength. As in

homomorphic filtering [7], the multiplicative nature of the
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Fig. 7. Detection of ªEstiº face, antiface method, three detectors; note the sharp decrease in the number of false alarms, relative to two detectors.

The third detector is applied only to subimages which passed the first and second detector's test.



reflectance model suggests applying a logarithm to (6),

resulting in

log�I� � log��� � log�L�;
where I is the given image, � represents the object's

reflectance function, and L the lighting. Hence, to detect the

object, we construct smooth detectors which operate in the

logarithmic domain so that their inner products with � and L

are small. This requires creating a training set which includes

the images of the object to be detected, as well as images that

model different light directions/conditions. Since average

intensity differences are accounted for by normalizing the

images, we chose to study some simple models correspond-

ing to shadows being cast at different directions and

positions, such as those depicted in Fig. 13. Since the shadows

are part of the training set, the antiface method will detect

them as multitemplate instances. To prevent this, a second,

much smaller set of ªshadow detectorsº was created, using a

multitemplate consisting of shadows. The detection process

at first uses the detectors that were trained on the composite

training set which includes object and shadow images and

then it applies the shadow detectors only to the image regions

detected by the first detector set. Those identified by the

shadow detectors are removed, leaving only the instances of

the multitemplate.

Fig. 14 presents some results. The multitemplate consists

of 30� 30 images of a planar object (a beer coaster), subject

to arbitrary rotations. The shadow patterns used consisted

of smooth step functions (see Fig. 13 for examples), with the

following parameters:

1. The transition width of the step is 5ÿ 10 pixels.
2. There is no restriction on the position/direction of

the shadow in the image.

The detection in all experiments was successful. The

number of multitemplate detectors ranged from three to

eight and one to three shadow detectors were required.

5 CONCLUSIONS AND FURTHER RESEARCH

A novel detection algorithmÐªantifacesºÐwas presented

and successfully applied to detect various image classes of
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Fig. 8. Detection of ªEstiº face, antiface method, four detectors; there are no false alarms, and exactly all the 10 ªEstiº faces are detected. The fourth

detector is applied only to subimages which passed the first, second, and third detector's test. The quality of results did not decrease when the

background face images were also subject to linear transformations. The average number of detectors per pixel was 1.23.



the types which often occur in real-life problems. The case

of varying illumination was also considered. The algo-

rithm uses a simple observation on the statistics of natural

images and a compact implicit representation of the image

class to very quickly reduce false alarm rate in detection.

In terms of speed, it is superior to both eigenface and

support vector machine-based algorithms. No training on

negative examples is required.
We plan to extend the antiface paradigm to other

problems, such as the detection of 3D objects under a

larger family of views, building a ªgenericº face detector,

and event detection. Another direction that can be pursued

is detection under uniform randomness.
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Fig. 9. Detection of ªEstiº face, eigenface method. The multitemplate and the background are the same as those used in the test presented in Figs. 4,

5, 6, 7, and 8. The eigenface method required a face space of dimension 145, to detect all the ªEstiº faces without false alarms (that is, to achieve a

result as the one depicted in Fig. 8). Here, the result for the eigenface method with a face space of dimension 100 is presented. Note a large number

of false alarms, some consisting of portions from different faces.

Fig. 10. An example of the detection of a pocket calculator in real images. Eight antiface detectors were sufficient to recover the calculator, without

false alarms. A typical result is on the left. The eigenface method required a face space of dimension 30 to recover the calculator without false

alarms. With a face space of dimension eight, there were many false alarms for the eigenface method (right).
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Fig. 11. Optimal separation of ªEstiº multitemplate from random images, using the Fisher Linear Discriminant. The vertical axis stands for the number

of images, the horizontal axis for the normalized projection. The projections of three sets of random images and the ªEstiº set are shown. The ªEstiº

projections are depicted by asterisks, the random images' projections are the three narrower Gaussian-like distributions. The middle one (plain line)

corresponds to the random images used as a training set.

Fig. 12. Top: Detection of 3D objects from the COIL database: A toy car is sought in the left image; a chewing gum bar in the right. Bottom: Detection of

3D objects from the COIL database: A toy car is detected in general background setting. The car model in the center (left image) is different than the

one being sought. Detection is marked by a white square around the detected image region. The average number of detectors per pixel was 1.31.



APPENDIX

. Proof of (4). Since the exponential in the integrand

factors into the product of exponentials of the

form I 2�k; l� exp�ÿ�k2 � l2�I2�k; l�dI�k; l�� and from

symmetry considerations, it is enough to compute

the one-dimensional integrals of the form

Z1
ÿ1

t2 exp�ÿ�t2�dt / �ÿ 3
2

where � > 0. Equation (4) follows immediately from

substituting � � k2 � l2.
. Proof of (5) follows immediately from (4) and from

noting that, for any inner product <;> , the

following holds:

< x;y >� < x� y;x� y > ÿ < x;x > ÿ < y;y >

2
:
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Fig. 13. Some simple shadow models.

Fig. 14. Detection results for beer coaster under varying pose and

illumination. The average number of detectors per pixel was 1.15.



 

 




