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Monitoring data streams in a distributed system is the focus of much research in recent years.

Most of the proposed schemes, however, deal with monitoring simple aggregated values, such as the

frequency of appearance of items in the streams. More involved challenges, such as the important

task of feature selection (e.g., by monitoring the information gain of various features), still require

very high communication overhead using naive, centralized algorithms.

We present a novel geometric approach which reduces monitoring the value of a function (vis-

à-vis a threshold) to a set of constraints applied locally on each of the streams. The constraints are

used to locally filter out data increments that do not affect the monitoring outcome, thus avoiding

unnecessary communication. As a result, our approach enables monitoring of arbitrary threshold

functions over distributed data streams in an efficient manner.

We present experimental results on real-world data which demonstrate that our algorithms

are highly scalable, and considerably reduce communication load in comparison to centralized

algorithms.
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1. INTRODUCTION

A common requirement in many emerging applications is the ability to process,
in real time, a continuous high-volume stream of data. Examples of such appli-
cations are sensor networks [Madden and Franklin 2002], real-time analysis of
financial data [Yi et al. 2000; Zhu and Shasha 2002], and intrusion detection.
These applications are commonly referred to as data stream systems [Babcock
et al. 2002]. The real-time nature of data stream systems and the vast amounts
of data they are required to process introduce new fundamental problems that
are not addressed by traditional database management systems (DBMSs). Tra-
ditional DBMSs are based on a pull paradigm, where users issue queries re-
garding data stored by the system, and the system processes these queries as
they are issued and returns results. Data stream systems [Carney et al. 2002;
Cherniack et al. 2003; Liu et al. 1999; Madden and Franklin 2002; Motwani
et al. 2003] are based on a push paradigm, where the users issue continuous
queries [Babu and Widom 2001; Terry et al. 1992] that specify the required
processing of the data, which the system processes as it arrives, continuously
providing the user with updated results.

Various types of continuous queries have been studied in the past, including
continuous versions of selection and join queries [Madden et al. 2002], various
types of aggregation queries [Manku and Motwani 2002; Alon et al. 1996], and
monitoring queries [Carney et al. 2002]. While most previous work regarding
data stream systems considers sequential setups (the data is processed by a
single processor), many data stream applications are inherently distributed:
examples include sensor networks [Madden and Franklin 2002], network mon-
itoring [Dilman and Raz 2001], and distributed intrusion detection [Manjhi
et al. 2005].

A useful class of queries in the context of distributed data streams are mon-
itoring queries. Previous work in the context of monitoring distributed data
streams considered monitoring simple aggregates, such as detecting when
the sum of a distributed set of variables exceeds a predetermined threshold
[Dilman and Raz 2001], or finding frequently occurring items in a set of dis-
tributed streams [Manjhi et al. 2005]. Some work has been done on monitoring
more complex constructs derived from distributed streams, but the proposed
solutions are customized for the problem at hand. Examples include Bulut
et al. [2005] which presented an algorithm for detecting similar sets of streams
among a large set of distributed streams, and Cormode et al. [2005], which
presented an algorithm for approximating quantiles over distributed streams.

A useful, more general type of monitoring query can be defined as follows:
let X 1,X 2, . . . , X d be frequency counts for d items over a set of streams. Let
f (X 1,X 2, . . . , X d ) be an arbitrary function over the frequency counts. We are
interested in detecting when the value of f (X 1,X 2,. . . ,X d ) rises above, or falls
below, a predetermined threshold value. We refer to this query as a threshold
function query.

There is a fundamental difference between the cases of linear and nonlinear
f , which can be demonstrated even for the case of one-dimensional data. Let x1

and x2 be values stored in two distinct nodes, and let f (x) = 6x − x2. Suppose
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one needs to determine whether f ( x1+x2

2
) > 1. If f was linear, the solution

would have been simple, since in that case f ( x1+x2

2
) = f (x1)+ f (x2)

2
. Suppose that

initially the value at each node is < 1; then a simple distributed algorithm
for monitoring whether f ( x1+x2

2
) > 1 is for each node i to remain silent as

long as f (xi) < 1. However, even for the simple nonlinear function above, it
is impossible to determine from the values of f at the nodes whether its value
at the average is above 1 or not. For example, if x1 = 0, x2 = 6, then f ’s value
in each node is below 1, but its value in the average of x1 and x2 is 9. But if
x1 = 10, x2 = 20, the value at both xi and their average is below 1. So nothing
can be deduced about the location of f ( x1+x2

2
) vis-a-vis the threshold given the

locations of f (xi) vis-à-vis it.
In this trivial example, the cost of sending the data stored in the nodes is

the same as sending the value, but in data mining applications the data can
be of very high dimensionality. This necessitates a distributed algorithm for
locally determining whether f ’s value at the average data vector is above the
threshold.

Following is a more practical example of a threshold function query: con-
sider a classifier built over data extracted from a set of streams, for example a
distributed spam mail filtering system. Such a system is comprised of agents
installed on several dispersed mail servers. Users mark spam mail they have
received as such, providing each server with a continuous stream of positive
and negative samples. These samples serve as a basis for building a classifier.
Since the vocabulary comprising these samples may be very large, an important
task in such a setup is determining which words, or features, should be used for
performing the classification. This task is known as feature selection. Feature
selection is typically performed by calculating, for every feature, a nonlinear
scoring function, such as information gain or χ2, over statistics collected from
all the streams. All the features scoring above a certain threshold are chosen
as parameters for the classification task. Since the characteristics of spam mail
may vary over time, one may wish to monitor the features in order to determine
if selected features remain prominent, or if any of the features not selected have
become prominent. Determining whether a certain feature should be selected
at a given time can be viewed as a threshold function query.

Threshold function queries can be implemented by collecting all the mail
items to a central location, but such a solution is very costly in terms of commu-
nications load. We are interested in algorithms that implement threshold func-
tion queries in a more efficient manner. We achieve this by defining numerical
constraints on the data collected at each node. As data arrives on the streams,
every node verifies that the constraint on its stream has not been violated. We
will show that, as long as none of these constraints have been violated, the
query result is guaranteed to remain unchanged, and thus no communication
is required.

In this article we present two algorithms for efficiently performing threshold
function queries. The algorithms are based on a geometric analysis of the prob-
lem. Upon initialization, the algorithms collect frequency counts from all the
streams, and calculate the initial result of the query. In addition, a numerical
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constraint on the data received on each individual stream is defined. As data
arrives on the streams, each node verifies that the constraint on its stream has
not been violated. The geometric analysis of the problem guarantees that as
long as the constraints on all the streams are upheld, the result of the query
remains unchanged, and thus no communication is required. If a constraint on
one of the streams is violated, new data is gathered from the streams, the query
is reevaluated, and new constraints are set on the streams.

The first algorithm is a decentralized algorithm, designed for a closely cou-
pled environment, where nodes can efficiently broadcast messages. The second
algorithm is designed for loosely coupled environments, where the cost of broad-
casting a message is high. These algorithms are, to the best of our knowledge,
the first to enable efficient monitoring of arbitrary threshold functions over
distributed data streams.

2. RELATED WORK

A well-studied problem is the monitoring of frequency counts over a single data
stream [Alon et al. 1996; Arasu and Manku 2004; Charikar et al. 2002; Manku
and Motwani 2002; Gibbons and Matias 1998]; however, these works do not
address distributed environments.

Algorithms proposed in Dilman and Raz [2001] enable detecting when the
sum of a distributed set of variables exceeds a predetermined threshold. How-
ever, the algorithms proposed in Dilman and Raz [2001] concentrate on moni-
toring the sum of a set of variables, whereas our algorithms aenable monitoring
arbitrary threshold functions over such variables. More recently, Keralapura
et al. [2006] presented algorithms that adapt local thresholds when monitoring
the sum of a set of variables, so that the communication cost is minimized. An
interesting avenue for future work is making use of the techniques presented
in Keralapura et al. [2006] when monitoring arbitrary threshold functions.

A scheme based on distributed hash tables, as well as a probabilistic coordi-
nator based scheme for implementing distributed triggers, has been proposed
in Jain et al. [2004]. This work analyzed a distributed trigger consisting of de-
tecting when the sum of a distributed set of variables crosses a predetermined
threshold. More recently, distributed triggers have been employed in order to
detected anomalies in network traffic [Huang et al. 2006].

The algorithm proposed in Olston et al. [2003] enables a central coordinator
to answer continuous queries designed to track the sum, average, or minimum
of a distributed set of variables within a certain predetermined error margin.
That work focused on minimizing the communication required for performing
several concurrent monitoring tasks, whereas our work proposes algorithms
for monitoring arbitrary threshold functions.

Babcock and Olston [2003] proposed an algorithm for finding the k largest
aggregated values (for example the k largest frequency counters) over a set of
distributed streams. Their algorithm employs a coordinator, which determines
the initial set of the k largest aggregates, and sends each node a set of numerical
constraints. Each node checks that the data received on its stream does not
violate this constraint. As long as all the constraints are upheld, the list of top
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k values is guaranteed to remain unchanged. In case a constraint is violated
at one of the nodes, it notifies the coordinator, which performs a resolution
process. The goal of the resolution process is to check if the list of the k largest
values has changed, and to update the constraints at the nodes. The coordinator-
based algorithm proposed in our work is similar to that algorithm in its use of
numerical constraints, but its purpose is to monitor an arbitrary threshold
function.

Algorithms proposed in Gibbons and Tirthapura [2001, 2002] enable esti-
mating certain functions over a set of distributed streams, for example, the
number of distinct elements in the streams, but this work does not address the
monitoring of threshold functions. A preliminary version of this work appeared
in Sharfman et al. [2006].

3. COMPUTATIONAL MODEL

Let S={s1,s2, . . . , sn}, be a set of n data streams, collected at nodes
P={p1,p2, . . . , pn}. Let �v1(t),�v2(t), . . . , �vn(t) be d-dimensional real vectors derived
from the streams (the value of these vectors varies over time). These vectors
are called local statistics vectors. Let w1,w2, . . . , wn be positive weights assigned
to the streams.

The weight wi assigned to the node pi usually corresponds to the number of
data items its local statistics vector is derived from. Assume, for example, that
we would like to determine whether the frequency of occurrence of a certain
data item in a set of streams is above a certain threshold value. In this case, the
weight we assign to each node at time t is the number of data items received on
the stream at time t (and �vi(t) is a scalar holding the frequency of occurrence
of the item in the stream si). In this setup weights change over time. A variant
of the problem stated above is for each node to maintain the frequency of oc-
currence of the item in the recent Ni data items received on the stream (this is
known as working with a sliding window of size Ni). In that case, the weight
assigned to each node is the size of its sliding window. In this setup weights
do not change over time. For the sake of clarity, we assume at first that the
weights are fixed, and that they are known to all nodes. Later, we modify our
algorithms to handle weights that vary with time.

Let �v(t) =
∑n

i=1 wi �vi (t)∑n
i=1 wi

. �v(t) is called the global statistics vector. Let f : R
d → R

be an arbitrary function from the space of d-dimensional vectors to the reals. f
is called the monitored function. We are interested in determining at any given
time, t, whether or not f (�v(t)) > r, where r is a predetermined threshold value.

We present algorithms for two settings, a decentralized setting and a
coordinator-based setting. Algorithms in both settings construct a vector called
the estimate vector, denoted by �e(t). The estimate vector is constructed from the
local statistics vectors collected from the nodes at certain times, as dictated by
the algorithms. The last statistics vector collected from the node pi is denoted
by �v′

i. Each node remembers the last statistics vector collected from it. The
estimate vector is the weighted average of the latest statistics vectors collected

from the nodes, that is, �e(t) =
∑n

i=1 wi �v′
i∑n

i=1 wi
. From time to time, as dictated by the

algorithm, an updated statistics vector is collected from one or more nodes, and
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the estimate vector is updated. At any given time the estimate vector is known
to all nodes.

In the decentralized setting, when the algorithm dictates that a statistics
vector should be collected from a node, the node broadcasts the statistics vec-
tor to the rest of the nodes. Each node keeps track of the last statistics vec-
tor broadcast by every node, and locally calculates the estimate vector. In the
coordinator-based setting, we designate a coordinator node and denote it by
p1. The coordinator is responsible for collecting local statistics vectors from the
nodes, calculating the estimate vector, and distributing it to the nodes.

In both settings, each node pi maintains a parameter called the statistics
delta vector. This vector is denoted by ��vi(t). The statistics delta vector held by
the node pi is the difference between the current local statistics vector and the
last statistics vector collected from the node, i.e., ��vi(t) = �vi(t) − �v′

i.
In both settings, each node pi also maintains a parameter called the drift

vector. This vector is denoted by �ui(t). The drift vector is calculated differently
in each setting. In the decentralized setting the drift vector is a displacement
of ��vi(t) in relation to the estimate vector,

�ui(t) = �e(t) + ��vi(t). (1)

The coordinator-based algorithm employs a mechanism for balancing the
local statistics vectors of a subset of the nodes. Consider the case where at a
certain time t the statistics delta vector in two equally weighted nodes, pi and
pj , cancel each other out: that is, ��vi(t) = −��vj (t). We will see that balancing
the local statistics vectors held by pi and pj can improve the efficiency of the
algorithm. The coordinator facilitates this balancing by sending each node a

slack vector, denoted by �δi. The sum of the slack vectors sent to the nodes is �0.
The drift vector held by each node is calculated as follows:

�ui(t) = �e(t) + ��vi(t) +
�δi

wi
. (2)

In the decentralized algorithm, nodes communicate by broadcasting mes-
sages. The cost of performing a broadcast varies according to the networking
infrastructure at hand. In the worst case broadcasting a message to n nodes
requires sending n point to point messages. While the decentralized algorithm
remains highly efficient even in those settings, in practice, the cost of broadcast-
ing a message is significantly lower. Some networking infrastructures, such as
wireless networks and Ethernet based networks, support broadcasting at the
cost of sending a single message. In other cases efficient broadcasting schemes
have been developed that significantly reduce the cost of broadcasting.

We assume that communication links are reliable, that is, no messages
are lost (otherwise standard methods for implementing reliability can be
employed).

The notations presented in this section are summarized in Table I.

4. RUNNING EXAMPLE

Following is a detailed description of the spam filtering example presented
in Section 1. We will use this example throughout the rest of the article to
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Table I. Notation Summary

Notation Description

�vi(t) Local statistics vector: the d -dimensional, time-varying data vector held by the ith
node

wi Weight: a scalar weight assigned to the ith node

�v(t) Global statistics vector: the weighted average of the local statistics vector
�v′i Sample vector: the value of the last local statistics vector collected from the ith node

�e(t) Estimate vector: the weighted average of the sample vectors

��vi(t) Statistics delta vector: the difference between a node’s local statistics vector and its

sample vector
�δi Slack vector: an offset vector determined by the coordinator

�ui(t) Drift vector: the sum of the estimate vector and the statistics delta vector (includes

the slack vector as well in the coordinator based algorithm, as specified by

Equation (2))

demonstrate the concepts we present. Let p1, p2, . . . , pn be n agents installed on
n different mail servers. Let Mi = {mi,1, mi,2, . . . , mi,k} be the last k mail items
received at the mail server installed on pi, and let M denote the union of the
last k mail items received at each one of the n mail servers, M = ⋃n

i=1 Mi. Let
X denote a set of mail items, let Spam(X ) be the set of mail items in X labeled
as spam, and let Spam(X ) be the set of mail items in X not labeled as spam.
Let Cont(X , f ) be the set of mail items in X that contain the feature f , and let
Cont(X , f ) be the set of mail items in X that do not contain the feature f . Let
the contingency table C f ,X for the feature f over the set of mail items X be a 2×2

matrix, C f ,X = {ci, j }, such that c1,1 = |Cont(X , f )∩Spam(X )|
|X | , c1,2 = |Cont(X , f )∩Spam(X )|

|X | ,

c2,1 = |Cont(X , f )∩Spam(X )|
|X | , and c2,2 = |Cont(X , f )∩Spam(X )|

|X | . C f ,Mi is called the local
contingency table for the node pi, and C f ,M is called the global contingency table.

Note that C f ,M =
∑n

i=1 C f ,Mi
n . We are interested in determining, for each feature

f , whether the information gain over its global contingency table, denoted
by G(C f ,M ), is above or below a predetermined threshold r. The formula for
information gain is given below:1

G(C f ,X ) =
∑

i∈{1,2}

∑
j∈{1,2}

ci, j · log

(
ci, j

(ci,1 + ci,2) · (c1, j + c2, j )

)
.

According to the notations defined in Section 3, the local contingency table
each node holds is the local statistics vector, and the global contingency table
is the global statistics vector. Note that the answer to the threshold function
query cannot be derived from the value of the monitored function on data from
each individual stream. Consider, for example, a spam filtering system consist-
ing of two streams, with a threshold value of 0.5. The first node may hold a
contingency table C f ,M1

= (
1 0
0 0

)
, resulting in G(C f ,M1

) = 0, and the second

node may hold a contingency table C f ,M2
= (

0 0
0 1

)
, resulting in G(C f ,M2

) = 0.

As we can see, the gain calculated on each individual stream is 0, and thus
below the threshold value, but the gain on the global contingency table for

1If ci, j =0 then ci, j ·log(
ci, j

(ci,1+ci,2)·(c1, j +c2, j )
) is defined as 0.
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f , C f ,M1∪M2
= C f ,M1

+C f ,M2

2
= (

0.5 0
0 0.5

)
, is G(C f ,M1∪M2

) = 1, and thus above the

threshold value. Note that this behavior does not occur when monitoring fre-
quencies of occurrence of items over distributed streams, that is, if the frequency
of occurrence of a certain item in all the streams is below a predetermined
threshold, then the frequency of occurrence of that item over the union of the
streams is below the threshold as well.

5. GEOMETRIC INTERPRETATION

At the heart of our approach is the ability to decompose the monitoring task into
local constraints on streams. As data arrives on the streams, each node verifies
that the local constraint on its stream has not been violated. We will show
that as long as none of these constraints has been violated, the query result is
guaranteed to remain unchanged, and thus no communication is required. As
demonstrated in Section 1, this cannot be done solely by observing the value of
the monitored function on each stream. Therefore, we have defined in Section 3
an estimated global statistics vector, called the estimate vector, which is known
to all nodes. The estimate vector is said to be correct at a given time if the value
of the monitored function on the estimate vector and the value of the monitored
function on the global statistics vector at that time (this value is unknown
to any single node) are on the same side of the threshold. Given an initially
correct estimate vector, our goal is to set local constraints on each stream such
that as long as no constraints have been violated, the estimate vector remains
correct, and thus no communication is required. The method for decomposing
the monitoring task is based on the following, easily verifiable observation—at
any given time the weighted average of the drift vectors held by the nodes is
equal to the global statistics vector,

∑n
i=1 wi �ui(t)∑n

i=1 wi
= �v(t). (3)

We refer to Property (3) as the convexity property of the drift vectors. The
geometric interpretation of Property (3) is that the global statistics vector is in
the convex hull of the drift vectors held by the nodes,

�v(t) ∈ Conv(�u1(t), �u2(t), . . . , �un(t)). (4)

This observation enables us to take advantage of Theorem 1 in order to
decompose the monitoring task.

THEOREM 1. Let �x, �y1, �y2, . . . , �yn ∈ R
d be a set of vectors in R

d . Let Conv(�x,
�y1, �y2, . . . , �yn) be the convex hull of �x, �y1, �y2, . . . , �yn. Let B(�x, �yi) be a ball cen-
tered at �x+�yi

2
and with a radius of ‖ �x−�yi

2
‖2 that is, B(�x, �yi) = {�z|‖�z − �x+�yi

2
‖2

≤ ‖ �x−�yi
2

‖2}; then Conv(�x, �y1, �y2, . . . , �yn) ⊂ ⋃n
i=1 B(�x, �yi).

Theorem 1 is used to bound the convex hull of n+1 vectors in R
d by the union

of n d-dimensional balls. In our case it is used to bound the convex hull of the
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Fig. 1. Illustration of Theorem 1. The drift vectors held by five nodes and the balls constructed

by them are depicted. The convex hull of the drift vectors is highlighted in gray. As stated by the

theorem, the union of the balls bounds the convex hull.

estimate vector and the drift vectors, that is, Conv(�e(t), �u1(t), �u2(t), . . . , �un(t)),
by a set of n balls, where each ball is constructed independently by one of the
nodes. Each node, pi, constructs a ball B(�e(t), �ui(t)), which is centered at �e(t)+�ui (t)

2
,

and has a radius of ‖ �e(t)−�ui (t)
2

‖. Note that at any given time each node has all
the information required to independently construct its ball. Theorem 1 states
that Conv(�e(t), �u1(t), �u2(t), . . . , �un(t)) ⊂ ⋃

i B(�e(t), �ui(t)).
The application of Theorem 1 is illustrated in Figure 1, which depicts a setup

comprised of five nodes, each holding a statistics vector, �vi(t) ∈ R
2. The drift

vectors held by the nodes (�u1(t), . . . , �u5(t)), the global statistics vector �v(t), and
the estimate vector �e(t) are depicted, as are the balls constructed by the nodes.
The convex hull of the drift vectors is highlighted in gray, and one can see that,
as the theorem states, the area defined by the convex hull is bounded by the set
of balls.

5.1 Local Constraints

The local constraint on each stream is set as follows: the monitored function
f and threshold r can be seen as inducing a coloring over R

d . The vectors
{�x| f (�x) > r} are said to be green, while the vectors { �y | f ( �y) ≤ r} are said to
be red. The local constraint each node maintains is to check whether the ball
B(�e(t), �ui(t)) (the ball centered at �e(t)+�ui (t)

2
, and having a radius of ‖ �e(t)−�ui (t)

2
‖) is

monochromatic, that is, whether all the vectors contained in the ball have the
same color. Testing for monochromaticity is done by finding the maximal and
minimal values of f in the ball. This is done locally at each node hence has no
effect on the communication load.

If all the local constraints are upheld, the estimate vector is correct: because
all the balls contain the estimate vector, and all the balls are monochromatic,
the set of vectors defined by the union of all the balls is monochromatic as
well. Since the union of all the balls contains the convex hull of the drift vec-
tors and the estimate vector ( Conv(�e(t), �u1(t), �u2(t), . . . , �un(t))), and according
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to Equation (4) the global statistics vector is contained in the convex hull of
the drift vectors, the estimate vector and the global statistics vector have the
same color. Therefore, they are on the same side of the threshold, that is, the
estimate vector is correct.

5.2 Proof of Theorem 1

Following is the proof of Theorem 1. The proof uses the following variant of
Caratheodory’s theorem [Berkovitz 2002]:

THEOREM 2. Let �x, �y1, �y2, . . . , �yn ∈ R
d be a set of vectors in R

d . Let
Conv(�x, �y1, �y2, . . . , �yn) be the convex hull of �x, �y1, �y2, . . . , �yn. Any vector �z ∈

Conv(�x, �y1, �y2, . . . , �yn) can be expressed as a convex combination of �x, and at
most d members of { �y1, �y2, . . . , �yn}.

The proof will use the following Lemma:

LEMMA 1. Let �x1, �x2 . . . �xd be d vectors in R
d . A rotation matrix R exists such

that the last coordinate of R �xi is identical for all 1 ≤ i ≤ d.

PROOF. If �rT denotes the last row of R, we must have �rT �x1 = �rT �x2 = · · · =
�rT �xd for all 1 ≤ i ≤ d . Let us differentiate between two cases. If �xi are linearly
dependent, their span lies in a subspace of dimension less than d ; hence there’s
a nonzero vector which is orthogonal to all of them; take �rT to be equal to
that vector. If they are independent, look at the system of d linear equations
�rT �x1 = 1, . . . , �rT �xd = 1. Its coefficient matrix is composed of the �xi; hence it has
full rank, and thus admits a solution, which we’ll take to be �rT . In both cases,
normalize �rT so that it has unit length; the requirement �rT �x1 = �rT �x2 = · · · =
�rT �xd obviously still holds.

Last, we need to construct a rotation matrix R having �rT as its last row. Since
�rT is a unit vector, we can use the Gram-Schmidt process to complete it to an
orthonormal basis of R

d by adding to it d − 1 vectors of unit length such that
all d vectors are orthogonal to each other. Take R to consist of this basis (here
we use the fact that R is a rotation matrix iff its rows form an orthonormal
basis).

PROOF OF THEOREM 1. The theorem is proven by induction over d. The
base of the induction is d = 1. Proving the base of the induction is trivial
(�x, �y1, �y2, . . . , �yn are real numbers and both Conv(�x, �yi) and B(�x, �yi) are the
segment [x, yi]).

The induction step is proven as follows: according to Theorem 2, since any
vector �z ∈ Conv(�x, �y1, �y2, . . . , �yn) can be expressed as a convex combination of
�x and a set of at most d members of { �y1, �y2, . . . , �yn}, it is sufficient to show that
for an arbitrary set of vectors, {�x, �v1, �v2, . . . , �vd } ∈ R

d ,

Conv(�x, �v1, �v2, . . . , �vd ) ⊂
d⋃

i=1

B(�x, �vi). (5)

Furthermore, we observe that any vector �z ∈ Conv(�x, �v1, �v2, . . . , �vd ) is a convex
combination of some vector �z ′ ∈ Conv(�v1, �v2, . . . , �vd ) and �x. Therefore, it is
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sufficient to show that

Conv(�v1, �v2, . . . , �vd ) ⊂
d⋃

i=1

B(�x, �vi). (6)

Equation (6) implies Equation (5) since �z is a convex combination of �z ′ ∈
Conv(�v1, �v2, . . . , �vd ) and �x, and since, according to Equation (6), Conv(�v1,
�v2, . . . , �vd ) ⊂ ⋃d

i=1 B(�x, �vi), �z ′ belongs to at least one of the balls
B(�x, �v1),B(�x, �v2), . . . , B(�x, �vd ), say B(�x, �vj ). Since by definition �x also belongs
to B(�x, �vj ), �z also belongs to B(�x, �vj ). This is because �z is a convex combination

of �z ′ and �x, which both belong to B(�x, �vj ), which is a convex set.
Since for any rotation matrix R and vectors {q1 . . . qn}, Conv{R(q1) . . .

R(qn)} = R( Conv{q1 . . . qn}), and Lemma 1 guarantees that a rotation matrix
R can be found such that the last coordinate of R�v1, R�v2, . . . , R�vd is iden-
tical, we assume without loss of generality that the vectors �v1, �v2, . . . , �vd lie
on a d − 1 dimensional hyperplane, P, which consists of vectors whose last
coordinate is identical. It is easy to show that the intersection of B(�x, �v1),
B(�x, �v2), . . . , B(�x, �vd ) with P yields the set of d − 1 dimensional balls, B(�xp, �v1),
B(�xp, �v2), . . . , B(�xp, �vd ), where �xp is the projection of �x on the plane P. Note that,
for every i, the d − 1 dimensional ball B(�xp, �vi) is contained in the d dimen-
sional ball B(�x, �vi) (B(�xp, �vi) ⊂ B(�x, �vi)). Since the vectors �xp, �v1, �v2, . . . , �vd lie
on the d − 1 dimensional plane P, then, according to the induction hypothesis,
Conv(�v1, �v2, . . . , �vd ) ⊂ ⋃d

i=1 B(�xp, �vi). Since for every i, B(�xp, �vi) is contained in

B(�x, �vi), then Conv(�v1, �v2, . . . , �vd ) ⊂ ⋃d
i=1 B(�x, �vi). We have proved Equation

(6), and thus concluded the proof. �

6. DISTRIBUTED MONITORING

In this section we present algorithms that are based on the geometric method
for decomposing the monitoring task into local constraints on the streams. After
presenting the algorithms, we describe how they can be tuned to relax perfor-
mance requirements in favor of reducing communication load, and how they
can be modified to support time-varying weights.

6.1 The Decentralized Algorithm

Following is a simple, broadcast-based algorithm for monitoring threshold func-
tions: each node maintains a copy of the last statistics vector sent by each of
the nodes. The initialization stage consists of every node broadcasting its ini-
tial statistics vector. Upon receipt of all the initialization messages, each node
calculates the estimate vector, �e(t). Then, as more data arrives on the stream,
each node can check its local constraint according to the estimate vector and its
drift vector. If a local constraint is violated at a node, pi, the node broadcasts a
message of the form < i, �vi(t) >, containing its identifier and its local statistics
vector at the time. The broadcasting node updates its �v′

i parameter and recal-
culates the estimate vector. Upon receiving a broadcast message from a node,
pi, each node updates its �v′

i parameter and recalculates the estimate vector.
If all the local constraints are upheld, Theorem 1 guarantees the correctness

of the estimate vector (enabling every node to locally calculate the value of
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Algorithm 1 The decentralized algorithm

Initialization: at a node pi

—Broadcast a message containing the initial statistics vector and update �v′
i to hold the

initial statistics vector. Upon receipt of messages from all the nodes, calculate the
estimate vector (�e(t)).

Processing stage at a node pi :

—Upon arrival of new data on the local stream, recalculate �vi(t), and �ui(t), and check
if B(�e(t), �ui(t)) remains monochromatic. If not, broadcast the message <i,�vi(t)> and

update �v′
i to hold �vi(t).

—Upon receipt of a new message <j,�vj (t)>, update �v′
j to hold �vj (t), recalculate �e(t),

and check if B(�e(t), �ui(t)) is monochromatic. If B(�e(t), �ui(t)) is not monochromatic,
broadcast the message <i,�vi(t)> and update �v′

i to hold �vi(t).

the threshold function). After a node broadcasts a message, its local constraint
is upheld (because the ball it constructs has a radius of 0, and therefore is
monochromatic). If a local constraint has been violated, at worst all n nodes
(but possibly fewer) will broadcast a message before all the local constraints
are upheld again.

A formal description can be found in Algorithm 1.

6.2 The Coordinator-Based Algorithm

Local constraints are also used in the coordinator-based algorithm, but the
coordinator is responsible for calculating the estimate vector, maintaining its
correctness, and distributing it to the other nodes. In the decentralized algo-
rithm the violation of a constraint on one node requires communicating with
all the rest of the nodes (a broadcast message is sent). While this may be a
good solution in setups where the nodes are closely coupled, in other cases we
can further reduce the communication load by introducing a coordinator. The
presence of a coordinator enables us to resolve a violation at a node by commu-
nicating with only a subset of the nodes, as opposed to communicating with all
the nodes as required in the decentralized algorithm. Consider, for example, a
set of equally weighted nodes monitoring the function f (x) = (x−5)2 (a function
over a single dimensional statistics vector), and a threshold value of r = 9. Say
that at time t the estimate vector is �e(t) = 5. Note that, since f (�e(t)) = 0 < r,
any drift vector in the range [2, 8] satisfies the local constraint at the node. Let
us assume that the drift vector at the coordinator, p1, is �u1(t) = 4, and the con-
straints at all n nodes are satisfied except for p2, which holds the drift vector
�u2(t) = 1. In the decentralized algorithm, since the constraint at p2 has been
violated, it would have broadcast its statistics vector to all n nodes. However,
the constraint violation at p2 can be resolved by setting the drift vector at both
p1 and p2 to the average of the drift vectors on both nodes, that is, by setting
�u1(t) = �u2(t) = �u1(t)+�u2(t)

2
= 2.5. After this averaging operation, drift vectors on

both p1 and p2 are within the range [2, 8], and thus all the local constraints
are upheld. Note that this action preserves the convexity property of the drift
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vector (Property 3). The act of averaging out a subset of drift vectors in order
to resolve a violated constraint is called a balancing process.

In order to facilitate the balancing of vectors, every node pi holds a slack
vector denoted by �δi, as defined in Section 3. The slack vector is first normalized
by dividing it by the weight assigned to the node. Then it is added to the drift
vector as specified in Equation (2). The coordinator is responsible for ensuring

that the sum of all slack vectors is �0, thus maintaining the convexity property
of the drift vectors (Property 3).

To initialize the algorithm, each node sends its initial statistics vector to

the coordinator. Initially the slack vector held by each node is set to �0. The
coordinator calculates the estimate vector and sends it to the rest of the nodes.
As more data arrives on a node’s stream, the node checks its local constraint.
If a local constraint is violated at one of the nodes, it notifies the coordinator by
sending it a message containing its current drift vector and its current statistics
vector. The coordinator first tries to resolve the constraint violation by executing
a balancing process.

During the balancing process the coordinator tries to establish a group of
nodes (called the balancing group and denoted by P ′), such that the average of
the drift vectors held by the nodes in the balancing group (called the balanced
vector and denoted by �b), creates a monochromatic ball with the estimate vector,
that is, such that B(�e(t), �b) is monochromatic. The balanced vector is calculated
as follows:

�b =

∑
pi∈P ′

wi �ui(t)

∑
pi∈P ′

wi
(7)

The balancing process proceeds as follows: when a node pi notifies the co-
ordinator that its local constraint has been violated, it appends its drift vector
and its current statistics vector to the message. The coordinator constructs a
balancing group consisting of pi and itself. It then checks if the ball defined by
the balanced vector, B(�e(t), �b), is monochromatic. If B(�e(t), �b) is not monochro-
matic, the coordinator randomly selects a node that is not in the balancing
group, and requests it to send its drift vector and local statistics vector. Then it
adds that new node to the balancing group and rechecks B(�e(t), �b). The process
is performed iteratively until either B(�e(t), �b) is monochromatic or the balanc-
ing group contains all the nodes. If the coordinator established a balancing
group such that B(�e(t), �b) is monochromatic, the balancing process is said to
have succeeded. In this case the coordinator sends each node in the balanc-
ing group an adjustment to its slack vector. This causes the drift vectors held
by all nodes in the balancing group to be equal to �b. The adjustment to the
slack vector sent to each node pi ∈ P ′ is denoted by ��δi, and is calculated as
follows:

��δi = wi�b − wi �ui(t).

After receiving the slack vector adjustment, each node simply adds the ad-
justment to the current value, that is, �δi ← �δi + ��δi. One can easily verify that

after a successful balancing process the sum of all slack vectors remains �0, and
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the drift vector held by each node in the balancing group is �b, thus resolving
the original constraint violation.

If the balancing process has failed (i.e., the balancing group contains all the
nodes, and B(�e(t), �b) is not monochromatic), the coordinator calculates a new
estimate vector (according to the updated statistics vectors sent by the nodes)
and sends it to all the nodes. Upon receipt of the new estimate vector, the nodes

set their slack vectors to �0 and modify their �v′
i parameter to hold the value of

the statistics vector they sent to the coordinator during the balancing process,
thus resolving the original constraint violation.

In order to implement the algorithm, the following messages must be defined:

<INIT,�vi> Used by nodes to report their initial statistics vector to the coordi-
nator in the initialization stage.

<REQ> Used by the coordinator during the balancing process to request that
a node send its statistics vector and drift vector.

<REP,�vi,�ui> Used by nodes to report information to the coordinator when a local
constraint has been violated, or when the coordinator requests
information from the node.

<ADJ-SLK,��δi> Used by the coordinator to report slack vector adjustments to
nodes after a successful balancing process.

<NEW-EST,�e> Used by the coordinator to report to the nodes a new estimate
vector.

A formal description is given in Algorithm 2.

6.3 Relaxing the Precision Requirements

A desired tradeoff when monitoring threshold functions is between accuracy
and communication load. In some cases an approximate value of the thresh-
old function is sufficient, that is, the correct value of the threshold function is
required only if the value of the monitored function is significantly far from
the threshold. In other words, if ε is a predetermined error margin, and if
f (�v(t)) > r + ε or f (�v(t)) ≤ r − ε, we require that the estimate vector, �e(t), be
correct, but we do not require it if r − ε < f (�v(t)) ≤ r + ε.

Consider the feature monitoring example given in Section 1. Say we would
like to select all the features whose information gain is above 0.05. Obviously, it
is important to select a feature whose information gain is significantly high, and
not to select a feature whose information gain is significantly low. For example,
it is important to select a feature whose information gain score is 0.1, and not
to select a feature whose information gain score is 0.01. Including or exclud-
ing features whose information gain score is very close to the threshold value;
for example, a feature whose information gain score is 0.048, will probably not
have a significant effect on the quality of the selected feature set, while the cost
of monitoring such features is expected to be high, since their information gain
is expected to fluctuate around the threshold value. Therefore we can signifi-
cantly improve the efficiency of our monitoring algorithms if we set some error
margin, say 0.005. In other words, features that are currently selected will be
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Algorithm 2 The coordinator-based algorithm

Initialization:

—Send an INIT message to the coordinator, set �v′ to hold the initial statistics vector,

and set the slack vector to �0. Upon receipt of messages from all nodes, the coordinator
calculates the estimate vector and informs the nodes via a NEW-EST message.

Processing stage at an ordinary node pi :

—Upon arrival of new data on a node’s local stream, recalculate �vi(t) and �ui(t), and check
if B(�e(t), �ui(t)) remains monochromatic. If not, send a <REP,�vi(t),�ui(t)> message to the
coordinator, and wait for either a NEW-EST or an ADJ-SLK message.

—Upon receipt of a REQ message, send a <REP,�vi(t),�ui(t)> message to the coordinator
and wait for either a NEW-EST or ADJ-SLK message.

—Upon receipt of a NEW-EST message, update the estimate vector (�e(t)) to the value
specified in the message, set the value of �v′ to the statistics vector sent to the coordi-

nator, and set the slack vector to �0.

—Upon receipt of an ADJ-SLK message, add the value specified in the message to the

value of the slack vector (�δi ← �δi + ��δi).

Processing stage at the coordinator:

—Upon arrival of new data on the local stream, recalculate �v1(t) and �u1(t), and check if
B(�e(t), �u1(t)) remains monochromatic. If not, initiate a balancing process, setting the
balancing group to P ′ = {< 1, �v1(t), �u1(t) >}.

—Upon receipt of a REP message from the node pi , initiate a balancing process, setting
the balancing group to P ′ = {< 1, �v1(t), �u1(t) >, < i, �vi , �ui >}.

Balancing process at the coordinator:

(1) Calculate balanced vector, �b, according to Equation (7). If the ball B(�e(t), �b) is
monochromatic goto (2), otherwise goto (3).

(2) For each item in the balancing group, < i, �vi , �ui >, calculate the slack vector adjust-

ment, ��δi = wi�b − wi �ui(t), send pi a <ADJ-SLK,��δi> message, and then exit the
Balancing Process.

(3) If there are nodes not contained in the balancing group, select one of these nodes
at random, and send it a REQ message. Upon receipt of the REP message, add the
node to the balancing group and goto (1). Otherwise calculate a new estimate vector
(based on the �vi values received from all the nodes), send a NEW-EST message to
all nodes, and exit the balancing process.

removed from the set of selected features only when their information gain falls
below 0.045, and features that are currently not selected will be added to the
set of selected feature only if their information gain rises above 0.055.

Our algorithm can be easily tuned to relax the precision requirements by
an error margin of ε as follows: instead of working with a single coloring, in-
duced by the monitored function f and the threshold value r, two sets of coloring
are defined, one induced by the monitored function f and the threshold value
r +ε, and a second induced by the monitored function f and the threshold value
r − ε. Whenever the original algorithm checks whether a ball is monochro-
matic, then, if f (�v(t)) ≤ r, the modified algorithm will check whether the ball is
monochromatic according to the first coloring (the one induced by f and r + ε).
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If f (�v(t)) > r, the modified algorithm will check whether the ball is monochro-
matic according to the second coloring (the one induced by f and r − ε). This
ensures that, if all the balls are in the range defined by {�x|r − ε < f (�x) ≤ r + ε},
no messages are transmitted.

6.4 Handling Time-Varying Weights

Up to this point we have assumed that the weights assigned to nodes are fixed,
such as when the weights are the size of sliding windows used for collecting
data from the streams. We now address cases where weights assigned to nodes
may vary with time, as when a node’s weight at a given time is the number of
data items received on its stream so far.

We next describe the required modifications to the algorithms in order to
ensure their correctness in a setup where weights vary with time. In such a
setup we denote the weight assigned to the node pi at time t by wi(t). Each
message in the original algorithms is modified by appending wi(t) to it. Along
with the last vector broadcast by each of the other nodes ( �v′

i), the nodes in the
decentralized algorithm keep track of the last broadcast weight, denoted by w′

i.
Nodes calculate �ei(t), ��vi(t), and �ui(t) as follows:

�ei(t) =
∑n

i=1 w′
i
�v′

i∑n
i=1 w′

i
,

��vi(t) = wi(t)�vi(t) − w′
i
�v′

i(t) − (wi(t) − w′
i)�ei(t)

wi(t)
.

In the decentralized algorithm, the drift vector is calculated by

�ui(t) = �ei(t) + ��vi(t)

and in the coordinator-based algorithm, by

�ui(t) = �e(t) + ��vi(t) +
�δi

wi(t)
.

In the coordinator-based algorithm, the balanced vector and the slack vector
adjustments are calculated according to the weights appended to the messages:

�b =
∑k

i=1 wi(t)�ui(t)∑k
i=1 wi(t)

,

��δi = wi(t)�b − wi(t)�ui(t).

Note that, if the weights are fixed, �ei(t), ��vi(t), and �ui(t) hold the same values
they hold in the original algorithms. Furthermore, one can easily verify that
the new definitions of these parameters maintain Equation (3), that is,

�v(t) =
∑n

i=1 wi (t)�ui (t)∑n
i=1 wi (t)

, and thus maintain the correctness of the algorithm.

7. DETERMINING MONOCHROMATICITY

In this section, we address the computational problem of determining whether
a sphere is monochromatic. This is equivalent to testing whether the sphere
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intersects the threshold surface {p| f (p) = t}, where f is the monitored function
and t the threshold.

The most direct solution is to compute the distance from the sphere’s center
to the threshold surface. This is a constrained optimization problem which has
been extensively studied, for example, in the context of implicit surface fitting.
For example, in Sullivan et al. [1994] the running time (modified to current-
day computers) for computing the distance of a point in three-dimensional Eu-
clidean space from an implicit surface defined by a fourth-degree polynomial
is, on the average, about 10−3 s. Specifically for polynomials, recent algorithms
were presented for performing global optimizations over polynomials with poly-
nomial constraints [Parrilo 2003; Lasserre 2000]. These algorithms can be used
in order to directly calculate the distance of a given vector from a threshold sur-
face when the monitored function is a polynomial.

If one allows for some rather modest preprocessing, faster algorithms can be
designed. As opposed to the problem of surface fitting, we have the advantage
that the monitored functions are fixed. Therefore, the threshold surface can be
computed in advance. Moreover, the approximate distance of every point from
the threshold surface (the distance transform) can be estimated very accurately
by computing it on a dense grid, using algorithms that are linear in the size of
the grid. This holds also for nonpolynomial functions, such as the information
gain.

To get a feeling for the time required for this preprocessing—which has only
to be performed once—we refer to the popular recursive subdivision approach;
for example, in Varadhan et al. [2004] running times of about 1 min on the
average are reported for computing the threshold surface of very complicated
functions. The distance transform can also be computed quickly; for example,
in Siddiqi et al. [2002] a running time of 26 s is reported for computing the
distance transform for a 128 × 128 × 128 array.

We reiterate that this preprocessing has to be performed only once; after
it’s done, each node keeps a copy of the distance array, and then testing for
monochromaticity is extremely fast.

8. PERFORMANCE ANALYSIS

We would like to determine how the various parameters of the monitoring
problem affect the communication load generated by the proposed algorithms.
In order to do so we present a simplified model of our algorithm and analyze the
probability that a constraint violation will occur at a node. Since a constraint
violation is the trigger for communications in both algorithms, this analysis
should provide indications regarding the generated communication load.

Generally speaking, the dominant factor affecting the performance of the
algorithms is the average distance of the estimate vector from the set of vectors
for which the value of the monitoring function equals the threshold value. More
formally, let the threshold set defined by the monitoring function f and thresh-
old value r be the set of vectors for which the value of the threshold function
equals the threshold value. Let the threshold set be denoted by T ( f , r), that is,

T ( f , r) = {�x| f (�x) = r}.
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Fig. 2. The colorings induced by two sets of monitored functions and threshold values. (a) The

coloring induced by f1 = sin(2
√

x2+ y2)≥0, and (b) the coloring induced by f2 = 1
1+e−x + 1

1+e− y ≥
0.75.

Let the distance of a vector �x from the threshold set T ( f , r), denoted as
dist(�x, f , r), be the minimum distance of �x from any point in T ( f , r) that is,

dist(�x, f , r) = min(‖ �y − �x‖ ∣∣ f ( �y) = r ).

The farther the estimate vector is, at a given time, from the threshold set, the
more the local statistics vectors can change without violating local constraints.
Therefore, a greater average distance of the estimate vector from the threshold
set will result in a greater reduction in communications.

The average distance of the estimate vector from the threshold set is affected
by many parameters. To begin with, it is affected by the coloring induced by the
monitored function and the threshold value. Figure 2 illustrates the coloring
induced by two sets of a monitored function and a threshold value. Figure 2(a)
illustrates the coloring induced by the function f1(x, y) = sin(2

√
(x2 + y2)) and

the threshold value 0, and Figure 2(b) illustrates the coloring induced by the
function f2(x, y) = 1

1+e−x + 1
1+e− y and the threshold value 0.75 ( f2(x, y) is a

simple two-layer neural net).
It is clear that the distance of any point in R

2 from the threshold set defined
by f1 and 0 cannot be greater than π

4
≈ 0.785. Therefore, the average distance

of the estimate vector from the threshold set in this case is bounded from above
by 0.785, thus yielding a relatively low reduction in communications when
monitored by our algorithms. However, the maximum distance of a point in R

2

from the threshold set defined by f2 and 0.75 is unbounded, and the dominating
factor affecting the performance of our algorithms in this case is the nature of
the data received on the streams.

In order to analyze how our algorithms are affected by the nature of the
data on the streams, we consider periods during which this data is station-
ary (this fact, however, is not known to any of the nodes). More formally,
we assume that each stream item is a d-dimensional vector, where the j th
component is independently drawn from a random variable denoted by X j

with a defined expectancy and variance, denoted by E[X j ] and V [X j ], respec-
tively. We assume the system consists of n nodes, and that each node holds a
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Fig. 3. The coloring induced by the function f2 = 1
1+e−x + 1

1+e− y and the threshold value 0.75,

together with the expected global statistics vector, its distance from the threshold set, and a

local statistics vector, that is contained within the distance sphere. One can see that the ball

B(E[�v(t)], �vi(t)) is fully contained in the distance sphere.

sliding window of N items. We denote the last N items received on the stream
monitored by pi as �vi,1,�vi,2, . . . , �vi,N , and the components of a vector as follows:

�vi,k = (v(1)
i,k , v(2)

i,k , . . . , v(d )
i,k ). The local statistics vector held by a node is the average

of the items contained in its sliding window, and the global statistics vector is
the average of the items contained in the sliding windows held by all the nodes,
that is,

�vi(t) =
∑N

k=1 �vi,k

N
=

N∑
k=1

�vi,k

N
, (8)

�v(t) =
∑n

i=1

∑N
k=1 �vi,k

N · n
. (9)

It is easy to see that the expected value for the global statistics vector and
each local statistics vector is E[�v(t)] = E[�vi(t)] = (

E[X 1], E[X 2], . . . , E[X d ]
)
.

Figure 3 depicts the coloring induced by f2 and the threshold value 0.75,
the expected global statistics vector, and the distance of the expected global
statistics vector from the threshold set. The expected global statistics vector and
its distance from the threshold set define a sphere called the distance sphere. We
denote the distance of the expected global statistics vector from the threshold
set by Dglobal , that is, Dglobal = dist(E[�v(t)], f , r).

We present the following simplified model of our algorithms: we assume
that the estimate vector holds the value of the expected global statistics vec-
tor, that is, �e(t) = E[�v(t)] = (

E[X 1], E[X 2], . . . , E[X d ]
)
. Furthermore, we as-

sume that data on each stream arrives in blocks of N items. We would like
to bound Prviolation, the probability that the arrival of a new block of data
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items on a stream will cause a constraint violation at the node monitoring the
stream.

We assume that the estimate vector is the expected global statistics vector.
Consequently, as long as the local statistics vector held by a node is contained
within the distance sphere, the constraint checked by the node is guaranteed
not to be violated. That is, if

∥∥E[�v(t)] − �vi(t)
∥∥ < Dglobal , then B(E[�v(t)], �vi(t)) is

fully contained in the distance sphere (see Figure 3) .
Therefore, the probability that a constraint violation will occur at a node is

less than the probability that the local statistics vector held by the node will
not be contained in the distance sphere. In other words:

Prviolation ≤ Pr[‖�vi(t) − E[�v(t)]‖ > Dglobal ].

Since E[�v(t)] = E[�vi(t)]:

Prviolation ≤ Pr[‖�vi(t) − E[�v(t)]‖ > Dglobal ]

= Pr[‖�vi(t) − E[�vi(t)]‖ > Dglobal ]

= Pr[‖�vi(t) − E[�vi(t)]‖2 > (Dglobal )
2].

Recall the Markov Inequality, which states that for a random variable Z,
that only takes nonnegative values:

Pr[Z > λ] ≤ E[Z ]

λ
.

Since ‖�vi(t) − E[�vi(t)]‖2 can be viewed as a random variable taking only
nonnegative values, then, according to the Markov Inequality:

Prviolation ≤ Pr[‖�vi(t) − E[�vi(t)]‖2 > (Dglobal )
2]

≤ E[‖�vi(t) − E[�vi(t)]‖2]

(Dglobal )2
.

Let us examine the term ‖�vi(t) − E[ �vi(t)]‖2. According to Equation (8):

‖�vi(t) − E[�vi(t)]‖2 =
∥∥∥∥∥

N∑
k=1

�vi,k

N
− E[�vi(t)]

∥∥∥∥∥
2

=
∥∥∥∥∥

N∑
k=1

( �vi,k − E[�v(t)]

N

)∥∥∥∥∥
2

=
d∑

j=1

(∑N
k=1(v( j )

i,k − E[X j ])

N

)2

.

Since v( j )
i,1 ,v( j )

i,2 , . . . , v( j )
i,N are drawn independently from the random variable

X j ,

E[‖�vi(t) − E[�vi(t)]‖2] = E

⎡
⎣ d∑

j=1

(∑N
k=1(v( j )

i,k − E[X j ])

N

)2
⎤
⎦
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= 1

N 2

d∑
i=1

N∑
j=1

E
[(

v( j )
i,k − E[X j ]

)2
]

=
∑d

i=1 V [X i]

N
.

Therefore:

Prviolation ≤ E[‖�vi(t) − E[�vi(t)]‖2]

(Dglobal )2

=
∑d

i=1 V [X i]

N · (Dglobal )2
.

If the components of the data vectors are bounded between 0 and 1—as
happens in the important case in which they represent probabilities of terms
to appear in a document—the Hoeffding bound can be used, to show that.

Prviolation ≤ exp

⎛
⎝−2

(
D2

global −
∑d

i=1 V [X i]

N

)2

/d

⎞
⎠.

Both bounds decrease quickly when Dglobal increases. This suggests that, for
data mining applications, features with a small information gain will not cause
many constraint violations at any node, since their Dglobal is large. This is prac-
tically important, since usually most of the candidate features have a rather
small information gain, and thus the proposed algorithm will considerably re-
duce communication. This is supported by the experimental results presented
in the next section.

9. EXPERIMENTAL RESULTS

We performed several experiments with the decentralized algorithm. We tested
the algorithm in a distributed feature selection setup. We used the Reuters
Corpus (RCV1-v2) [Rose et al. 2002] in order to generate a set of data streams.
RCV1-v2 consists of 804414 news stories, produced by Reuters between August
20, 1996, and August 19, 1997. Each news story, which we refer to as a docu-
ment, has been categorized according to its content, and identified by a unique
document id.

RCV1-v2 has been processed by Lewis et al. [2004]. Features were extracted
from the documents, and indexed. A total of 47,236 features were extracted.
Each document is represented as a vector of the features it contains. We re-
fer to these vectors as feature vectors. We simulated n streams by arranging
the feature vectors in ascending order (according to their document id), and
selecting feature vectors for the streams in a round robin fashion.

In the original corpus each document may be labeled as belonging to several
categories. The most frequent category documents are labeled with is CCAT
(the CORPORATE/INDUSTRIAL category). In the experiments our goal was
to select features that are most relevant to the CCAT category; therefore each
vector was labeled as positive if it is categorized as belonging to CCAT, and
negative otherwise.
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Information Gain vs. Document Index
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Fig. 4. Information gain for the features bosnia, ipo, and febru as it evolves over the streams.

The information gain for the feature bosnia displays a declining trend as the stream evolves. The

information gain for the feature ipo remains relatively steady, while the information gain for the

feature febru peaks about halfway through the stream.

Unless specified otherwise, each experiment was performed with 10 nodes,
where each node held a sliding window containing the last 6700 documents it
received. The goal in each experiment was to detect for each feature, at any
given time, whether its information gain was above or below a given threshold
value. At any given time, the information gain of a feature was based on the
documents contained at the time in the sliding windows of all the nodes.

The experiments were designed to explore several properties of the algo-
rithm. We were interested in determining how various parameters of the mon-
itoring task affect the performance of the algorithm. The parameters of the
monitoring task can be divided into characteristics of the monitoring task,
and tunable parameters. The characteristics of the monitoring task include
the number of streams to be monitored, and the desired threshold value. Tun-
able parameters include the size of the sliding window used by each node, and
the permitted error margin. In addition we were interested in examining the
behavior of the algorithm when used for simultaneously monitoring several
features.

In order to examine the effect of the various parameters on the performance
of the algorithm, we chose three features that display different characteristic
behavior. The chosen features were bosnia, ipo, and febru. Figure 4 depicts how
the information gain for each feature evolved over the streams. The informa-
tion gain for the feature bosnia displays a declining trend as the stream evolve.
The information gain for the feature ipo remained relatively steady, while
the information gain for the feature febru peaks about halfway through the
stream.

We started by examining the influence of the characteristics of the monitor-
ing task on the performance of the algorithm. Figure 5 shows the number of
broadcasts produced when using the decentralized algorithm to monitor each
one of the features for threshold values ranging from 0.00025 to 0.006. In ad-
dition the cost incurred by the naive algorithm is plotted, that is, the number
of messages required for collecting all the data to a central location. One can
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Broadcast Messages vs. Threshold
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Fig. 5. Number of broadcasts produced in order to monitor each feature as a function of the

threshold value. In addition, the cost incurred by monitoring a feature by a naive algorithm is

plotted. Even for adverse threshold values our algorithm performs significantly better than the

naive algorithm.

notice that, even for adverse threshold values, the algorithm incurs a signifi-
cantly lower communication cost than the cost incurred by the naive algorithm.

In order to check the effect the number of nodes has on the performance
of the algorithm, we performed the following experiment: the stream of docu-
ments was divided in advance into 100 substreams in a round-robin fashion.
Simulations were run with the number of nodes ranging from 10 to 100. In a
simulation consisting of n nodes, the first n substreams were used. This method-
ology ensured that the characteristics of the streams remained similar when
simulating different numbers of nodes. Each node held a sliding window of
670 items.

Obviously, increasing the number of nodes will increase the number of broad-
casts required in order to perform the monitoring task. Since the nodes in our
experiment received streams with similar characteristics, we expected that the
number of broadcasts would increase linearly.

Two sets of simulations were run, the first with a threshold value of 0.003,
and the second with a threshold value of 0.006. The results are plotted in
Figure 6. Both graphs show that the number of broadcasts increases linearly as
more nodes are added. Comparing the two graphs reveals that the number of
broadcasts increases more moderately when using a threshold value of 0.006.
This is due to the fact that as indicated in Figure 4, the average information
gain on the monitored features is closer to 0.003.

Next we performed two experiments in order to evaluate the effect of tunable
parameters on the performance of the algorithm. We performed the following
experiments on the three features: for each feature we chose the threshold
value that incurred the highest communication cost (0.0025 for bosnia, 0.003
for ipo, and 0.00125 for febru). We ran a set of simulations on each feature,
using error margin values ranging from 0 to 50% of the threshold value. Then
we ran an additional set of simulations for each feature, setting the size of
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Fig. 6. Number of messages produced in relation to the number of nodes. The number of messages

increases linearly as the number of nodes increases, indicating that the algorithm scales well.

Since the average information gain of all the features is closer to 0.003 than to 0.006, the number

of messages increases more moderately when using a threshold value of 0.006.

Fig. 7. The influence of tunable parameters on performance. Increasing the error margin is more

effective in reducing the communication load than increasing the window size. Using an error

margin as small as 5% significantly reduces the communication load.

the sliding window used by each node to values ranging from 6700 items to
13,400 items. The results of these experiments are plotted in Figure 7. The
results indicate that increasing the error margin is very effective in reducing
the communication load. Using an error margin as small as 5% significantly
reduces the communication load. Increasing the window size also reduces the
communications load. The effect of increasing the window size is most evident
for the feature ipo, which incurs the highest communication cost among the
three features. In general, increasing the window size has a greater effect the
closer the information gain of the feature is to the threshold value.

We performed a set of experiments using the coordinator based algorithm.
We ran the coordinator based algorithm on the features using threshold values
ranging from 0.00025 to 0.006. We ran three sets of experiments; in the first set
no error margin was used. In the second and third sets error margins of 10%
and 20% were used. When using no error margin, for certain threshold values
the communication cost incurred by the algorithm exceeded the cost incurred
by the naive algorithm, while for other threshold values, the algorithm reduced
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Messages vs. Threshold
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Messages vs. Threshold (10% Error Margin)
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Messages vs. Threshold (20% Error Margin)
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Fig. 8. Number of messages produced by the coordinator-based algorithm versus threshold value.

While the communication cost incurred by the algorithm can exceed the cost incurred by the naive

algorithm for certain threshold values, adding a 20% error margin renders the algorithm more

efficient for all threshold values.

the communication cost by up to an order of magnitude. Adding a 20% error
margin rendered the coordinator-based algorithm more efficient than the naive
algorithm for all threshold values. See Figure 8.

Finally, we checked the performance of the algorithm when simultaneously
monitoring multiple features using the decentralized algorithm. As the number
of features that are monitored simultaneously increases, the probability that
a constraint on one of the features will be violated when a new data item is
received increases as well. Furthermore, a constraint violation can cause a
cascading effect. A constraint violation for a feature at one of the nodes causes
all the nodes to calculate a new estimate vector for the feature. Since the value of
the estimate vector for the feature has changed, the constraint for the feature
may be violated at additional nodes, causing these nodes to broadcast. The
purpose of this experiment is to determine the number of simultaneous features
the algorithm can monitor while remaining efficient, that is, incurring a cost
that is lower than the cost incurred by the naive algorithm. The experiment
consisted of a series of simulations, using a threshold value of 0.001. In each
simulation a number of features were selected randomly. Simulations were
run with the number of features ranging from 1 to 5000. The results of this
experiment are plotted in Figure 9. In addition the cost incurred by the naive
algorithm is plotted.
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Broadcast Messages vs. Simultaneous Features
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Fig. 9. Number of messages in relation to the number of simultaneously monitored features. Our

algorithm remains efficient when simultaneously monitoring up to about 4500 features.
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Fig. 10. Number of messages versus threshold value when monitoring the χ2 statistic.

The results indicate the algorithm remains efficient when simultaneously
monitoring several thousands of features, but is inefficient when simultane-
ously monitoring more than about 4500 features.

An additional function that is commonly used for performing feature selec-
tion is the χ2 statistic. Like information gain, the χ2 statistic is a function of
the global contingency table:

Chi(C f ,X ) = N (c1,1c2,2 − c1,2c2,1)2

(c1,1 + c1,2)(c1,1 + c2,1)(c2,2 + c1,2)(c2,2 + c2,1)
,

where N is the total number of messages the global contingency table repre-
sents.

Figure 10 depicts the communication cost incurred by monitoring the χ2

statistic using the coordinator based algorithm.
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10. CONCLUSION

Monitoring streams over distributed systems is an important challenge that
has a wide range of applications. Scalability and efficiency of proposed solu-
tions strongly depend on the volume and frequency of communication oper-
ations. However, despite the amount of work that has been invested in this
direction, most of the efficient solutions found in the literature can only be ap-
plied to simple aggregations or to linear functions. Most probably the reason
is that when the function is nonlinear, effects seen in one—or only a few—of
the streams may often turn out to be misleading with regards to the global
picture.

In this work we proposed a solution through a general framework for moni-
toring arbitrary threshold functions over a system of distributed streams. The
evaluation of this approach using real-life data, applied to the information
gain function, reveals that it is highly effective in reducing communication
frequency.

Immediate future work will concentrate on developing methods to fine-tune
various parameters (window size, error margin, threshold) in order to find an
optimal tradeoff between communication load and accuracy. We also plan to try
and characterize families of functions for which the algorithm is more efficient.
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