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Abstract

The recently-proposed Geometric Monitoring (GM) method has provided a general tool for the distributed monitoring
of arbitrary non-linear queries over streaming data observed by a collection of remote sites, with numerous practical
applications. Unfortunately, GM-based techniques can suffer from serious scalability issues with increasing num-
bers of remote sites. In this paper, we propose novel techniques that effectively tackle the aforementioned scalability
problems by exploiting a carefully designed sample of the remote sites for efficient approximate query tracking. Our
novel sampling-based scheme utilizes a sample of cardinality proportional to

√
N (compared to N for the original

GM and its variants), where N is the number of sites in the network, to perform the monitoring process. Our exten-
sive experimental evaluation and comparative analysis over a variety of real-life data streams demonstrates that our
sampling-based techniques can significantly reduce the communication cost during distributed monitoring with con-
trollable, predefined accuracy guarantees. In that, we manage to scale the monitoring of any given non-linear function
on much higher network scales which had not been reached by any GM related method or variant so far.

Keywords: distributed function tracking, data streams, sampling

1. Introduction

Efficient data stream processing algorithms have become an integral part of real-time monitoring applications,
from network traffic monitoring to financial or stock data analysis and sensor data querying. Streaming tuples are
rapidly produced in a number of geographically dispersed sites (routers, ATMs, sensor nodes etc) and are continuously
processed online to provide continuous up-to-date query answers destined to support decision making procedures such
as DDoS attacks, fraudulent transactions, market trend predictions, and tsunami wave detection, in a timely manner. In
such distributed settings, it is imperative to design efficient algorithms that reduce the communication burden during
the continuous monitoring process [1, 2], since either the available bandwidth is limited, or data transmission is a
crucial factor that reduces network lifetime (e.g., for battery-powered sensor nodes [3]).

The problem of efficiently tracking the value of a function (often compared to some predefined threshold) over the
union of local streams in a large-scale distributed system, lies at the core of several recent research efforts [4, 5, 2, 6,
7, 8]. Monitoring tasks may involve functions that are simple linear aggregates, such as checking whether the sum of
a distributed set of variables exceeds a predetermined threshold [9, 8], thresholded counts of items [10] or frequently
occurring items in a set of distributed streams [11]. More complicated function monitoring may involve holistic
aggregates [4, 8], self-join as well as stream-join operations [6, 12], or general, non-linear function tracking [5].

The original work of [5] is the first to propose a generic, Geometric Monitoring (GM) method for monitoring
any non-linear function f over the global average of vectors maintained at the distributed sites, with respect to some
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Figure 1: Illustration of GM at a given time point t. The monitored convex hull is depicted in gray, while the position of e and
the current v(t) are shown as well. Black spheres refer to the local constraints constructed by sites. Since none of them crosses the
threshold surface, no synchronization is needed.

threshold T , i.e., monitoring whether f (·) ≶ T . The GM method is a very powerful technique that has already
been exploited in a wide range of applications, including: (i) outlier detection in sensor networks [13], where the
monitored function is any of the Lp norms, cosine similarity, extended Jaccard coefficient, or correlation coefficient;
(ii) tracking range, norm-aggregate and join-aggregate queries [12, 14] over distributed data streams; (iii) monitoring
fragmented skyline queries [15]; (iv) detecting machines that are about to become faulty in data centers [16]; and, (v)
distributed online prediction [17] by dynamically monitoring the accuracy of distributed local models. In a nutshell,
the GM method can offer a general solution to any non-linear function tracking task expressed over a combination
(sum, average, convex combination) of vector data collected by distributed data sources, in which continuous data
communication to a central site is not feasible, due to either bandwidth or energy constraints.

In this work, we demonstrate that, despite the generic nature of the GM method as a distributed tracking scheme,
GM together with its recently extended versions [18, 19, 14] face significant scalability issues as the number of remote
sites increases. We then develop scalable approximate monitoring techniques for general, non-linear function tracking
with tunable accuracy guarantees. We start by presenting the GM method and the problems it faces when the number
of sites increases.

1.1. Geometric Monitoring Basics

As in previous works [4, 5, 20, 6, 21], we assume a distributed, two-tiered setting, where data arrives continuously
at N geographically dispersed sites. At the top tier, a central coordinator exists that is capable of communicating with
every site, while pairwise site communication is only allowed via the coordinator. Each site Si, i ∈ [1..N] participating
at the bottom tier periodically receives updates on its local stream and maintains a d-dimensional local measurements
vector vi(t), capturing the current state of its local stream. The global measurements vector (i.e., stream) v(t) at any

given timestamp t, is defined as the average of the vi(t) vectors, v(t) = ∑
N
i=1 vi(t)

N . The coordinator aims to continuously
monitor whether the value of a function f (v(t)), parameterized by the global average v(t), lies above/below a given
threshold T . We term the part of the input domain where f (v(t)) = T as the threshold surface and, for simplicity, we
henceforth use T to refer to either the threshold surface or the function value on the threshold surface.

Assume that at a previous time instant ts, the coordinator has collected the local vi(ts) vectors. Using e(ts) to

distinguish the global average v(ts) at ts, the coordinator computes e(ts) =
∑

N
i=1 vi(ts)

N at that time, subsequently broad-
casting e(ts) to the sites in the bottom tier. The previous process is referred to as a synchronization step. Note that,
until the next synchronization, the coordinator’s view of the global vector is fixed at e(t) = e(ts). Following [5], upon
receiving e(t), sites keep receiving updates of their local streams and accordingly maintain their vi(t) vectors. At
any given timestamp, each site Si individually computes a deviation vector ∆vi(t) = vi(t)− vi(ts), which depicts the
change that the local vector has undergone since ts. By adding the deviation vector to e(t), sites compute their drift

vectors as e(t)+∆vi(t). Since v(t) =

N
∑

i=1
vi(t)

N = e(t)+

N
∑

i=1
(vi(t)−vi(ts))

N =

N
∑

i=1
(e(t)+∆vi(t))

N , v(t) is a convex combination of
the drift vectors.
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Consequently, v(t) will always lie in the convex hull formed by the ∆vi(t) vectors translated by e(t), as depicted
in Figure 1 for d = 2, N = 5: v(t) ∈ Conv (e(t)+∆v1(t), . . . , e(t)+∆vN(t)). If the convex hull does not intersect
the inadmissible part of the input domain (on the right of Figure 1), where the monitored inequality is reversed (from
f (v(t)) > T to f (v(t)) < T or vice versa), it is assured that v(t) cannot lie in that part either. Hence, our monitoring
problem is transformed to the question of how to decide in a distributed manner whether the convex hull intersects the
threshold surface.

It has been proven [5] that if the sites locally construct hyperspheres B(e(t) + 1
2 ∆vi(t), 1

2‖∆vi(t)‖), centered at
e(t)+ 1

2 ∆vi(t) with radius 1
2‖∆vi(t)‖, then:

Conv(e(t)+∆v1(t), . . . ,e(t)+∆vN(t))⊂
N⋃

i=1

B(e(t)+
1
2

∆vi(t),
1
2
‖∆vi(t)‖)

That is, the union of these hyperspheres is always guaranteed to cover the convex hull of the translated local drifts
(this holds for vectors of any dimension). Thus, having constructed B(e(t)+ 1

2 ∆vi(t), 1
2‖∆vi(t)‖), each site individually

checks for an intersection of its local sphere with the threshold surface. In case the intersection is non-empty in at least
one Si, a local violation occurs at Si, indicating that the convex hull and, thus, v(t) may have crossed the threshold
surface. Hence, a synchronization takes place where the coordinator collects the vi(t) vectors and assesses whether
f (v(t)) truly switched sides (≶) with T . It then computes the new e(t) and communicates it back to the sites. From
this point forward, the tracking process can proceed as described above. If no local violation occurs (as in the example
of Figure 1), then no communication is necessary.

Communication savings are achieved by postponing a synchronization until some site’s local sphere intersects the
threshold surface. Note that the convex hull or its superset, the union of local spheres, may cross the threshold surface,
while the actual position of v(t) may not be in the intersection. As a result, the framework may cause synchronizations
when f (v(t)) has not crossed the threshold, termed False Positives (FPs).

Example 1. Consider a news monitoring scenario as the ones used in [5, 21, 18, 19]. The focus of the tracking
process is to monitor the coherence of a specific term with a given document category within a predefined window
of w observations per site. Individual sites receive news stories tagged as belonging to a particular category and
also mark those stories including the term of interest. The Mutual Information (MI) [22] function is used to measure
the relevance of a specific (term, category) pair. In our running example, we initially assume a setup composed of
N = 5 sites and we are interested in monitoring (the threshold is used to facilitate - keep less dependent on N - the
illustrations)

`og(
v1(t) ·w ·N

(v1(t)+ v3(t)) · (v1(t)+ v2(t))
)> `og(N)+0.01

using w = 20, i.e. each site considers the w = 20 most recent <term,category> pairs it received and globally 100
observations are included in the computation. The global vector v(t) = [v1(t),v2(t),v3(t)] is an average vector over
all sites and is composed of d = 3 dimensions as shown in the formula: the first dimension v1(t) is the average of
local counts v1

i (t)s (i.e., v1(t) at site Si) of the number of <term,category> co-occurrences, v2(t) averages the local
counts v2

i (t)s of news stories including the term without being tagged by the tracked category and v3(t) averages the
local counts v3

i (t)s of news stories including the category occurrences without the tracked term.
Assume a site Si receives an update of the form [1,1,1] (term, category co-occurrence), immediately after the

last synchronization. Further assume that the oldest update in the window that is removed upon the new arrival is
[0,0,0]. Then, ∆vi = [1,1,1] and ‖∆vi‖ =

√
3. Now, a second update [0,1,0] (the tracked termed occurred without

the category) is received at Si, while the oldest, expired update is now [0,0,1]. Then ∆vi = [1,2,0] and ‖∆vi‖=
√

5.
Figure 6(a)1 shows the threshold surface corresponding to T = `og(N) + 0.01 for our running example and

instantiates a convex hull along with the inscribed hyperspheres. All details about the participating site vectors are
included in the caption of the figure.

1All illustrations in Figure 6 were created using the Mathematica Software: Wolfram Research, Inc., Mathematica, Version 10.0, Champaign,
IL (2014).
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(a) (b) (c)
Conv(e+∆v1, . . . ,e+∆v5) Conv(e+∆v1, . . . ,e+∆v10) Conv(e+∆v1, . . . ,e+∆v100)

Figure 2: The effect of network scale on the monitored area (d = 3). All ∆vi vectors are randomly chosen from the unit cube, the
front view of which is the box included in each figure. As the network scale increases, the length of more ∆vi vectors increases.
Inevitably, the volume of the convex hull that needs to be monitored increases, resulting in more FP alerts.

1.2. Existing Scalability Issues

We now explain why the GM framework may result in increased communication in either highly distributed
networks, or in cases where the monitored function is parameterized with the sum (as opposed to the average) of the
local measurements vectors.
High N values ⇒ proneness to FP synchronizations. As already described, the set that GM tracks is the convex
hull Conv(e(t)+∆v1(t), . . . , e(t)+∆vN(t)). It is not difficult to see that the more sites participate in the distributed
monitoring process (and, thus, contribute their e(t)+∆vi(t) in the formation of this convex hull), the larger the tracked
region will be. Moreover, the hyperspheres maintained by each site in order to include the expanded convex hull will
cover an even larger, compared to the expanded convex hull, area of the input domain because Conv(e(t)+∆v1(t),

. . . , e(t)+∆vN(t)) is a subset of
N⋃

i=1
B(e(t)+ 1

2 ∆vi(t), 1
2‖∆vi(t)‖).

This raises the potential for a larger number of FP synchronization decisions as the number of sites increases. In
Figure 1, sites S1, S2 require a simple triangular area to be monitored, which is continuously expanded as S3− S5
contribute vectors and inscribe respective spheres. In higher dimensions this trend is even more evident as more site
vectors append convex polytopes and facets to the overall convex hull. For instance, Figure 2 schematically exhibits
the effect of progressively increasing the network scale from N = 5 sites to N = 10 and N = 100 in a 3-d space by
randomly picking additional ∆vis from the unit cube. Larger values of N yield a convex hull that tends to cover the
entire unit cube (boxed area in Fig. 2).

We stress that the cost of an FP synchronization is equivalent to N + 1 messages, assuming the coordinator is
equipped with broadcast capabilities, or 2N otherwise, and that all sites are required to participate in this process.
This not only increases the total communication cost per FP as the number of sites N increases, but also increases the
cost per site, since a site transmits messages each time at least one network site exhibits a local violation.
The challenge of monitoring sum-parameterized functions. The scalability issues that arise in case of monitoring

sum-parameterized functions, i.e., f (vsum(t)) ≶ T , with vsum(t) = N · v(t) =
N
∑

i=1
vi(t), are much more pronounced

compared to the average case f (v(t)). As we show in our detailed study (Section 7), this is because, apart from
having more sites contributing vectors to form the convex hull (as happens with average input), sum-parameterization
requires all site drift vectors to be scaled proportionally to N. Hence, the size of the tracked convex hull and of the
covering hyperspheres increases with the network scale, which makes it much more prone to false positives.

1.3. Contributions

Our contributions can be summarized as follows:
• As in our analysis above, we point out the limitations of the GM approach in highly distributed environments, that
result in excessive false positive data centralization decisions and prohibitive communication cost.
• Having identified the degree of distribution (N) as a key limitation of GM based techniques, we introduce an algo-
rithmic framework that exploits a small sample (proportional to only O(

√
N)) of the sites to perform the monitoring

process, and we formally study the properties of our sampling-based geometric scheme, as well as how it addresses
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the scalability issues of GM. In a nutshell, our scalable approximate monitoring algorithm exploits Horvitz-Thompson
sampling estimators [23, 24] over a carefully built sample of the sites in order to construct controllable-error ap-
proximations of the average vector; furthermore, it employs multidimensional tail-probability bounds and thorough
geometric analysis to control the effect of these approximations on the accuracy of GM. Our approach can consid-
erably decrease the amount of false positive data centralizations and the communication burden on the network at
the cost of potentially causing a few, controllable False Negatives (FNs), i.e., missing a true threshold crossing of
the monitored function. As we theoretically prove and practically demonstrate, such missed threshold violations are
quickly corrected (by appropriate detection) in the immediate aftermath, and their rate can be tuned, thus being ac-
ceptable in monitoring applications both in broader classes of data stream monitoring algorithms [25, 26, 4, 2, 6, 20]
and GM related applications [13, 12, 14, 15, 16, 17].
• We exhibit the applicability of our sampling-based techniques on the latest advancements regarding GM-based
monitoring, the convex safe zone concept introduced in [14, 27], which still faces scalability issues. However, our
contributions advance beyond that:

• We present a novel lemma, tailored for the convex safe zone concept, enabling an exact mapping of the monitor-
ing task from a multidimensional input domain of arbitrary dimension to a unidimensional one. Our mapping
can practically reduce the size of communicated data during a false positive centralization proportionally to the
dimensionality of the initial monitored space.

• To achieve scalability while exploiting and retaining the advantages of our unidimensional mapping, we revisit
our sampling-based GM scheme, in the unidimensional setting. The revised (1−d) version of our scheme,
tailored for the convex safe zone concepts, enables additional optimizations as it reduces the approximation
error of the monitored quantity and can both in expectation and also in practice (Section 6.6) achieve to even
further reduce the number of false (FP,FN) decisions throughout the tracking process.

•We present a thorough experimental study using two real datasets, a variety of different functions, threshold values
and network sizes that no previous GM variant has reached. Our performance comparisons are against not only
the vanilla GM approach [5], but also against approaches orthogonal to ours, including the balancing optimization
proposed in [5], the recently proposed prediction-based GM [18, 19] and the convex safe zone ideas of [14, 27]. In
highly distributed environments our algorithms can ensure, in most cases, one and up to two orders of magnitude
fewer transmitted messages compared to the rest of the candidate algorithms, while also significantly reducing the per
site communication cost, even without exploiting any of these methods’ orthogonal optimizations within our proposed
schemes.
• We provide a thorough, comprehensive study on sum- (instead of average- commonly handled by GM) parame-
terized function monitoring which has not been explicitly discussed in GM related works. We describe alternative
methods for handling such functions and discuss their effect from the scalable monitoring perspective.

Table 1 summarizes the main notations used in this paper.

2. Scalable Query Tracking

Having shown that a high degree of distribution N renders GM inefficient, we design a sampling-based frame-
work that overcomes scalability issues. In Section 2.1 we formally present a set of requirements that any candidate
sampling-based scheme for GM monitoring should abide by, to both provide communication efficiency and com-
pliance with application-defined accuracy requirements. In Section 2.2, we detail our generic sampling-based GM
scheme.

The intuition behind our approach is that, instead of monitoring the entire convex hull formed by the N sites as
GM does (Sections 1.1 and 1.2), we choose to track a narrower convex hull composed of a carefully-crafted random
sample of sites. The latter sample of sites constructs a subset of Conv({e(t)+∆vi} : ∀Si ∈ {S1, . . . ,SN}) reducing the
tracked space and warding off FP synchronizations.

2.1. Efficiency and Accuracy Requirements
In addition to choosing fewer sites to reduce the monitored region, our sampling-based geometric scheme should

have the potential to guarantee improved communication efficiency at time t by ensuring that, if sampling-based
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Table 1: Frequently Used Symbols

Symbol Description

N The number of sites of the bottom tier

M The number of sampling trials per update cycle

Kµ (t),K(t) Kµ (t): Sample of sites participating in the µ-th sampling trial at time t,
K(t)≡ K1(t), 1≤ µ ≤M

‖y‖ L2 norm of vector y

d Dimensionality of the input domain

Si The i-th site, Si ∈ {S1, . . . ,SN}
ts Time-point of the last synchronization

vi(t) Local measurements vector at Si at time t

∆vi(t) Deviation vector at Si at time t (= vi(t)− vi(ts))

v(t), v̂(t) Global average & its statistic estimator using M = 1 at time t

v̂µ (t) Estimator of v(t) provided by the µ-th sampling trial at time t, v̂(t) = v̂1(t)

e(t) = e(ts) = v(ts) Global average vector at ts, unchanged at time t unless a synchronization occurs.

B(c,ρ) Hypersphere centered at c with radius equal to ρ

(ε,δ ) Approximation parameters denoting that v̂(t) lies within ε distance from v(t)
with probability at least 1−δ

gi(t) Sampling function 0≤ gi ≤ 1 for site Si at time t

εT Minimum distance of e(t) from threshold surface

dC(y) Signed distance of vector y from convex subset C of the admissible region

monitoring is applied instead of the basic GM method at a given timestamp, its inscribed local constraints are fully

contained within the local constraints of the original GM
N⋃

i=1
B(e(t)+ 1

2 ∆vi(t), 1
2‖∆vi(t)‖) (Section 1.1). This guaran-

tees that, at time t, the region tracked by the sampled sites does not cross the threshold surface before the union of
balls of the conventional GM does and, thus, additional FP synchronizations cannot be caused.

Requirement 1. [Efficiency] The area of the input domain monitored by applying a candidate sampling-based track-

ing scheme at a given time point should be included in
N⋃

i=1
B(e(t)+ 1

2 ∆vi(t), 1
2‖∆vi(t)‖).

Since the monitoring process utilizes a small sample (subset) of the sites available in the network, it will be
approximate in nature. At any given time t, our sampling-based geometric techniques monitor an unbiased (i.e.,
E(v̂(t)) = v(t)) estimation v̂(t) of the true global average v(t) originating from only a sample K(t) ⊆ {S1, . . .SN} of
sites’ local vectors. We wish to keep the estimation error controllable and tunable based on a priori defined accuracy
requirements. To control the approximation error, we employ an (ε,δ ) approximation scheme. More precisely, for a
priori given 0 < δ ≤ 1, ε > 0 we shall require v ∈ B(v̂(t),ε) with high probability, at least 1−δ .

Requirement 2. [Approximation Quality] At any given time, the estimation v̂(t) monitored by the sampled sites
should not exceed an ε− distance from the true v(t), with high probability 1− δ ; that is, for application defined
0 < δ ≤ 1, ε > 0: P(v(t) < B(v̂(t),ε))≤ δ .

Due to the fact that v(t) is monitored in an approximate manner, tuned according to (ε,δ ), it is possible that a
synchronization is prevented while v(t) truly switched side with respect to the threshold surface. Our sampling-based
scheme should enable applications to explicitly tune the probability PFN of such False Negative (FN) events. This
requires an additional (application-defined) input parameter apart from (ε,δ ).

Nonetheless, specifying a triplet of parameters, two of which refer to the input domain rather than the function
value, should be carefully considered from an application’s viewpoint. Application accuracy requirements should be
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expressed in a simple way that abstracts the actual details of the input domain of the tracking process. While it is more
natural for the end user to directly specify PFN , for ease of presentation we assume that the parameter specified is the
δ parameter of Requirement 2. We demonstrate in Section 3 that PFN is directly linked to δ . Then, our scheme can
accordingly tune not only the probability of a FN, i.e., PFN , but also the approximation quality in the (ε,δ ) scheme.
To do so, ε should be expressed as a function of δ , i.e., ε = ε(δ ).

Requirement 3. [Tunable Accuracy] At any given time, the proposed sampling-based monitoring algorithm should
possess the ability to receive a single tolerance value 0 < δ ≤ 1 and self-tune its Approximation Quality i.e., (ε,δ )
and FN rate i.e., PFN .

Hence, we assume that the application expresses its monitoring needs in the form: f (v(t))≷ T , δ : 0 < δ ≤ 1. We
then proceed in describing the generic operation of our sampling-based framework.

2.2. Our Generic Sampling-Based Scheme

We now present our sampling-based GM algorithm and demonstrate how it satisfies Requirements 1-3. A key
idea in our scheme is to independently sample each site Si with a different probability gi(t) that depends on various
factors. Our discussion in this section assumes that these sampling probabilities gi(t) have been determined, deferring
the analysis of the gi(t) computation to Section 3.

Algorithmic Sketch. Our proposed framework divides its operation into three phases, namely (a) initialization, (b)
monitoring (or tracking) and (c) synchronization phases. The initialization phase is executed only once upon the
reception of the function tracking query. The tracking phase and (if necessary) synchronization phases of the generic
sampling-based algorithm we describe below are executed in regular data update cycles in the network.

These update cycles may correspond to slides of sliding windows declared by the application queries as is common
in streaming applications [28, 29], may involve epochs in sensor network settings [3] or may be defined based on a
global Poisson parameter expressing the data arrival rate across the network i.e., such that our algorithm is executed
when a data tuple has arrived in at least one Si. These update models also account for the application (experimental)
results that have been presented in all works related to the GM approach [5, 21, 18, 19, 14, 27, 13]. Hence, the
temporal reference t expresses the current execution of the monitoring and (if necessary) the synchronization phase,
after an update cycle. Formally:

• Initialization Phase: This is a first, full synchronization phase (see below) that is triggered upon the reception of
the application query, rather than being caused by some local violations. In the end of this phase, ts,vi(ts),e(t) have
been appropriately set across the network.

• Monitoring (or Tracking) Phase: In this phase, initially each Si receives updates of its local vector vi(t) (after a
window slide, epoch expiration or data arrival rate-based time interval) and computes ∆vi(t) = vi(t)− vi(ts). At
the beginning of each monitoring phase, the sample of sites participating in the tracking process is empty, i.e.,
K(t) = /0 (for all M trials mentioned below). Then, in order to determine if Si ∈ K(t), each site independently flips
a biased coin with success probability of gi(t), where gi(t) ∈ [0,1] is a sampling function independently computed
by each site. In practice this corresponds to having each Si generate a random number ρi(t) and check whether
ρi(t) ≤ gi(t) (in which case Si ∈ K(t)) or not (so that Si < K(t)). In our scheme Si constructs a local constraint
B(e(t)+ 1

2 ∆vi(t), 1
2‖∆vi(t)‖) only if it finds itself included in the sample K(t) of sites participating in the monitoring

process, i.e., Si ∈ K(t), and this sphere is checked for threshold crossing. In case at least one Si ∈ K(t) detects a
threshold crossing of its local constraint (hypersphere), it calls for a synchronization. This process may be repeated
1 ≤ M ≤

⌈
`og(0.01)

`og( `n(1/δ )√
N

+ 1
N )

⌉
times (independent trials where ρi1(t), . . . ,ρiM(t) random numbers are checked against

gi(t)), independently at each site Si ∈ {S1, . . . ,SN}.
Remarkably, the gi(t) we propose in Section 3 takes into account ‖∆vi(t) = vi(t)− vi(ts)‖ as built since the last
synchronization at ts. Therefore, even if Si receives no update at the current execution of the monitoring phase
(thus vi(t) lately remains steady, but can still deviate from vi(ts)), it still has a chance (proportional to ‖∆vi(t)‖ in
Section 3) to enter K(t).
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• Synchronization (Partial or Full) Phase: Apart from performing the monitoring only with the sampled sites, our
technique may prevent the cost of a full synchronization by applying a partial one, using K(t).

– Partial Synchronization: the coordinator initially broadcasts a message requiring only the sampled sites of
one, say the first, out of M trials to contribute their ∆vi(t) vectors. Using these vectors, it derives an unbiased
estimate v̂(t) (using Estimator 1 discussed shortly) of v(t) and checks (Requirement 2) whether B(v̂(t),ε)
crosses T . If it does not, the tracking continues unaffected and a full synchronization is prevented. Otherwise,
a full synchronization follows.

– Full Synchronization: also sites that did not include themselves in the first sampling trial contribute their local
vectors, for a new e(t) to be computed. The coordinator sets ts = t, computes e(t) = e(ts) and broadcasts
e(t) to the sites. Upon receiving e(t), sites set ts = t, vi(ts) = vi(t). Thus, e(t) constitutes the last known
global average data vector and ts,vi(ts) have been appropriately set across the network. ts,vi(ts),e(t) remain
unchanged until another full synchronization takes place.

According to our above description, if B(v̂(t),ε) does not cross T , only a partial synchronization is performed.
This is because the coordinator deduces that the local violation at some sites caused an FP alarm with high probability
(1− δ ) (Requirement 2). On the contrary, if B(v̂(t),ε) crosses T , a full synchronization is required because the
coordinator believes (again based on Requirement 2) that a true threshold violation may have taken place and probes
the rest of the sites so as to compute the exact value of e(t). The latter is required to avoid an additive error in the
approximation of v̂(t) (see Estimator 1) as the tracking process continues.

We now provide the details of our monitoring scheme, explain our design choices and discuss the accuracy guar-
antees of our technique. In each of these steps, we examine the satisfiability of Requirements 1-3 in conjunction with
our algorithmic sketch. For ease of exposition, we start our discussion with Requirement 2. For the same reason, we
henceforth omit the temporal reference t as we refer to theoretic details of a single instance of the monitoring and
(if necessary) synchronization phases. We also elaborate on how our tunable accuracy guarantees evolve over time
separately in Section 3.

Monitored Estimator and Approximation Quality Requirement. Let us assume that each Si performs a single
sampling trial for now (i.e., M = 1, practically we show M = 2 to 4), first because during a partial synchronization
the coordinator asks only for the vectors sampled in the first trial and second because the utility of more trials will be
introduced and discussed later on. Consider a multivariate random variable ∆′vi =

∆vi
gi

with probability gi, and zero
otherwise. Notice that the expected value E[∆′vi] is a d−dimensional vector and E[∆′vi] = [E[∆′v1

i ], · · · , E[∆′vd
i ]],

where ∆′v j
i denotes the j-th component (dimension) of the vector ∆′vi. We demonstrate in Lemma 1 that, based on the

drift vectors e+ ∆vi
gi

of the set K (of one out of M trials), an unbiased estimate v̂ of the global average v can be derived
at any given time stamp t utilizing a Horvitz-Thompson Estimator [23, 24]:

v̂ = e+
∑

N
i=1 ∆′vi

N
= e+

∑
Si∈K

∆vi
gi

N
(1)

Note that the global average is v = e+∆v, with ∆v =
N
∑

i=1
∆vi/N. Hence, Estimator 1 estimates ∆v as ∆̂v = ∑

Si∈K

∆vi
gi
/N.

The estimator weighs each sampled site with 1/gi. The reason for this is fairly intuitive: if site Si, which is sampled
with probability gi, individually appears in the sample, then, on average, we expect to have 1/gi sites with similar
probabilities in the full population (since gi ·1/gi =1); thus, the single occurrence of Si in the sample is essentially a
”representative” of 1/gi sites in the full population [30, 24].

Lemma 1. For Estimator 1 the following hold:
(a) Estimator 1 is an unbiased estimator of v, i.e., E[v̂] = v, when sampling ∀Si ∈ {S1, . . . , SN} with 0≤ gi ≤ 1.
(b) E[v̂] ∈Conv( e+∆v1, . . . , e+∆vN)

(c) v̂ ∈Conv({e+ ∆vi
gi
} : ∀Si ∈ K)

Proof. In Appendix.
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Since Estimator 1 is unbiased, we can utilize tail inequalities [26] to satisfy Requirement 2. Note that we do
not assume independence of individual dimensions of either local, or global vectors that we examine. Nonetheless,
according to our algorithmic sketch, Si’s independently decide to include themselves in K or not, based on gi. The
Vector Bernstein’s Inequality [31] (presented below) will be particularly useful in our subsequent analysis.

Vector Bernstein’s Inequality [31]. Let y1, . . . ,yN be independent random vectors with E[yi] = 0. Let B > 0 denote an
upper bound on ‖yi‖ (i.e., ‖yi‖ ≤ B), and let σ2 ≥ ∑

N
i=1 E[‖yi‖2]. Then, for all 0 < δ ≤ 1 and 0 ≤ ε ≤ σ2/B such

that2 ε = (1+
√

`n(1/δ )) ·σ :

P(‖
N

∑
i=1

yi‖ ≥ ε)≤ δ (2)

The inequality states that if we add N random vectors of bounded length whose expectation is the zero vector, their
sum will produce a vector placed near (no farther than ε) to zero with probability at least 1− δ . The proximity (ε)
of the vector sum to zero depends on an upper bound σ on the overall standard deviation3 and the chosen probability
bound δ . Note that the above bound does not depend on the dimensionality d of the vectors. In our case, each yi

corresponds to ∆′vi−∆vi
N . Moreover, B ≥ {‖∆vi

N ‖, ‖
∆vi
gi·N −

∆vi
N ‖} ∀Si ∈ {S1, . . . ,SN} depending on whether Si ∈ K, or

not. Additionally, simple calculations show that σ2 ≥ ∑
N
i=1 E[‖yi‖2], as required by the Vector Bernstein’s Inequality,

yields σ2 ≥ ∑
N
i=1
‖∆vi‖2
N2·gi

−∑
N
i=1
‖∆vi‖2

N2 .
Using Inequality 2 we partially satisfy Requirement 2, since we have not yet discussed how B, σ and, thus, ε can

be a-priori set. In Section 3 we will choose a sampling function providing an ε that is upper bounded by a constant
value known to each Si before a monitoring phase begins. Based on this, we can fully satisfy Requirement 2.

Monitoring Scheme and Efficiency Requirement. Based on Lemma 1, sampled sites need to monitor Conv({e+
∆vi
gi
} : ∀Si ∈ K) where (i) the estimation v̂ of v lies, as Lemma 1(c) shows, and (ii) where the true global average v is

expected to lie since E[v̂] = v. In order to track Conv({e+ ∆vi
gi
} : ∀Si ∈ K) according to the existing GM framework,

each Si ∈ K would need to construct local hyperspheres of the form B(e+ 1
2

∆vi
gi
, 1

2‖
∆vi
gi
‖), with the union of these local

hyperspheres covering the convex hull that encompasses v̂. However, these hyperspheres are larger (by a factor of
1/gi) than the ones mentioned in our algorithmic sketch. Let us now examine the reason for this important difference.

Compared to the basic GM method (Section 1.1), the above scheme omits hyperspheres of sites that do not get
sampled, thus reducing the monitored area. On the other hand, since gi ≤ 1, the hyperspheres B(e+ 1

2
∆vi
gi
, 1

2‖
∆vi
gi
‖)

have larger radii than the B(e+ 1
2 ∆vi,

1
2‖∆vi‖) used in the basic GM algorithm, and the centers of the spheres are also

different. As an example, Figure 4(a) depicts the area that needs to be monitored, which corresponds to the balls of
sites S2 and S3 covering the shaded part of Figure 4(a), according to Lemma 1. Hence, such a scheme may on one
hand reduce FP decisions due to the fact that it uses fewer ∆vi vectors in its convex hull, but on the other hand it may
also cause more FP synchronizations because it constructs larger spherical constraints centered at different positions
as shown in Figure 4(a). In other words, it may perform better than GM, but this is in no way guaranteed. Obviously,
this violates Requirement 1. The following lemma demonstrates how and why our sampling-based monitoring abides
by Requirement 1 by using a bounded, controllable number M of sampling trials.

In a nutshell, in accordance with our algorithmic sketch, each site Si ∈ {S1, . . . ,SN} performs M, instead of one,
independent sampling attempts using its own sampling function gi. gi is a fixed number < 1 for Si during a single
execution of the monitoring phase we examine here. Each such attempt produces a sample Kµ , 1 ≤ µ ≤M which in
turn gives an instance of Estimator 1, i.e., v̂µ ∈ {v̂ = v̂1, . . . , v̂M}. The following lemma progressively shows that, if we
choose gis so that the expected sample size of each trial is properly upper bounded, almost surely (0.99 probability),
at least one v̂µ ∈ {v̂1, . . . , v̂M} will be included in the balls of the corresponding sample Kµ without needing to scale
these balls by 1/gi. Please refer to Table 1 for a summary of the utilized notation.

Lemma 2. (a) For a single sampling trial with sample of cardinality |K|:
v̂ ∈Conv({e+ |K|

N·gi
∆vi} : ∀Si ∈ K)⇒ v̂ ∈

⋃
Si∈K

B(e+ |K|
N·gi

∆vi
2 , |K|N·gi

‖∆vi
2 ‖)⇒∃Si ∈ K : v̂ ∈ B(e+ |K|

N·gi

∆vi
2 , |K|N·gi

‖∆vi
2 ‖)

2The inequality yields slightly higher ε for practical δ values we consider in this work, but we set ε as above for simplicity and ease of
exposition.

3Note that σ2 ≥ ∑
N
i=1 E[‖yi‖2] ≥ ∑

N
i=1 E[‖yi‖2]− (E[‖yi‖])2 = ∑

N
i=1 Var[‖yi‖], therefore σ2 bounds the sum of individual length variances.
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(b) On expectation |K|
N·gi
≤ 1+ 1

N ≈ 1, ∀Si ∈ K.

(c) Assume each site Si ∈ {S1, . . . ,SN} performs 1 ≤M ≤
⌈

`og(0.01)

`og( `n(1/δ )√
N

+ 1
N )

⌉
independent (among sites and among tri-

als) sampling trials, using its own sampling function gi. Further assume that gis are chosen so that in each trial the

expected sample size is bounded by `n(1/δ )
√

N, i.e., E[|Kµ |] =
N
∑

i=1
gi ≤ `n(1/δ )

√
N, ∀µ ∈ [1,M]. Then, with 0.99

probability, there will be at least one trial that includes a version v̂µ of Estimator 1 in the GM-spheres (i.e, not scaled
by 1/gi) of Sis ∈ Kµ :

P

@v̂µ ∈ {v̂1, . . . , v̂M} : v̂µ ∈
⋃

Si∈Kµ

B(e+
∆vi

2
,‖∆vi

2
‖)

≤ 0.01

Proof. In Appendix.

Lemma 2(a) essentially states that examining B(e+ 1
2

∆vi
gi
, 1

2‖
∆vi
gi
‖) is redundant since in fact we need to examine

balls of N/|K| smaller radius, which is a considerable quantity for |K| � N. The issue that arises is that since
each site samples itself independently, we do not know |K| during the monitoring unless sampled sites communicate
with each other via the coordinating source. This is obviously something we must avoid. What we know according
to Lemma 2(b) is that we probably do not need the sampled sites to consult local constraints larger than B(e +
1
2 ∆vi,

1
2‖∆vi‖) because, in highly distributed settings, on expectation |K|

N·gi
≤ 1+ 1

N ≈ 1, ∀Si ∈ K and thus we expect

B(e+ |K|
N·gi

∆vi
2 , |K|N·gi

‖∆vi
2 ‖) ⊆ B(e+ 1

2 ∆vi,
1
2‖∆vi‖), ∀Si ∈ K.

The next question is what if we are not in the expected case. Note that in principle, we do not require B(e+
|K|

N·gi

∆vi
2 , |K|N·gi

‖∆vi
2 ‖) ⊆ B(e+ 1

2 ∆vi,
1
2‖∆vi‖), for all the sampled sites to achieve monitoring the position of v̂. It suffices

for the site (at least one, but there may be more) for which v̂ ∈ B(e+ |K|
N·gi

∆vi
2 , |K|N·gi

‖∆vi
2 ‖) to actually have a coefficient

|K|
N·gi
≤ 1.

Let us examine the statement of Lemma 2(c). If each site in the network attempts M, instead of one, sampling
trials using its sampling function gi (whatever it is), then M not necessarily disjoint samples K1, . . . ,KM will be drawn
globally in the network, each providing (if we choose to probe it at the coordinator) a value of Estimator 1, i.e.,
v̂µ ∈ {v̂ = v̂1, . . . , v̂M}. If sites utilize a gi that yields E[|Kµ |] ≤ `n(1/δ )

√
N, ∀µ ∈ [1,M] (as the one we introduce

in Section 3), we guarantee that the probability of having at least one v̂µ ∈ B(e+ 1
2 ∆vi,

1
2‖∆vi‖) of some Si ∈ Kµ is

at least 0.99. Equivalently, there is a 0.01 probability of failing to track at least one v̂µ . The value of M is directly
tunable according to the application defined δ .

We stress that these repeated sampling trials cannot increase the size of any of the local constraints inscribed by
sites, but may only increase their number from |K1| (single trial) to |K1∪·· ·∪KM|. We show below that M = 2 to 4 in
the highly distributed settings we consider in this work. In other words, instead of asking sites in K ≡K1 to participate
in the monitoring process, we essentially require sites in K1 ∪ ·· · ∪KM to do so. The above process does not require
the sites to communicate as the coordinator can compute M based on δ and broadcast it to the sites at the beginning
of the tracking process. Then sites need to independently perform M sampling attempts based on their gi. During the
monitoring phase, Requirement 1 is absolutely satisfied because:

⋃
Si∈K1∪···∪KM

B(e+
∆vi

2
,‖∆vi

2
‖)⊆

N⋃
i=1

B(e+
∆vi

2
,‖∆vi

2
‖)

Remarkably, upon a partial synchronization, the coordinator does not need to probe |K1 ∪ ·· · ∪KM| sites that
participated in the union of the M sampling trials. This is because, based on the Inequality 2 and a priori known,
fixed error ε = ε(δ ), all the produced estimators share the same worst case approximation quality guarantees. It thus
suffices to probe the sampled sites of one, say the first, trial, i.e., set K1 ≡ K, compute v̂ = v̂1 and check B(v̂,ε).

Figure 4(b) depicts the improvement in the construction of local balls, especially compared to the local constraints
induced by Lemma 1 in Figure 4(a). The upcoming Example 2 shows that this is a tremendous improvement in a
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(a) Sampling-Based tracking according to Lemma 1, violat-
ing Requirement 1 (S2,S3 ∈ K)

e 

e+Δv1 
e+Δv2 

e+Δv3 

e+Δv4 e+Δv5 

v 

(b) Requirement 1 abiding sampling-based scheme in
Lemma 2 (S2,S3 ∈ K)

Figure 4: Sampling-based monitoring over distributed data streams. Shaded areas belong to the convex hull that needs to be
monitored according to Lemma 1 and Lemma 2, respectively. The gray area corresponds to the convex hull that is formed by the
entire set of sites in the network (N=5).

practical scenario of our running example. Hence, the new local constraints adhere to Requirement 1 and no additional
FPs can be provided by the sampling based scheme.

A final question regards how large practical values of M should be. For practical values of M, given δ and
N, interesting observations can be extracted. According to Figure 3 and Table 2, as the degree of distribution N
increases a couple of sampling trials would suffice in order to track an Estimator 1 with probability way above 99%
(see last column of Table 2) entailed by the lemma and we stress that this is an upper bound on M. Therefore, for
the focus of this paper, i.e., highly distributed settings, in practice even a single trial K ≡ K1 can be sufficient. For
ease of presentation, we again return to the assumption that M = 1, K ≡ K1 and that v̂ = v̂1 is surely included in⋃
Si∈K

B(e+ ∆vi
2 ,‖∆vi

2 ‖). We stress that overall we keep our analysis consistent by (a) accounting for the effect of M in

the worst case bound on our sample size and (b) include the 0.01 tracking failure probability in the false negative rates
of our scheme.

δ=0.05

δ=0.1

δ=0.2

200 400 600 800 1000

0

1

2

3

4

Ν

Μ

Figure 3: M versus N for various values of δ .

δ N ∼M Prob. of failing
tracking at least one v̂

0.05 100 4 0.008
0.05 500 3 0.002
0.05 1000 2 0.009

0.1 100 4 0.003
0.1 500 2 0.01
0.1 1000 2 0.005

0.2 100 3 0.004
0.2 500 2 0.005
0.2 1000 2 0.003

Table 2: Illustration of practical values of M
Given we track v̂, if v̂= v we manage to monitor the exact value of v. Even if v̂= v does not hold, from Inequality 2,

we know that with high probability, at least 1−δ , v ∈ B(v̂,ε). When v ∈ B(v̂,ε), the worst case scenario during the
monitoring process occurs when v̂ is located on the periphery of

⋃
Si∈K

B(e+ 1
2 ∆vi,

1
2‖∆vi‖). Then, the fact that v̂ lies on

the boundary of some GM sphere, combined with the fact that v ∈ B(v̂,ε), guarantees that the largest distance v may
travel outside the union of the spheres is ε . The first option to handle this situation is to expand the radius of the balls
inscribed by sites to B(e+ 1

2 ∆vi,
1
2‖∆vi‖+ ε) so that with probability 1−δ they include v ∈ B(v̂,ε). However, then,

Requirement 1 is no longer satisfied because we are going to have fewer (|K| � N) balls only for the sampled sites,
but with expanded radii. The second option is to allow such an error, which may lead to a FN decision. We opt for the
second option and focus on its effect on the FN rate.

11



e 

e+Δv2 
e+Δv3 

Th
re

sh
o

ld
 c

ro
ss

in
g 

A
re

a 

ε

Area where PFN≤δ 

PFN=O(δ Z  /   N)

εT

Figure 5: PFN wrt the distance from the threshold surface. In the white (left) area PFN ≤ δ since no ball approaches the surface
more than ε .

Example 2. Before proceeding with our running example, we need to point out that, as clarified many times so far,
our techniques are designed to operate over highly distributed settings and may not be applicable in very low network
scales. For instance, the prerequisites of the Vector Bernstein inequality may not be met, if we choose a setup with
few sites and set a very low δ . On the other hand, it is difficult to visualize a running example with a convex hull
and hyperspheres stemming from many sites. Even the illustration of Figure 6(a), including only 5 sites, might have
been cumbersome if ∆vis or T were chosen differently. Given these, our examples may be loosened representations
of the basic principles we discuss since they are primarily focused on easing the illustration. To best keep up with
our theoretic analysis and also provide eligible illustrations, in Figure 6(b) and forth we assume N = 10 and that the
vectors of S6,S7,S8,S9,S10 coincide with those of S1,S2,S3,S4,S5, respectively, in Figure 6(a).

Figure 6(b) depicts the union of balls monitored by our algorithm assuming |K| = 2 and that two of the vectors
with the highest gi, namely {S1,S2}, are included in K. The computation of gi is based on ∆vis of Figure 6(a) and
also on details of the sampling function discussed in Section 3. Since we have not yet shown how gi is tuned, for now,
what is important to note is that due to Lemma 2 we are able to perform the monitoring using the balls of Figure 6(b)
instead of those entailed by Lemma 1(c). Figure 6(c) shows in practice this important difference comparing in the
same figure the local constraints of S1,S2 scaled by 1/gi (large balls), as entailed by Lemma 1(c), versus those of
Lemma 2.

Satisfying the Tunable Accuracy Requirement. According to our algorithmic sketch and our analysis so far, under
the assumption that we track v̂, a FN decision may occur in two mutually exclusive cases:
(a) During the distributed monitoring process, upon judging potential threshold crossings of local hyperspheres that
were not expanded by an ε factor (as previously described). We consider two sub-cases: In subcase (a1), the local
constraint B(e+ 1

2 ∆vi,
1
2‖∆vi‖) of every site Si ∈ K has a minimum distance from the threshold surface larger than ε .

Subcase (a2) covers the case when the above condition does not hold for at least one Si ∈ K.
(b) During the synchronization process, where the coordinator probes the sample and uses B(v̂,ε) to determine if a
full synchronization is necessary.

Note however, that these types of FNs cannot occur simultaneously since case (b) can happen only when a threshold
crossing is detected during the monitoring process. We set out our discussion from case (a), which is more compli-
cated.
Case (a1). If v ∈ B(v̂,ε), whenever every Si’s ∈ K local constraint B(e+ 1

2 ∆vi,
1
2‖∆vi‖) has a minimum distance

from the threshold surface larger than ε as shown in Figure 5, our choice of not expanding these spheres to B(e+
1
2 ∆vi,

1
2‖∆vi‖+ ε) does not affect the quality of the monitoring process. This is true because even if v lies outside the

monitored area, with high probability 1−δ it has not changed sides with respect to T because v ∈ B(v̂,ε). Therefore,
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when the minimum distance of the union of balls of sampled sites from the threshold surface is larger than ε (see
Fig. 5), we cannot have a FN decision unless v < B(v̂,ε). The latter has a probability of δ and PFN ≤ δ .
Case (a2). We now examine how the PFN probability is bounded when there exists at least one site Si ∈ K with
B(e + 1

2 ∆vi,
1
2‖∆vi‖) placed closer to the threshold surface than ε . Looking at Figure 5, this corresponds to the

zone around the threshold surface marked with an ε and corresponding double arrows. If there exists Si ∈ K with
B(e+ 1

2 ∆vi,
1
2‖∆vi‖) entering the ε-zone in Figure 5, this means that v is likely to have crossed the threshold surface

despite v ∈ B(v̂,ε). Let εT (red, dotted line in Fig. 5) denote the minimum distance of e from the threshold surface,
computed once during a full synchronization process and kept until the upcoming one. Simple calculations show that
if no site Si has a ‖∆vi‖ > εT , the global average cannot have switched side with respect to the threshold surface and
no FN decision can occur. Hence, for a FN decision to occur we need at least one sampled site to enter the ε-zone
and there should exist a number (at least one) of sites in the network that have drifted more that εT distance from
e and are not included in K. If at least one of the threshold crossing sites is sampled then a local violation will be
detected and no FN can occur at this stage. Therefore, assuming that at a given time point |Z| sites cross the threshold,
PFN ≤ ∏

Si∈Z
(1−gi), since a FN will occur when none of these |Z| sites is included in the sample. As we are going to

show in Section 3, for a properly constructed gi, even in case that for some sites their drift vectors enter the ε-zone,

PFN has an upper bound proportional to δ

|Z|M√
N which decreases exponentially with the number of threshold crossing

sites and sampling trials. We further show that this bound on PFN is pessimistic, as it is computed on the pathological
case where for all Si ∈ Z, ||∆vi|| = εT . What happens in practice, because v is the average of the drift vectors, is that
in order for v to cross the threshold surface, the threshold surface is crossed by either several moderate in length drift
vectors (in which case |Z| is large), or by fewer but larger drift vectors. In the latter case, we show in Section 3 that
the sampling probability of such sites is larger, making it less likely that they will all be omitted from the sample.
Case (b). In our algorithmic sketch, during a synchronization the coordinator, trying to reduce the cost of a potential
FP decision, first attempts to save communication by collecting the ∆vi vectors only of the sampled sites (of the first
trial). It then computes v̂, checks B(v̂,ε) and only if the latter ball crosses the threshold surface, a full synchronization
takes place. An FN decision may occur only when v < B(v̂,ε) which happens with probability at most δ and thus PFN
≤ δ .

Based on Inequality 2, we set ε = (1+
√
`n(1/δ )) ·σ . In the next section we provide a sampling function that

upper bounds σ by a constant value and tunes ε according to the application defined δ . Having bound σ , we showed
in this section that PFN can be also bounded by δ . Thus, Requirement 3 is satisfied as well. In the next section we
further exhibit that based on the constructed gi, δ also successfully tunes the sample cardinality |K| and, thus the
anticipated savings of the sampling-based scheme in terms of FP reduction and bandwidth preservation.

3. Setting the Sampling Function

In our sampling-based scheme, each Si individually decides whether to include itself in K (more generally in
each trial K1, . . . ,KM , but we still assume M = 1 at this point) or not, using a sampling function gi. Our generic
technique can accommodate any gi that samples multidimensional site vectors. However, not all functions yield the
desired properties for our scheme. We next construct, in a step-by-step fashion, a suitable gi and reason about our
choices based on the properties that each element attributes to our scheme. We eventually derive a proper gi that
simultaneously (a) ensures a sample of O(`n(1/δ )

√
N) size, (b) upper bounds σ and, thus, ε by an a priori (before

acquiring the sample) constant value controlled by δ . In that, gi allows the sampling-based scheme to comply with
Requirement 2, (c) given the previous upper bound that determines the size of the ε−zone (Fig. 5), gi tunes the
probability of FNs (Requirement 3).
• ‖∆vi‖ should be included in the numerator of gi. According to our algorithmic sketch in Section 2.2, upon a local
violation the coordinator probes only sites Si ∈ K (of the first trial) and checks B(v̂,ε) for threshold crossing in order
to call for a full synchronization, or not. To inscribe B(v̂,ε), the radius ε should be (bounded by) a constant value.
In order to come up with a constant value for ε , according to Inequality 2, we need to bound σ . In Section 2.2, we
showed that σ2 ≥ ∑

N
i=1
‖∆vi‖2
N2·gi

−∑
N
i=1
‖∆vi‖2

N2 . Apart from gi, the only variable term included in the latter inequality
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is the size of the drift ‖∆vi‖. To eliminate this variable term, ‖∆vi‖ should be included in the numerator of gi (see
Inequality 3).
• `n(1/δ ) needs to be included in the numerator of gi. As mentioned in Requirement 3, ε should be tunable by (a
function of) δ , i.e., ε = ε(δ ), so as to allow the size of the ε− zone to be controlled by the application. Hence, `n(1/δ )
needs to be included in the numerator of gi. Due to the presence of (1+

√
`n(1/δ )) ·σ (= ε) in Inequality 2, we will

later show in Equation 4 that placing `n(1/δ ) in the numerator of the function allows the application to express the
size of the ε−zone as a fraction (< 1) of the bound of the approximation error between v̂ and v.
• A term Nx, x > 0 is needed in the denominator of gi. To ensure communication savings and reduced monitored
area, we need |K| � N. The expected sample cardinality of our scheme is given by ∑

N
i=1 gi (per trial). Since this sum

iterates over all the N terms, to ensure |K| � N, we need a term Nx in the denominator of gi in order to obtain an
expected communication cost of O(N1−x). What is then required is to compute a proper value for x > 0.
• A constant U such that U > h · ‖∆vi‖, h > 1 is necessary in the denominator of gi. Having required that ‖∆vi‖
lies in the numerator of gi, to achieve O(N1−x) cardinality, the presence of a constant U such that U > h · ‖∆vi‖ for
some h > 1 in the denominator of gi is necessary as well.
Guidance for setting U: In a setup where sites receive ±1 updates per dimension [32, 33, 34] over a sliding window
of w size, the maximum ‖∆vi‖ that may occur is proportional to

√
d ·w. In case of unbounded inputs, a generalization

of the bound used in [33] would suffice. In particular, [33] focuses on linear functions and assumes that an estimation
of the global count (in one dimension) is available beforehand. It thus sets U equal to that total absolute count esti-
mation. The equivalent in our multidimensional scenario is to utilize the values in the dimensions of e, i.e., the last
known global average estimation, and express U as a function of its L1 norm. Finally, another plausible option is to
set U according to the minimum distance of e from the threshold surface, which may however require to first compute
an optimal reference vector (see [21]) e∗ instead of e.

All our previous remarks are satisfied upon setting:

gi =
`n(1/δ ) · ‖∆vi‖

U ·Nx

The expected communication cost is a tunable (using δ ) fraction of N, proportional only to ∑
N
i=1 gi ≤ `n(1/δ ) ·N1−x

(per trial). We then seek for a proper value for x > 0. Recalling the Vector Bernstein’s Inequality (Inequality 2) and
using the above gi, for σ we obtain (detailed computations in [35]):

∑
N
i=1 E[‖yi‖2] =

N
∑

i=1

‖∆vi‖2

N2· ‖∆vi‖·`n(1/δ )
U ·Nx

−
N
∑

i=1

‖∆vi‖2
N2 ⇔

N

∑
i=1

E[‖yi‖2]≤
(

U ·Nx

2 · `n(1/δ )
√

N

)2

= σ
2 (3)

In order to express ε as a fraction of U and as a function of δ , while at the same time avoiding an undesirable

dependence on the network scale N, we pick x = 1/2. Then, ε = (1+
√

`n(1/δ )) ·σ = (
1+
√

`n(1/δ )

2·`n(1/δ ) ) ·U , while B

can be set to B = ‖∆vi‖
N·gi

= U
`n(1/δ )·

√
N

. Notice that the choice of `n(1/δ ) in the numerator of gi is the lowest value that
we could use in order to obtain a tunable by δ increase in the expected communication cost, while at the same time

being able to express ε as a percentage of U . The latter claim is true due to the fact that ( 1+
√

`n(1/δ )

2·`n(1/δ ) )< 1, ∀δ < e−1

(i.e., a range that contains the typical values for δ ).

The Sampling Function. Before summarizing the properties of our sampling-based GM scheme according to the
proposed gi, we first need to account for the M factor introduced in Lemma 2, but left out of our subsequent discussion
for ease of exposition. As noted in Lemma 2, 1 ≤M ≤

⌈
`og(0.01)

`og( `n(1/δ )√
N

+ 1
N )

⌉
. Hence, the overall worst case bound on the

expected number of sites participating in the monitoring process is M ·E[|K|] ≤ M`n(1/δ )
√

N. The M factor is
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dominated by `n(1/δ ) ·
√

N in highly distributed settings as shown in Figure 3 and Table 2. Furthermore, note that
the ε value computed above is not affected by M, but is a constant, for fixed δ , value for any given sample. Hence, even
if we draw M samples, each of them will have the same bound for the estimator error ε and the ε− zone attached to the
threshold surface (see Figure 5) will be identical either for 1 or M samples. Therefore, pointing out the characteristics
of our sampling-based GM scheme, for δ ∈ (0,e−1) we have:

gi =
‖∆vi‖`n(1/δ )

U ·
√

N
Sampling Function

ε = (
1+
√

`n(1/δ )

2·`n(1/δ ) ) ·U v̂ Estimation Error

O(`n(1/δ )
√

N) Expected Sample Size

(4)

Example 3. Recalling our running example, the maximum ‖∆vi‖ an update cycle may yield at Si is
√

d =
√

3≈ 1.73.
Thus after up to 100 updates globally in the network, i.e., 10 update cycles with N = 10, U = 17.3 and for δ = 0.05,
ε = 7.89. Figure 6(d) illustrates the ”buffer” this ε−zone adds on the initial threshold surface of the running example.

The following table computes, for N = 100 and N = 961, the values of ε , the range of gi values in this example,

and `n(1/δ )
√

N (an upper bound on
N
∑

i=1
gi) for δ values of 0.1 and 0.05. We note that the ratio of this upper bound

over N becomes smaller as N increases. Moreover, note that smaller δ values result in smaller ε and larger gi values,
as smaller δ values point to a requirement for fewer FNs.

δ N
√

N Range of gi ε `n(1/δ )
√

N
0.1 100 10 [0,0.23] 9.5 24
0.1 961 31 [0,0.074] 9.5 72

0.05 100 10 [0,0.3] 7.89 30
0.05 961 31 [0,0.097] 7.89 93

Note that the inequalities gi < 1 and ε ≤ σ2/B hold for sufficiently high N, as required by the Vector Bernstein’s
Inequality. We further point out that in Equations 4, ε is directly controllable using the parameter δ . Furthermore,
observe that when δ decreases, then ε also decreases, while the expected sample size increases logarithmically. This
is a trade-off between bandwidth consumption and accuracy that our sampling-based scheme achieves by a single,
application defined parameter δ .

Recall that because ∆vi(t) = vi(t)− vi(ts), ‖∆vi‖ expresses the deviation magnitude of Si’s local vector since the
last synchronization. Hence, even if a site has no update in the current monitoring phase, its sampling probability
can still be high if ‖∆vi‖ has built up from past, after the last synchronization, updates. The reason is quite intuitive,
since a site with a high ‖∆vi‖ has at any time the potential to severely affect the placement of actual global average
(Section 1.1) and its estimation’s (also analyzed below Estimator 1).

Notice that the proposed gi does not explicitly impose a lower bound on sample size. However, even if no site gets
sampled (such a case becomes less likely as the number of sites increases), our algorithm will estimate - according
to Estimator 1 - that v̂ = e. In any such case, according to our analysis using the Vector Bernstein Inequality, our
estimation is accurate within ε from the true average with (controllably) high probability. On the other hand, our
framework needs to ensure that it samples enough sites when the global vector v does cross the threshold surface, to
avoid FNs. In Lemma 3 below, we bound PFN based on both the number of threshold crossing sites and the distance
of the spheres from the ε− zone and, thus, the threshold surface.
Completing the puzzle for PFN bounds. The following Lemma 3 elaborates on the PFN bounds yielded by the
chosen gi. We point out that the lemma expresses the overall, final PFN and does not entail the computation of a union
bound over all sampled sites. The condition ∀Si ∈ Kµ ,B(e+

∆vi
2 , ‖∆vi‖

2 )
⋂

ε − zone = /0 simply says that the union of
hyperspheres for the sampling trial that tracks v̂µ (at least one such trial exists with 99% probability - Lemma 2(c))
constructed by sites does not intersect the ε−zone. Since this holds if and only if ∀Si ∈ Kµ no local ball enters the
ε−zone, therefore the condition.
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Lemma 3. The Sampling-Based GM Scheme being set according to Equation 4, also accounting for Lemma 2(c),
yields:

• PFN ≤ δ +0.01 i f M trials
∧
∀Si ∈ Kµ ,B(e+

∆vi
2 , ‖∆vi‖

2 )
⋂

ε− zone = /0

• PFN = O(δ
|Z|M√

N ) otherwise

where µ ∈ [1,M] any one of the sampling trials for which v̂µ ∈
⋃

Si∈Kµ

B(e+ ∆vi
2 ,‖∆vi

2 ‖), Z (more precisely Z(t)) denotes

the set of threshold crossing sites. Thus, one can properly tune δ to obtain the desired FN probability.

In Figure 5 and the corresponding analysis of Section 2.2 we reasoned about the first part of Lemma 3 in Case(a1)
and Case(b), i.e., when no local constraint enters the ε−zone. To this, we add the 0.01 tracking failure probability
entailed by Lemma 2(c). In other words, a FN is produced if either we fail to track a version of Estimator 1 - 0.01
probability - or given we track at least one version of Estimator 1 and being outside the ε−zone, we miss the true
position of v, due to v < B(v̂(t),ε), with δ probability.

Regarding the second part of the lemma, in Section 2.2 - Case(a2) and Figure 5, we mentioned that for one sam-
pling trial per site, when some of the sampled sites enter the ε-zone, PFN ≤ ∏

Si∈Z
(1−gi), where Z the set of threshold

crossing sites globally in the network. Due to the value of the chosen gi we obtain PFN ≤ ∏
Si∈Z

(1− ‖∆vi‖`n(1/δ )

U ·
√

N
). How-

ever, we also noted that for a site Si ∈ Z, ‖∆vi‖ > εT , since otherwise Si cannot have crossed the threshold surface.
Therefore, since gi < 1, substituting above for a single sampling trial we get:

PFN ≤ (1− `n(1/δ ) · εT

U ·
√

N
)|Z| ≤ e−

|Z|·`n(1/δ )·εT
U ·
√

N = δ

|Z|·εT
U ·
√

N

Then, considering the fact that each site performs M sampling trials provides the outcome of Lemma 3 when some
of the sampled sites enter the ε−zone.

Note that according to [21] a common reference point (instead of e) can be chosen so that εT is maximized. All
these optimizations are orthogonal to our techniques and also enable us to treat εT as a sufficiently large, a priori
known constant in our analysis. As mentioned in Section 2.2, this bound on PFN is a worst-case bound that is derived
from a pathological case, in which for all Si ∈ Z, ||∆vi|| = εT . However, what happens in practice, because v is
the average of the drift vectors, is that in order for v to cross the threshold surface, the threshold surface is crossed
(i) by either several moderate in length drift vectors, in which case |Z| is large and PFN is small, since it decreases
exponentially with the number of threshold crossing sites, or (ii) by fewer but larger drift vectors that, thus, have larger
sampling probabilities. In the latter case, it is less likely that they are all omitted from the sample.

Thus, apart from ensuring PFN . δ when no local constraint enters the ε-zone as discussed in Section 2.2, we
also bounded the complementary case, and note that PFN may become even lower than δ when |Z| is sufficiently
larger than

√
N. We emphasize that the minimum distance of e from the threshold surface, i.e., εT (see Figure 5), is

computed during a synchronization and is, thus, a known parameter until the next central data collection. In any case,
the size of the ε−zone can be tuned to the desirable extent using δ as discussed above.
Time Evolving PFN bounds. According to Lemma 3, at time t, a FN occurs with probability at most PFN . Let tnow
denote the current execution of the monitoring phase and tnext the upcoming one. Upon a FN occurrence at tnow and
until tnext the following mutually exclusive events may occur: (E1) the global vector v(tnow) switches side with respect
to the threshold and v(tnext) remains at the same side, in which case the lifetime of the threshold crossing spans two
monitoring phases and (E2) v(tnow) crosses the threshold, while v(tnext) jumps back. In (E2) the threshold crossing
was lost with the prescribed PFN probability according to our previous analysis. However, in (E1) the probability of
missing the event of the threshold crossing in consecutive monitoring phases is decreased.

To understand why, observe that if we have two as in (E2) or more general n monitoring phases in which the
threshold crossing persists, the probability of failing to pinpoint it at least once is bounded by at most (PFN)

n. Notice
that Sis sample themselves independently of whether they were included in the previous sample. According to our
algorithmic sketch in Section 2.2, the sample (of all trials) is emptied in every execution of the monitoring and (if
necessary) the synchronization phase and based on Equation 4 sites utilize a gi(t) that is also oblivious to previous
samples.
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e+Δv1

e+Δv3

e+Δv2

e+Δv5

e+Δv4

(a)
N = 5,T = `og(5)+0.01,e = [8,8,8],
e+∆v1 = [8,9,14],e+∆v2 = [8,13,8],e+∆v3 =
[8,10,10],e+∆v4 = [8,6,5],e+∆v5 = [5,8,5]

e

e+Δv1

e+Δv2

B(e+0.5Δv1,0.5Δv1)

B(e+0.5Δv2,0.5Δv2)

(b)
N = 10, |K|= 2,T = `og(10)+0.01, g1 = g6 ≈ 0.17,
g2 = g7 ≈ 0.14,g3 = g8 ≈ 0.08,g4 = g9 ≈ 0.1,
g5 = g10 ≈ 0.12. In all gis (Sec. 3), δ = 0.05,U ≈ 12.

B(e+0.5Δv1/g1,0.5||Δv1/g1||)

B(e+0.5Δv2/g2,0.5||Δv2/g2||)

B(e+0.5Δv2, 0.5||Δv2| |)

B(e+0.5Δv1, 0.5||Δv1||)
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(c)
Effect of scaling the sampled balls by gi as entailed
by Lemma 1(c) (large) vs Lemma 2 (smaller balls).
Functions g1,g2 of K are those used in Figure 6(b).

ε-zone

ε-zone

ε-zone
T

(d)
ε -zone after 10 update cycles (up to 100 updates
in the network), δ = 0.05 U =

√
3 ·10≈ 17.3,

ε ≈ 7.89, T = `og(10)+0.01.

Black area (convex hull) monitored by CV 
Gray area (3-d balls) monitored by generic GM

(e)
GM vs CV from Fig 6(a). CV directly tracks the
convex hull because C (not shown) is assumed
convex. GM tracks larger area using balls.

C
 Safe Zone

+ _0
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_

(f)
Safe Zone C defined by the (infinite) plane through
[0,0,14], [15,11,0], [0,7,7]. Areas of negative
positive & zero signed distance are marked.

A different safe zone defined by 
a hyperball centered at 

[11,11,11] nearly touching T

<== Safe zone C boundary of    
                                       Figure 6(f)

_

+

(g)
Another safe zone defined by a ball. This safe zone,
almost touches the threshold surface, but is also
bounded away from it.
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(h)
εC -zone after 10 update cycles (up to 100 updates
in the network), δ = 0.05,U =

√
3 ·10≈ 17.3,

εC ≈ 7, T = `og(10)+0.01.

e

B(e+0.5Δv4,0.5||Δv4||)==>

+ _

Area of C

e+Δv4

(i)
Comparing sampling-based monitoring schemes.
N = 10,δ = 0.05,U = 17.3,e+∆v4 = [8,3,3],
dC(e+∆v4)≈ 4.5,g4 = 0.39 > gC

4 = 0.25.

Figure 6: Illustrations of our running example

Therefore, Lemma 3 provides a worst case PFN bound not only for a single instance of the monitoring or synchro-
nization phases, but also for threshold crossings that span multiple such phases. In Section 6.4 we experimentally
validate the fact that even if FNs do occur, they are immediately pinpointed in the near future.
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Area where f(v)>T

e

e+Δv1
e+Δv2

e+Δv3

e+Δv4
e+Δv5

C

∂C

dc(e+Δv5)
: dc(e+Δvi)<0
: dc(e+Δvi)>0

εC-zone

Figure 7: Illustration of the CV concept. Had all e+∆vi vectors been inside C, no synchronization would be required. Since
e+∆v1 exits C, S1 informs the coordinator. The basic elements for signed distance calculation are also included in the figure, while
respective Euclidean distance signs are marked in proper areas of the input domain.

4. Extending and Revisiting Sampling-Based Monitoring in the Convex Safe Zone Context

The GM method on which we built our sampling-based techniques so far ”is generic, i.e., it can be applied to
any function defined over the average of the local vectors at the sites” [14]. Nonetheless, the latest advancements
regarding geometry-based monitoring [14, 27] show that for certain function classes, such as Lp norm related queries
and join aggregates, the communication performance of the tracking process can be drastically improved by utilizing
a clever convexization idea. The techniques we discuss here revisit and optimize our generic sampling-based scheme
(Section 2.2 and Section 3) to exploit the characteristics of the latter, novel setting without compromising its general
applicability and functionality.
Convex Safe Zone (CV) Approach. The basic principle behind the convex safe zone (CV) approach [14, 27] is to
compute in hand a sufficiently large convex subset of the input domain, say C, where the global average can move
without crossing the threshold surface. In other words, C is an, ideally maximal, convex subset of the input domain
that does not intersect the threshold surface. The scheme can avoid tracking a superset, that is the union of local balls,
but instead distributively monitor the exact convex hull. To achieve that, sites need to simply check if e+∆vi ∈ C
and call for a synchronization otherwise. This is because, by convexity of C, the convex hull cannot exit C and invade
the threshold surface if all of its vertices are included in it. In the latter case, the global average cannot have changed
sides with respect to the threshold surface. Overall, the CV concept can simplify local tests and it can reduce false
positives by monitoring the exact convex hull. Figure 7 schematically illustrates the CV concepts, further analyzed in
the upcoming example.

Example 4. To better conceive the advantage of the CV approach consider our running example and in particular
Figure 6(e). Assume that a convex safe zone C, approaching T sufficiently well, exists. C is not shown in Figure 6(e)
but possible choices of C for our running example are discussed in Example 5 (Figure 6(f) and Figure 6(g)). For now,
what is important to notice, is that due to the existence of C, each site simply checks whether its local vector e+∆vi
lies in C. Globally this is interpreted to monitoring the exact convex hull, represented by the black area in Figure 6(e).
On the contrary, the generic GM approach monitors the gray area representing the union of spheres in Figure 6(e). As
shown in this figure, provided a good C has been computed in hand, using CV results in tracking a drastically reduced
part of the input domain.

Unfortunately, even when a large C can be computed for the monitored function, the safe zone idea still faces
scalability issues since, as we discussed in Section 1.2, in highly distributed settings the monitored convex hull by
itself is large, apart from the fact that the monitored spheres cover a superset of it. This fact is also confirmed in our
experimental evaluation (Section 6.6) upon applying the CV approach on high network scales.

To solve these scalability issues the techniques we presented so far and our proposed sampling function are still
applicable. The only difference is that now, the local constraint checked by each sampled site is whether e+∆vi ∈
C or not, instead of assessing intersection of local balls with the threshold surface. However, in the current work we
advance far beyond simply applying our generic sampling-based scheme on top of the CV method.
Extending and Revising the Generic Scheme. More precisely, we first (Section 4.1) introduce a novel mapping
of the CV monitoring task, from a multidimensional input domain of arbitrary dimension to an equivalent task on
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a unidimensional space. Our mapping is exact, i.e., lossless regarding true threshold crossings and it does not in-
troduce additional false positive centralization decisions compared to CV. Beyond its exciting theoretic interest, our
mapping can practically reduce the negative communication impact of a FP synchronization proportionally to the
dimensionality d of the monitored space by having each site transmit a single value instead of a vector. Unfortu-
nately, this mapping still lacks desired scalable characteristics. This is because it does not prevent FP centralizations
during which the required number of communicated messages is still O(N), but can reduce the amount of commu-
nicated data of such a FP decision. What is more important is that our mapping opens new opportunities for our
sampling-based GM concept. As a matter of fact, we revisit our sampling-based GM scheme together with the robust
sampling function we propose, rendering them applicable to the unidimensional setting. The revised (1−d) version of
our sampling-based scheme possesses additional advantages as it reduces the value of the approximation error of the
monitored 1−d quantity. Based on this reduced error argument, our monitoring scheme, revised for the CV concept,
both in expectation and also in practice (Section 6.6) manages to reduce the number of false decisions throughout the
tracking process. In addition, because it takes advantage of the introduced unidimensional mapping, it can also reduce
the amount of communicated data during each FP decision, proportionally to the dimensionality d.

4.1. A Novel Exact Mapping from Arbitrary Dimensionality to Unidimensional Tracking

Here, we temporarily leave aside any sampling effort so as to purely study our mapping and its monitoring prop-
erties.
The mapping. Let C ⊂ Rd be a convex subset of the admissible region, i.e., where v can move without causing the
monitored function to cross the threshold surface. The signed distance of e+∆vi ∈ Rd from C is defined as:

dC(e+∆vi) =


−dist(e+∆vi,∂C), e+∆vi ∈C

0, e+∆vi ∈ ∂C
dist(e+∆vi,∂C), e+∆vi ∈C

where ∂C denotes the boundary of C, C ≡ Rd\C and dist(e+∆vi,∂C) = inf
ci∈∂C
‖e+∆vi− ci‖.

Figure 7 provides an example of the above definition for given C and e+∆vi vectors where the sign of the distance
is marked in respective areas of the input domain. The following novel lemma essentially acts as the tool for mapping
the d− dimensional monitoring task of the CV concept to a unidimensional tracking setup. To formulate and prove
the lemma we temporarily simplify the notation for ease of exposition; pi below corresponds to e+∆vi, while li equals
dC(e+∆vi).

Lemma 4. Let C be a closed convex set in a normed linear space, and assume that (subscript order is used for
simplicity) p1, . . . , pk are inside C, and pk+1, . . . , pN are outside C. Denote the signed distance of pi from the boundary

of C by li (negative if pi ∈C, positive otherwise). Assume that
N

∑
i=1

li ≤ 0. Then the average of p1, . . . , pN is inside C.

Proof. Denote by ci the point on the boundary of C which is closest (possibly not unique if pi ∈ C) to pi. Denote
pi = ci +ui, so |li|= ||ui||.

Since a convex set is closed under averaging, it suffices to show that p1 + . . .+ pN is equal to the sum of N points
all of which are in C. To achieve this, note first that

p1 + . . .+ pN = p1 + . . .+ pk +(ck+1 +uk+1)+ . . .(cN +uN) =

p1 + . . .+ pk + ck+1 + . . .+ cN +(uk+1 + . . .uN)

Now, denote u = uk+1 + . . .+ uN . From the triangle inequality, ||u|| ≤ ||uk+1||+ . . .+ ||uN || = lk+1 + . . .+ lN ≤

|l1|+ . . .+ |lk|, because
N

∑
i=1

li ≤ 0. So we have

p1 + . . .+ pN =

(
p1 +

|l1| ·u
|l1|+ . . .+ |lk|

)
+ . . .+

(
pk +

|lk| ·u
|l1|+ . . .+ |lk|

)
+ ck+1 + . . .+ cN
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To complete the proof, note that for 1≤ i≤ k, it holds that pi +
|li|·u

|l1|+...+|lk|
∈C. This is because

|| |li| ·u
|l1|+ . . .+ |lk|

||= |li|
|l1|+ . . .+ |lk|

||u|| ≤ |li|
|l1|+ . . .+ |lk|

(|l1|+ . . .+ |lk|) = |li|

but since for i = 1 . . .k the distance of pi from the boundary is |li|, it is clear that pi +
|li|·u

|l1|+...+|lk|
∈C.

Plainly put, the lemma states that if the sum of distances from the boundary of the points e+∆vi ∈ C is larger
than the sum of distances from the boundary of the points outside C, in which case the overall sum of signed distances
will be negative, then the average of all points is inside C. The following corollary, which we henceforth use in our
analysis, is a straightforward adaptation of Lemma 4 for the case of the average of signed distances.

Corollary 1. Given C ⊂ Rd defined as above, if the average of signed distances dC(e+ ∆vi) is negative, ∀Si ∈
{S1, . . . ,SN}, then the global average v is inside C i.e.,

DC =
∑

N
i=1dC(e+∆vi)

N
< 0⇒ v ∈C

Monitoring Properties. Obviously, the condition DC < 0 of Corollary 1 surely holds when dC(e+∆vi) < 0, ∀Si ∈
{S1, . . . ,SN}. This already forms the condition for executing the distributed monitoring process in the unidimensional
setup induced by Lemma 4. In other words, every site in the network checks whether its signed distance from C is
negative and calls for a synchronization otherwise. This is lossless with respect to possible threshold crossings due
to Corollary 1. Unequivocally, a positive signed distance dC(e+∆vi) at a site Si simultaneously means that e+∆vi
<C in which case the CV approach [14, 27] also contacts the coordinating source. Therefore, our mapping does not
introduce additional false positives. The latter two properties combined imply that our mapping is exact i.e., no false
negatives can be caused and no additional false positives are introduced. On the other hand, note that DC > 0 can
hold without the global average necessarily exiting C. Thus, there is still a possibility that a FP is assessed by the
coordinator after having DC > 0 and centralizing the local vectors of the sites in order to compute a new e, as required
by the geometric scheme.

Overall, using our novel unidimensional mapping technique, we can limit the effect of a FP by centralizing a
single value from each site instead of d−dimensional vectors. This can reduce the amount of communicated data by
a factor of d in the case of a detected FP, but in terms of communicated messages the O(N) cost of the initial CV
approach remains, while the number of FPs is identical as well. Below, we first discuss a couple of options for setting
C and the corresponding local tests that should be performed using our running example. We next discuss how we can
revise our sampling-based geometric monitoring scheme (Section 2.2) for the unidimensional setting so as to reduce
(apart from the size of the communicated data) the number of false decisions throughout the tracking process without
increasing the worst case bound on the expected sample size.

Example 5. By the design of the CV approach, the safe zone C is to be given as input before the monitoring task begins
(but can be adjusted from one synchronization to another). There are more than one options for setting C depending
on the monitored function. Optimizing this choice for certain functions has been studied in related work [16, 27, 14]
and is out of our scope. We here show exemplary safe zones that are applicable in our running example, discussing
the effect of the CV approach and of our new Lemma 4.

In Figure 6(g) we depict one such possible choice of C defined by a (infinite) plane (see caption for details). The
area above the drawn plane corresponds to 3-dimensional vectors possessing dC(e+∆vi) < 0, while the area below
the plane (including the threshold surface) corresponds to dC(e+∆vi) > 0 as marked on the figure. Thus, any Si of
our example needs to simply check if dC(e+∆vi)> 0, i.e., its e+∆vi vector penetrates the plane shown in the figure
towards the true threshold surface.

In Figure 6(g) we illustrate a different choice for C which corresponds to a hyperball (chosen so that it fits in the
figure). In this case dC(e+∆vi)< 0 for all vectors that are inside this ball, while dC(e+∆vi)> 0 outside. That is, if
a e+∆vi vector of some site is included in the ball describing C, then dC(e+∆vi)< 0 and dC(e+∆vi)> 0 otherwise.
As shown in Figure 6(g) this spherical safe zone better approaches the threshold surface compared to the one in
Figure 6(g), but is upper bounded as well. Safe zones in the form of hyperballs are more easy to compute and adjust
between synchronizations (see Section 5 in [21]). Therefore, we also employ such safe zones in Section 6.6.
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4.2. Sampling-based Monitoring Revisited

Algorithmic Sketch. As we did in our generic sampling-based scheme in Section 2.2, in the revised version we first
provide an algorithmic sketch of the monitoring process and then proceed with the theoretic background justifying our
choices. Throughout our description in this algorithmic sketch we restore the temporal reference t for completeness
and to keep the connection with the corresponding sketch of Section 2.2.

• Initialization Phase: Compared to the corresponding phase in Section 2.2, the difference here is that a sufficiently
large subset C ⊂ Rd of the admissible region (the area of the input domain where the monitored function does
not cross the threshold) has been computed offline and broadcasted to all sites. Still at the end of this phase, e(t)
constitutes the last known average data vector and ts,vi(ts) have been appropriately set across the network.

• Monitoring Phase: During the monitoring phase, each Si receives updates of its local vector vi(t) and computes
∆vi(t) = vi(t)− vi(ts). At the beginning of each monitoring phase the sample of sites participating in the tracking
process is empty, i.e., K(t) = /0 (for all M trials mentioned below). Again, to determine if Si ∈ K(t), each site
independently flips a biased coin, but this time with adjusted (discussed shortly) success probability of gC

i (t). gC
i (t)

is a revised sampling function tailored for our new scheme, still independently computed by each site. Given C, e(t)
and ∆vi(t), each Si ∈K(t) checks the local condition which this time is dC(e(t)+∆vi(t))< 0. If dC(e(t)+∆vi(t))<
0, ∀Si ∈ K(t) the monitoring process continues. In case at least one Si ∈ K(t) detects dC(e(t)+∆vi(t))≥ 0, it calls
for a synchronization. This process may be repeated 1 ≤ M ≤

⌈
`og(0.01)

`og
(

e−0.042
√

`n(1/δ )N
)⌉ times (independent trials),

independently at each site Si ∈ {S1, . . . ,SN}.

• Synchronization (Partial or Full) Phase:

– Partial Synchronization: During the initial attempt for a partial synchronization, the coordinator requires
only the sites sampled in one, say the first, trial to contribute their dC(e(t)+∆vi(t)) which are now single
values instead of vectors. Using these signed distance values, it derives an unbiased estimate D̂C(t) (using
Estimator 5, introduced shortly) of DC(t) and checks whether D̂C(t)+ εC > 0. If this does not hold, then the
coordinator deduces that this was a FP alarm with high probability 1−δ and the tracking continues unaffected.
Otherwise, a full synchronization takes place.

– Full Synchronization: This time our scheme does not directly probe also the whole data vectors of sites that did
not participate in the first trial, but instead performs an additional preliminary check. Initially, the rest of the
sites report their dC(e(t)+∆vi(t)) so that the exact DC(t) is computed. If DC(t)< 0 the coordinator assesses
this was surely (Corollary 1) a FP decision using a sole signed distance value per site. Thus, it still avoids
having sites communicating their d-dimensional vectors and the tracking process continuous unaffected. If the
FP test conducted by the coordinating source fails again, a full synchronization takes place, as all indicators
are that a true threshold crossing took place. The coordinator thus computes a new e(t) = e(ts) vector which
is broadcasted to the underlying sites. Upon the receipt of the new e(t), each site updates ts, vi(ts).

Monitored Estimator and Sampling Function. Let us assume that each Si performs a single sampling trial, first
because the coordinator asks only for the vectors sampled in the first trial during a partial synchronization and second
because the utility of more trials will be introduced upon commenting on the tunable guarantees of this new sampling
scheme.

Due to Lemma 4 and Corollary 1, this time our focus is not on ensuring that we monitor an accurate estimation of
the global average. Instead, we are interested in obtaining and monitoring an accurate estimation D̂C of DC. In that,
we must make sure that with high (tunable) probability 1− δ (details on that follow) the coordinator is going to be
informed when DC is positive and, thus, the global average may not be in C anymore.

Let a random variable d′C(e+∆vi) =
dC(e+∆vi)

gC
i

if Si ∈ K with probability gC
i , and zero otherwise. Our (Horvitz

Thompson again) signed distance estimator takes the following form:

D̂C =
N

∑
i=1

d′C(e+∆vi)

N
= ∑

Si∈K

dC(e+∆vi)

N ·gC
i

(5)
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Corollary 2. Estimator 5 is an unbiased estimator of DC, i.e., ˆE[DC] = DC.

Proof. Special 1−d case of Lemma 1(a) by replacing ∆′vi with d′C(e+∆vi).

Additionally, to see the correspondence with Lemma 2, observe that for any given sample K it holds that:

D̂C = ∑
Si∈K

dC(e+∆vi)

N ·gC
i

= ∑
Si∈K

|K|
N·giC

dC(e+∆vi)

|K|
⇒ ∃Si ∈ K :

D̂C ≤ |K|
N·gC

i
dC(e+∆vi) , D̂C ≥ 0

D̂C ≥ |K|
N·gC

i
dC(e+∆vi) , D̂C < 0

⇒

∃Si ∈K :

D̂C− |K|
N·gC

i

dC(e+∆vi)
2 ≤ |K|

N·gC
i

dC(e+∆vi)
2 , D̂C ≥ 0

D̂C− |K|
N·gC

i

dC(e+∆vi)
2 ≥ |K|

N·gC
i

dC(e+∆vi)
2 , D̂C < 0

⇒∃Si ∈K :| D̂C−
|K|

N ·gC
i

dC(e+∆vi)

2
|≤ |K|

N ·gC
i

|dC(e+∆vi)|
2

The latter result could describe a ball, centered at |K|
N·gC

i

dC(e+∆vi)
2 with |K|

N·gC
i

|dC(e+∆vi)|
2 radius, which includes D̂C.

Thus, it is equivalent to Lemma 2(a), but due to the unidimensional nature of our current setup the ball reduces to an
interval as shown above. Because we are only interested in knowing whether D̂C < 0 or not, this time local constraints
at sites neglect the term |K|

N·gC
i

(and thus Lemma 2(b) and (c)) and focus only on dC(e+∆vi)≶ 0.

Given the above, we must choose a proper sampling function gC
i which keeps the desired properties of gi used in

our generic sampling-based scheme. Beforehand, recall (Requirement 3) that at the application level our monitoring
scheme requires the identification of the δ parameter to tune its accuracy together with the monitoring task f (v(t)) ≷
T itself. This parameter is set in a way that is oblivious to the details of the input domain and the tracking scheme.
Therefore, the δ that is taken into consideration in our revised version is equivalent to the one in Sections 2.2 and 3.

For ease of presentation, and without any loss of generality due to isometry, let us assume that e is a zero vector.
Recall from Section 3 that ‖∆vi‖ ≤ U . If ∆vi ∈ C, then dC(e+∆vi) = −dist(∆vi,∂C) < 0 and we simply assume
that ‖∆vi‖ cannot receive its maximum value (U), simultaneously pointing towards T , without having ∆vi out of C.
Therefore, |dC(e+∆vi)| ≤U in this case. If ∆vi <C, then there must be a point c′ ∈ ∂C where the vector ∆vi exits C
and obviously c′ and ∆vi are collinear. Then, by also considering that dist(∆vi,∂C) by definition involves the smallest
possible distance of ∆vi from the boundary of C, we get:

|dC(e+∆vi)|= dist(∆vi,∂C)≤ ‖∆vi− c′‖ colinearity
=

0≤α≤1

‖∆vi−α ·∆vi‖ ≤ ‖∆vi‖ ≤U ⇔ |dC(e+∆vi)| ≤U (6)

Our revised sampling function takes the form of:

gC
i =
|dC(e+∆vi)|`n(1/δ )

U ·
√

N

This sampling function, gC
i , gives us the opportunity to perform the tracking process with reduced approximation

error εC ≤ ε without increasing the expected sample size |K| yielded by gi. Details on this follow.

Approximation Quality. Recall that approximation quality refers to the ability of the estimation D̂C to be within
predefined distance, denoted by εC, from DC with high probability. In the current unidimensional setup we use
McDiarmid’s Inequality [36] as the probabilistic tool replacing the functionality of Vector Bernstein’s Inequality [31]
of Section 2.2.

McDiarmid’s Inequality [36]. Suppose y1,y2, . . . ,yN are independent variables and assume that a function θ satisfies
|θ(y1,y2, . . . ,yN)−θ(y1,y2, . . . ,yi−1, ŷi,yi+1, . . . ,yN)| ≤ βi for1≤ i≤N, where ŷi replaces yi with its estimation. Then,
for any εC > 0:

Pr[E[θ(y1,y2, . . . ,yN)]−θ(y1,y2, . . . ,yN)≥ εC]≤ e

(
−

2ε2
C

∑
N
i=1 β2

i

)
(7)

The case of θ(y1,y2, . . . ,yN)−E[θ(y1,y2, . . . ,yN)]≥ εC is symmetric. In our setting, yis correspond to dC(e+∆vi)
and, since according to Corollary 2 our estimator is unbiased, we can employ McDiarmid’s Inequality using DC as
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θ(.). Before doing so, we concentrate on bounding the βi values. If we replace the j−th additive term in DC with its

estimation, d′C(e+∆v j)
N , the difference in the function value is:

|
N
∑

i=1

dC(e+∆vi)
N − ∑

[i∈{1..N}\ j]

dC(e+∆vi)
N − d′C(e+∆v j)

N | ≤

| d
′
C(e+∆v j)

N | ≤ | dC(e+∆v j)

N·gC
j
| ≤ U

`n(1/δ )
√

N
= β j = β

Now, applying Inequality 7 for the above (common) β we receive:

Pr[∑N
i=1

dC(e+∆vi)
N −∑

N
i=1

d′C(e+∆vi)
N ≥ εC]≤ e

(
−

2·`n2(1/δ )·ε2
C

U2

)

The above inequality satisfies our approximation quality requirements because it shows that the error in the monitored

estimator will not exceed εC with known probability 1− e

(
−

2·`n2(1/δ )·ε2
C

U2

)
. Furthermore, note that this probability

would be analogous should we have used Hoeffding’s [26] instead of McDiarmid’s Inequality as the former is a
special case of the latter upon the function of interest involves mere averaging or summation. We just preferred to use
the generalization provided by McDiarmid for ease of presentation.
Setting the right side of previous inequality equal to δ and solving for εC = εC(δ ) =

1√
2·`n(1/δ )

U we get:

Pr[DC− D̂C ≥ εC] = Pr[DC ≥ D̂C + εC]≤ δ (8)

It is important to note that εC ≤ ε and thus the monitored quantity in the unidimensional setting is more accurately
monitored compared to our generic, multidimensional, sampling-based scheme (Section 2.2). Figure 6(h) shows the
εC−zone for our running example using the safe zone C of Example 5 (details are included in the corresponding
caption). Furthermore, we will shortly discuss Figure 9 which plots the ratio between the approximation error yielded
by the vector Bernstein inequality (Inequality 2) and McDiarmids Inequality used in our revised scheme.

Tunable Accuracy. Let us now focus on the overall PFN probability and the way it can be determined by δ . Lemma 5
formalizes our tunable accuracy guarantees. The proof is included in the Appendix, but we here briefly discuss an
alternative way to go and reason about why we do not use it in Lemma 5.

For a false negative synchronization decision to be possible to occur we need D̂C < 0 and DC ≥ 0. Based on the
latter observation and the approximation quality guarantee in Inequality 8, we are FN safe when D̂C < −εC because
then, with probability 1−δ , DC < 0 as well. D̂C <−εC surely holds when |K|·dC(e+∆vi)

N <−εC, ∀Si ∈ K, because then
summing for every sampled site we get:

|K| ·dC(e+∆vi)

N
<−εC,∀Si ∈ K⇒ |K| ·dC(e+∆vi)

N ·gC
i

<−εC⇒ D̂C = ∑
Si∈K

dC(e+∆vi)

N ·gC
i

<−εC

For instance, given the fact that our expected sample size (i.e., the expected |K|) remains proportional to
√

N (a prop-
erty also summarized below), |K|·dC(e+∆vi)

N < −εC,∀Si ∈ K essentially translates to −εC being proportionally above
dC(e+∆vi)√

N
,∀Si ∈ K. So, when |K|·dC(e+∆vi)

N <−εC, ∀Si ∈ K we just showed that PFN ≤ δ . But such an approach intro-
duces a dependence on the network size which does not favor our approaches, since we expect |K| � N. Therefore,
instead of the above restrictive requirement, in the first case of Lemma 5 we include a more sensible criterion. In
particular, we require that all site vectors do not get too close to the boundary of C and that sites perform a number of
sampling trials in each execution of the monitoring phase during an update cycle. Our proof reasons about this choice.
Note that this requirement is restricted to the monitoring phase. During a partial synchronization, the coordinator
simply probes vectors of sites of one, say the first, trial to decide the necessity of a full synchronization. Then, based
on Inequality 8 we are always FN safe with probability δ during that phase.
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Lemma 5. The revised Sampling-Based GM Scheme in the convex safe zone (CV) context under the mapping of
Lemma 4 yields:

• PFN ≤ δ +0.01 i f M trials
∧
∀Si ∈ {S1, . . . ,SN}, |dC(e+∆vi)|√

2
> εC

• PFN = O(δ
|Z|M√

N ) otherwise

where 1 ≤M ≤
⌈

`og(0.01)

`og
(

e−0.042
√

`n(1/δ )N
)⌉ and Z (more precisely Z(t)) denotes the set of threshold crossing sites. Thus,

one can properly tune δ to obtain the desired FN probability.

Proof. In Appendix.
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Figure 8: M versus N for various values of δ in the CV context.

Figure 8 shows practical values for M varying the value of N for different δ choices. It can easily be observed
that, for highly distributed settings, 2-4 sampling trials can be sufficient for the first case of Lemma 5 to hold. In the
proof of Lemma 5 we show that for D̂C < −εC to hold, we need to ensure enough sample size |K|. Because of this,
notice that in Figure 8 as δ decreases, so does M, because |K| expectedly increases. This is in contrast to Figure 3,
because in Lemma 2 we are interested in |K|

N·gi
and when δ decreases, |K| expectedly increases while 1

N·gi
decreases

(decreasing δ increases gi, gC
i ).

In Figure 8 observe that for lower N this revised scheme may require a few more sampling trials compared to
Figure 3. However, this is not supposed to worsen the FP rate of the current scheme compared to the scheme of
Section 2.2. The reason, as we discuss in Example 6, is that if ∂C � ∂T , a threshold crossing site producing an FP
will have gi ≥ gC

i . Obviously, if C is large gi� gC
i .

Regarding FNs, the bound of the first case of Lemma 5 is equivalent to that of Lemma 3, but under different
conditions. The difference is that in order to achieve this bound we require all the sites to avoid the εC−zone,
while the first case of Lemma 3 poses this requirement (for the ε−zone) only for the sampled sites of a single
trial. Assume that ε was equal to εC for comparison purposes. Now, notice that the requirement of the first case
of Lemma 3, for ∂C � ∂T , is interpreted to the center of the ball being away from C by > ε +‖∆vi

2 ‖: ‖e+
∆vi
2 −∂C‖

> ε +‖∆vi
2 ‖. This is already more restrictive than simply requiring ‖e+∆vi− ∂C‖ > ε , because ‖e+ ∆vi

2 − ∂C‖
> ε +‖∆vi

2 ‖ ⇒ ‖e+∆vi− ∂C‖ > ε , but not vice versa. So if we interpret the latter, looser condition in our current
scheme, we are going to have |dC(e+∆vi)|> εC. For reasons explained in our proof we require the slightly different
|dC(e+∆vi)|√

2
> εC condition to hold. This condition should hold for every site and not only the sampled ones, but this is

due to the fact that |dC(e+∆vi)| approaches zero near ∂C contrary to ‖∆vi‖.
The second case of the lemma is derived similarly to that of Lemma 3. Our analysis in Section 3 regarding the

evolution of PFN probability with time, also holds here for analogous reasons.

Example 6. Getting back to our running example, we use Figure 6(i) to illustrate the basic differences between the
sampling-based monitoring protocols of Section 2.2 and the current one, for the simple case of a single sampling trial.
In Figure 6(i) we include the true threshold surface and the safe zone of Figure 6(f) (the discussion would be similar for
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Figure 9: Error Ratio: Vector Bernstein (without simplification, Section 2.2) over the McDiarmid’s Inequality used in our revised
scheme.

the safe zone of Figure 6(g)). We focus on site S4 (see Figure 6(a)) which now possesses a different e+∆v4 = [8,3,3].
Because e+∆v4 invades the threshold surface and the safe zone, B(e+ ∆v4

2 , ‖∆v4‖
2 ) crosses the threshold surface and

simultaneously dC(e+∆v4) > 0 as Figure 6(i) shows. We again assume N = 10 but, in Figure 6(i) we only show
e+∆v4 to keep the illustration focused.

Consider no actual threshold crossing exists, i.e., both v is in the admissible region and DC < 0 and in the rest of
the sites no local constraint is violated. Hence, a FP synchronization will be caused in each of the sampling-based
monitoring schemes depending on whether S4 is sampled with gi, in the framework of Section 2.2, or gC

i in the current
framework. Let us now examine which of the two monitoring protocols is more likely to produce a FP.

Based on e+∆v4 mentioned above ‖∆vi‖ ≈ 7, while the signed distance is dC(e+∆v4)≈ 4.5. Thus, for δ = 0.05
and U = 17.3, g4 = 0.39 and gC

4 = 0.25. g4 > gC
4 and therefore if S4 produces a single random number ρ (i.e.,

simultaneously executing the two protocols) and check g4 > gC
4 ≥ ρi, gC

4 ≥ ρ means that g4 ≥ ρ , but not vice versa.
Thus, using the protocol of this section and the new gC

i may avoid such a FP. gC
4 can produce a FP, while gi does not,

only if e+∆v4 is positioned in the area between C and T due to the small distance between the two surfaces.
Therefore, the generic observation is that if ∂C � ∂T as in Figure 6(g), the sampling-based monitoring scheme

of the current section will produce less FPs compared to that of Section 2.2. This is because for sites crossing C,
gi > gC

i always holds. In practice, because C is not attached to each and every position of T and εC ≤ ε , the scheme
introduced in the current section also reduces FNs (see Section 6.6).

Discussion and Summary. Summarizing the revised sampling-based GM scheme tailored for our novel unidi-
mensional mapping, for δ ∈ (0,e−1) we derive:

gC
i = |dC(e+∆vi)|`n(1/δ )

U ·
√

N
Sampling Function

εC = 1√
2
√

`n(1/δ )
·U D̂C Estimation Error

O(`n(1/δ )
√

N) Expected Sample Size

(9)

Hence for identical δ and U (due to Inequality 6), our revised sampling-based scheme provides equivalent (worst
case) expected sample size, but reduces the approximation error since εC ≤ ε . The amount by which the approximation
error is reduced depends on the chosen δ . Figure 9 plots the error ratio yielded by the Vector Bernstein Inequality [31]
over McDiarmid’s Inequality [36]. It can easily be observed that for the δ values we consider in our sampling
schemes the error is reduced by roughly a factor of 2 or more. This means that the monitored quantity is tracked more
accurately and therefore, from a monitoring perspective, this fact should have the impact of reducing the amount of
false decisions throughout the tracking process. Our experimental evaluation (Section 6.6) shows that this is indeed
the case. For instance, the techniques devised in this section can optimize our generic sampling-based GM scheme
of Section 2.2 further reducing the amount of FNs up to a factor of 6 or (also due to our proposed unidimensional
mapping) providing additional decrement to the size of the communicated data by up to a factor of 5.

5. Related Work

Abundant works focuses on efficiently performing monitoring tasks over distributed data streams. Some of them
were already mentioned in Section 1, while [1] presents a recent survey on related techniques. Here, we concentrate
on studies closely related to the GM framework and site sampling techniques.

25



Monitoring General Threshold Functions. The basic operation of the GM framework was introduced in [5]. Our
work, after pointing out the shortcomings that arise in highly distributed data streams, proposes techniques to ef-
fectively confront existing scalability issues of the GM framework. [5] also proposes a balancing optimization to the
basic scheme to further reduce the communication cost of their approach. However, this balancing technique is merely
a heuristic for which we experimentally (Section 6) show that is hardly adequate in highly distributed settings.

The GM framework has been enhanced in [21], where ellipsoidal instead of spherical local constraints are con-
sidered. These methods are orthogonal to the algorithms that we develop. However, [21] assumes that data follows a
multivariate normal distribution; furthermore, [21] also suffers from scalability issues, since using ellipsoids instead
of hyperspheres neither alters the fact that the higher N is, the larger the area being monitored nor reduces the cost of
a false positive central data collection.

The recently introduced prediction-based GM [18, 19] constitutes another technique that is orthogonal to the
methods that we present in our work. However, [18, 19] heavily depends on accurate predictions of the local vectors
maintained at each site. Nonetheless, accurately predicting several vector components over many sites becomes in-
creasingly harder with the increase of the network scale. This is also demonstrated in our experimental evaluation.
The latest advancements regarding GM-based monitoring [14, 27] show that for certain function classes the perfor-
mance of the tracking process can be improved by utilizing a convex safe zone idea. The basic principle behind the
safe zone approach is to compute in hand a sufficiently large convex subset of the input domain that does not intersect
the threshold surface. Using the convexity property of this subset, an exact convex hull (i.e., without considering
covering spheres) can be checked for threshold crossings in a distributed manner. As we claim in Section 4 and
experimentally validate in Section 6.6, the techniques we develop in this work are directly applicable in the setup
of [14, 27] to amend scalability issues. Beyond that, based on the ideas of [14, 27], in the current work we present a
novel mapping of the monitoring task from a multidimensional input domain of arbitrary dimension to an equivalent
task on a unidimensional space and accordingly propose revised sampling-based tracking mechanisms tailored for the
new setting.

A number of works design techniques that are geometric in nature but, contrary to our approach, focus only
on specific types of functions. [37] considers functions with bounded deviation and introduces a tentative bound
algorithm to monitor threshold queries in distributed databases (rather than distributed streams), while [38] focuses on
vectorial top-k aggregation queries over distributed databases. The work in [12] couples sketch summaries with the
GM framework focusing on join aggregates, special cases of L2-norms and range aggregates (e.g., quantiles, wavelets,
and heavy-hitters over the streams). The work in [13] utilizes GM for outlier detection in sensor networks, reducing
the problem to multiple monitoring tasks, with each task involving only the pair of nodes whose similarity is to be
monitored. [39] proposes an approach, for monitoring heterogeneous streams by defining constraints tailored to fit the
specific data distributions of sites.
Site Sampling Techniques. The sampling component we develop is a part of our tracking schemes that jointly
allow the monitoring of any generic function f : Rd → R. This is the main breakthrough that distinguishes our
overall contributions compared to individual site sampling techniques that can only handle linear functions such as
counts and frequencies [32, 33, 34] or second frequency moments [40]. Besides this crucial distinction, our sampling
component alone possesses more generic characteristics compared to existing site sampling approaches [32, 33, 34,
40]. These characteristics can be summarized as follows: (a) our analysis, from approximation quality issues to
extracted estimators and expected communication savings is multidimensional in nature. This also holds for the
extensions discussed in Section 4 which may take advantage of the unidimensional mapping we propose, but the
sampling function and extracted estimator are derived based on the (topological) relation among site local vectors and
convex bodies (safe zones) of arbitrary dimensionality. On the contrary, [32, 33, 34, 40] define sampling schemes
operating on a single dimension, (b) our techniques are tailored to support monitoring procedures while [32, 33]
focus on one-shot queries, (c) Our algorithms do not incorporate any assumption about local input monotonicity or
boundedness and are capable of handling unbounded, non-monotonic local inputs (updates). The techniques in [32,
33, 34, 40] assume bounded updates, while [32, 33, 34] are restricted to positive inputs only. (d) [32, 33, 34, 40]
are focused on ensuring accuracy relative to the current global frequency or count which can be known only after
acquiring the sample. Our algorithms abide by predetermined accuracy constraints, which is a necessary feature in
our setting. Due to the above limitations, [32, 33, 34, 40] are not applicable in our setup.

In [35], we presented our generic sampling-based geometric monitoring scheme for scalable, distributed monitor-
ing of non-linear functions. In the current work, we build on the work of [35] coming up with a revised Lemma 2.
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In Section 4 we extend and optimize our sampling-based framework upon operating in the context of the convex safe
zone idea [14, 27]. The latter concept describes the most recent advances in GM based functional monitoring. We
accordingly enhance our experimental evaluation to practically test our aforementioned extensions in Section 6.6.
Eventually, Section 7 also adds up to the work of [35] by providing a comprehensive study on sum- (instead of
average-) parameterized function monitoring that has not been analyzed in any of the GM related works mentioned in
our above discussion.

6. Experiments

We developed a simulation environment in Java in order to evaluate the performance of our techniques. For
our sampling-based monitoring techniques we use SGM to refer to the generic sampling-based monitoring scheme
presented in Section 2.2, materialized by the sampling function of Section 3 upon using a single sampling trial, i.e.,
M = 1. This forms a worst case for the FN rate of the technique. We use M-SGM to denote the same sampling-based
monitoring scheme upon employing a number of trials M as prescribed in Lemma 2(c). Since we show that the two
alterations exhibit equivalent communication performance (and thus FP rates), in the text we refer to SGM for either
of the two, but use the worst case alternative (SGM) upon commenting on FN rates. We compare the communication
cost (number of messages) as well as the number of FP and FN synchronization decisions of SGM, M-SGM against
the other GM related techniques proposed in the literature. More precisely:

• The Geometric Monitoring framework of Section 1.1 introduced in [5], termed GM.

• The GM framework enhanced with the balancing optimization presented in [5], termed BGM. In BGM, the
coordinator tries to probe a subset of ∆vis that may partially cancel out the crossing ones due to their different
direction. If such a subset exists, it knows that v(t) has not crossed the threshold without requiring a full
synchronization. Please refer to [5] for more details.

• The Prediction-Based Geometric Monitoring Framework, and in particular the CAA technique proposed in [18,
19], henceforth referred to as PGM. We adopt a Velocity-Acceleration predictor and present the best perfor-
mance PGM shows upon varying the window according to which predictions are formed from 3 to 10 measure-
ments (roughly the amount of data updates received hourly).

We emphasize that these competitor approaches are also orthogonal to our sampling-based SGM framework.
Despite this fact, to better perceive the benefits of our novel SGM approach and expose its features, in our experimen-
tation we form a worst case scenario for SGM by not applying any orthogonal approach on top of it. Moreover, note
that BGM and PGM are not orthogonal to each other, since the CAA approach [18, 19] switches among monitoring
models instead of balancing their drift vectors.

GM, BGM, PGM and SGM are generic and can serve the monitoring purposes of any given function employing
balls in their local threshold crossing checks. Moreover, we experiment with the convex safe zone idea of [14, 27]
discussed in the introductory part of Section 4, denoted by CVGM, and the revised version of our sampling-based
scheme, denoted by CVSGM, presented in Section 4.2. This is because CVSGM essentially optimizes SGM in the
context of the convex safe zone idea. For CVSGM we do not include a corresponding, separate line for M-CVSGM,
first because we have already shown for SGM that the effect of a roughly equivalent M on FPs is marginal, second
because we exhibit that we do not need more than one trials for the scheme of Section 4 to provide improvements
in terms of faulty decisions compared to SGM, M-SGM and third in order to keep the respective plot readable. We
study CVGM, CVSGM separately in Section 6.6, however, we stress that our comparative analysis remains holistic
combining the performance results of all the competitors. Additionally, since our CVSGM approach takes advantage
of our novel unidimensional mapping (Section 4.1), we also examine its performance in terms of transmitted bytes
along with the number of transmitted messages.
Data Sets. We utilize two real world datasets. The first dataset is the Reuters Corpus (RCV1-v2) [41] data, termed
Reuters, also used in related work [5, 21, 18]. It is composed of 804414 records of news stories which have been
categorized and have been tagged with a list of terms (features). As in previous works [5, 21, 18], we focus on
tracking the terms Febru, Ipo, Bosnia and their co-occurrences with the Corporate/Industrial category. We monitor
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Figure 10: Reuters Data Set: Performance of our Techniques on χ2 Monitoring

the relevance between a (term, category) pair using the χ2 function which had been used in previous GM-related
work (please refer to [18, 19] for more details). We use a sliding window of 200 documents for this dataset which
is roughly the amount of news stories received daily [18, 19]. Since the number of records in the data is limited, we
use the Reuters data to evaluate our algorithms in medium sized distributed settings of size N = 50 to N = 100 and
provide some initial comparisons with related works [5, 18, 19] which also use up to 100 sites.

The second dataset, termed Jester [42], contains 4.1 million ratings between −10 and 10 on 100 jokes from
73421 users. We use this dataset to approximately monitor the sum in buckets of equi-width histograms of the
above rating range, based on L∞ distance as well as the Jeffrey Divergence (JD) [43]. More precisely, we use these
functions to measure the distance (cost) of encoding the current global histogram at each time instance, to the one
communicated during the last central data collection. In addition to L∞ and JD, the third function we experiment on, is
the tracking of the Self-Join (SJ) size [19, 12, 6] (essentially the L2 Norm) of the vector hosting the expected counts in
the aforementioned histogram buckets. Since users provide ratings for 100 distinct cases, we utilize a sliding window
of 100 observations for this dataset. Regarding the degree of distribution, we vary N between 100 and 1000.
Metrics and Parameter Settings. Throughout our study, for each (dataset, function) pair we initially measure the
number of communicated messages while varying the value of the threshold T , keeping the number of sites to a fixed
value that equals the average (N = 75 for Reuters and N = 500 for Jester) of the aforementioned distribution ranges.

Then, for the average threshold, we investigate the communication cost for increasing network scales. In the Jester
dataset where larger network sizes can be tested, we also investigate the cost of messages per site (instead of just the
total number of messages), as this gives an indication on how the cost of each site scales when the number of sites
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increases. For large numbers of sites and for constrained applications such as sensor networks, where an increased
number of transmitted messages results in reduced network lifetime, this per site cost should ideally remain steady (or
slowly increase) as we scale to larger networks.

For SGM, we also vary the tolerance constraint i.e., the application defined probability δ , between 0.05 and
0.3 with a default value of 0.1, and perform a sensitivity analysis on the number of false (FP, FN) synchronization
decisions in comparison with the FPs produced by the best (at each case) of the competitors. In addition, for CVSGM
which incorporates our unidimensional mapping and can resolve FPs by centralizing a single value per site instead of
a vector, we also measure the overall number of transmitted bytes compared to SGM.
Main Findings. The experimental analysis demonstrates that our sampling-based SGM method significantly reduces
the number of transmitted messages and the number of false positives, with the benefits becoming more profound
when the number of sites increases. Please note that, since in GM each false positive results in communication
from all sites and the coordinator, significantly reducing the number of false positives translates into a corresponding
bandwidth reduction (or energy consumption reduction, in case of applications with sensor sites) on each site. This is
validated by the scalability experiment performed on the (larger) Jester dataset, where the corresponding benefits per
site, compared to GM, increase in larger network setups. Moreover, the false negatives of SGM (and thus M-SGM)
are in all cases lower than the specified tolerance parameter δ while M-SGM, SGM have marginal differences in their
FP rates in all cases. Finally, our results demonstrate that the CVSGM approach that revises SGM in the convex safe
zone context can indeed optimize SGM by further reducing the number of false (FP,FN) decisions and the amount of
communicated bytes due to the unidimensional mapping it employs.

6.1. Reuters Dataset Monitoring

We first focus on the Reuters dataset. Figure 10(a) and Figure 10(b) present the communication cost of GM, BGM,
PGM and SGM while varying the threshold and the scale of the distributed network for the default value of δ = 0.1
when monitoring the χ2 function. We present results for the “Febru” term; the trend is similar for “Bosnia” and “Ipo”.

In both figures, the plots corresponding to GM, BGM almost coincide, showing that in this data set the balancing
optimization does not reduce communication cost. The reason is that, when many sites cross the threshold surface
moving towards similar directions, there exists an additive effect on their ∆vi’s. Therefore, the coordinator probes
almost all of the non-crossing sites so as to balance the added drift. PGM performs only slightly (about 20 percent)
better than BGM and GM.

SGM, however, reduces bandwidth consumption from 3.8 times for T = 0, to more than an order of magnitude
compared to the other candidates for the rest of threshold values (Fig. 10(a)). In addition, SGM requires less than
an order of magnitude (between 13 and 16 times) messages than its competitors across different network scales
(Fig. 10(b)). The benefits of SGM increase with the number of sites as, not only does it reduce the number of FPs
(also depicted in Figure 10(c)), but also in most potential FPs, it only requires transmission from O(

√
N) sites, in

comparison to O(N) sites for the other techniques.
Figure 10(c) presents a sensitivity analysis of the effect of δ on the number of FP, FN decisions. Recall that FPs are

responsible for the unnecessary portion of communicated messages. As a result, our sensitivity analysis also exposes
the trade-off among bandwidth consumption caused by FPs and accuracy in terms of FNs for SGM. The horizontal
bars depict the number of FP decisions of PGM (which, as we just showed, performs better than GM and BGM)
compared to the FP and FN decisions of SGM, under different δ values ranging between 0.05 and 0.3. FPs and FNs
for each given δ are drawn in stacked bars as explained by the corresponding legends, while the overall length of the
bars represents the total number of false decisions.

SGM yields more than an order of magnitude reduction in the amount of false decisions (represented by the total
length of the stacked bar of FP, FN counts) compared to the second best alternative, PGM. Figure 10(c) demonstrates
that increasing δ causes FP decisions to be reduced by more than 15% in each bar of the histogram. FNs slightly
increase with increasing δ values, but are very rare in all cases. The reduction in FP with increased δ values is easily
understood, since the expected sample size is proportional to `n(1/δ )

√
N. Thus, increasing δ decreases the sample

size and, thus, the monitored convex hull responsible for FPs. Regarding FNs, they are rare in all cases. For instance,
for SGM and δ = 0.05, ∼8000 updates arrive per site (see the size of the Reuters data set and N ≤ 100) and the
number of FNs is just 61, which corresponds to a ratio lower than 0.01. SGM typically results in fewer FNs (in this
experiment, always by at least a factor of 5) than the δ according to which the tolerance to FNs is tuned.
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Figure 11: Jester Data Set: Performance of our Techniques on L∞ Monitoring

6.2. Jester Dataset Monitoring

We now focus on the Jester dataset which, due to its larger size, allows us to also perform tests in larger topologies.
Please note that in all the plots of this section, the lines corresponding to SGM, M-SGM almost coincide and thus,
only the line of M-SGM is visible. The default number of sites used in this dataset is 500. Two general observations
follow from Figure 11, Figure 12:
• In this larger scale dataset, the performance of the PGM approach is equivalent to the baseline GM. This validates
our claim in Section 5, where it was noted that PGM may perform well in small to medium sized network distributions,
but increasing the network scale renders the existence of inaccurate predictors in some sites more probable and, thus,
PGM becomes more prone to FPs.
• Figure 11 shows that balancing may be more of help in reducing the bandwidth consumption in that particular
(function, dataset) pair. Nonetheless, in Figure 12 where only the function and the threshold value (surface) is altered,
BGM provides no improvements. This, together with its poor performance on the Reuters data experiments, comes
as no surprise, as BGM adopts a simple heuristic, hoping to probe sites with drift vectors of opposite direction com-
pared to the threshold crossing ones. Hence, contrary to SGM, BGM does not guarantee communication reduction.
Furthermore, contrary to our proposed SGM approach, none of the BGM or PGM mechanisms provide a way to tune
the expected bandwidth consumption according to posed accuracy standards.

Focusing on specific figures, in Figure 11(a) we point out that the bandwidth consumption achieved by our SGM
(star-marked line approaching the x axis in the figure) approach is from 25 to 64 times lower than the best alternative
(BGM). Moreover, upon varying the network scale between 100 and 1000 sites in Figure 11(b), the communication
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Figure 12: Jester Data Set: Performance of our Techniques on Jeffrey Divergence Monitoring

cost reduction by SGM reaches a factor of 64 for N = 900, while constantly being at least 20 times lower compared
to BGM, for different degrees of network distribution. Comparing the cost of SGM against PGM or GM, for instance
when N = 1000, SGM results in 206 times fewer messages, with at least 20 times fewer messages for any other
network scale.

Concluding our discussion on L∞, the sensitivity analysis in Figure 11(c) shows the trade-off among unnecessary
bandwidth consumption due to FPs and accuracy in terms of FN decisions for different δ ’s. SGM is compared to the
FPs in GM, as BGM causes full synchronization only progressively, thus FPs cannot be counted in a distinct manner.
As this figure shows, the number of FP decisions tends to be reduced upon increasing δ , while the number of FNs
tends to increase, both of which are the expected behavior. Given that about 4850 updates arrive in every site of the
network for the Jester dataset, the 148 FNs for δ = 0.3 correspond to a ratio of just 3% false negatives, while the
corresponding ratio for the∼110-120 FNs and for the rest of the examined δ values never exceeds 2.3%. Hence, once
again the amount of FNs is less than δ .

In Figure 12 we focus on monitoring the Jeffrey Divergence. In Figure 12(a) and Figure 12(b), all three competitive
techniques (GM, BGM and PGM) exhibit comparable performances. Our SGM framework reduces the consumed
bandwidth by up to a factor of 56 across different thresholds for N = 500 and the communication gains progressively
approach two orders of magnitude when increasing the network scale to N = 1000 sites (Fig. 12(b)). Regarding the
number of false synchronization decisions and the sensitivity on the chosen δ , Figure 12(c) shows the absence of FNs
and the reduction of FPs by about 20% as we increase δ above 0.1.
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Figure 13: Average Number of Messages Transmitted by each Site per Data Update

Additional Results: The total communication cost (across network scales) of Self-Join (SJ) size monitoring is pre-
sented in Section 6.6 - Figure 16 (a) together with the CVGM and CVSGM performance. There, we include a single
line for SGM, since as all the above illustrations show M-SGM has equivalent performance. For SJ, SGM yields more
than an order of magnitude reduction in transmission compared to GM, PGM. BGM can fall short compared to SGM
by up to a factor of 8, but typically yields between 2-3 times worse communication cost in terms of the number of
transmitted messages.

6.3. Messages Per Site in Large Networks

In order to validate our claim regarding scalability to larger network distributions and to resource constrained
environments, apart from measuring the total communication cost (number of messages) transmitted in the network,
we also study the average number of messages transmitted by each site. That is, we measure the average number of
messages a site transmitted per each update of its data. An average value close to 1 indicates that each site in the
network transmitted a message after each data update, which is equivalent to a synchronization process.

Figure 13 presents the average number of transmissions per site and data update for the GM and SGM schemes
in L∞, Jeffrey Divergence and in Self-Join size monitoring when varying the network scale. Figure 13 shows that
increasing the scale in GM (and the other alternatives that have similar performance to GM in Fig. 11(b), Fig. 12(b)
and Fig. 10(b)) results in a continuous increase in the number of transmitted messages per site. This is more evident
in L∞ monitoring where, starting at 800 sites, GM behaves as the naive choice of continuous central data collection,
since at least one site exhibits a local violation, which results in communication by all other sites as well. For Self-
Join size, it is not difficult to see that even for mediocre network scales of 100 sites, more than half of the updates
caused a synchronization in GM, while this percentage exceeds 80% for topologies with 800 or more sites. In Jeffrey
Divergence monitoring this effect is less pronounced until N = 500, but still each site transmits a message in over half
of its data updates for larger network sizes. On the contrary, the SGM approach is very slightly affected by the increase
in network distribution, since the number of sampled sites increases with the square root of the network size. Thus,
the benefits of SGM not only increase with larger network topologies, but it is also more appropriate for resource
constrained environments, such as battery-powered sensor networks, where it is desirable to reduce the amount of
communication per site in order to prolong the network lifetime.

6.4. Duration of FNs

A discriminating factor between FP and FN synchronization decisions is due to how they affect the monitoring
process. FP decisions have an instant effect, as the coordinator becomes aware of a FP, and the bandwidth overhead
it caused, by the end of a synchronization. Contrary to FPs, a FN decision has both the instant effect of saving
bandwidth (while it should actually not!), as well as a persistent effect. In particular, upon a FN occurrence and as
long as the threshold crossing lasts, the application continues to assume that the monitored function lies on one side
of T , while f (v(t)) had actually switched sides. This misconception is maintained by the coordinator until either a
synchronization (FP or not) takes place, or v(t) again switches to its initial side with respect to T . In Section 3 we
argued about the fact that the upper bound on the probability of FNs further decreases when threshold crossings span
multiple monitoring phases. Consequently, we enhance our study by concentrating on the anticipated duration of a
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Table 3: FN Duration - χ2 Monitoring

Threshold
0,5 1 1,5

#Sites Mode Mdn Mode Mdn Mode Mdn
60 1 3 1 3 1 2
70 1 4 1 3 1 2
80 1 3 1 3 1 3
90 2 3 1 4 1 2

100 2 3 1 2 1 1

Table 4: FN Duration - SJ Monitoring

Threshold
190 200 210

#Sites Mode Mdn Mode Mdn Mode Mdn
600 2 2 1 1 1 1
700 1 1 1 1 1 1
800 1 1 1 1 2 1
900 1 1 1 1 1 1
1000 1 1 1 3 1 1

FN decision, indicatively providing results for χ2 and SJ monitoring. These results correspond to SGM as it stands
for the worst case FN rate. We report holistic aggregates and in particular the Mode and Median (denoted by Mdn)
statistics for FN duration .

As both Table 3 and Table 4 demonstrate, the most frequent situation is the one where our proposed SGM approach
compensates the coordinator for a FN decision immediately after its occurrence, i.e., the corresponding duration is
1 time unit. This is expressed by the “Mode=1” value in the vast majority of the cases (listed in the corresponding
tables). On the other hand, interpreting the cited median values, we can observe that most of the times SGM needs no
more than 3 time units to compensate for a FN for χ2 (Table 3), while requiring 1 time unit (i.e., Mode=Mdn) for SJ
(Table 4).

Overall, we can conclude that even when SGM does produce FN decisions (recall that JD is practically FN free)
it possesses the ability to immediately compensate the tracking process for them. This is due to the fact that for low
δ values, the probability of missing the event of a threshold crossing in consecutive time units decreases with the
number of time units.

6.5. Comparison with a Bernoulli Sampling Variant

A question that naturally arises is what if we choose a simpler gi, instead of the one proposed in Section 3, which
uses the SGM framework but naively samples sites with equal probability, i.e., performs Bernoulli sampling. For a
fair comparison with our techniques, in case of this Bernoulli sampling variant each site’s gi is set to `n(1/δ )/

√
N

yielding analogous expected sample size (O(`n(1/δ )
√

N)) as the function that we proposed in Section 3 and M=1 is
used. Please note that the Bernoulli sampling variant still utilizes optimizations that we proposed in this paper, such
as the observation that sampled sites do not need to scale their ∆vi vectors by 1/gi (Lemma 2).

We compare SGM incorporating the gi of Section 3 (as in all previous evaluations), with the Bernoulli sampling
variant in terms of the number of transmitted messages for different network scales. Figure 14 presents the respective
comparison pairs for each monitored function (L∞, JD, SJ) in the Jester dataset. Pairwise comparisons shown in
the figure include SGM’s performance marked with the respective function abbreviation (e.g. L∞-SGM), against the
respective variant (e.g., L∞-Bernoulli).

According to Figure 14 we observe the following: (a) in SJ monitoring, SJ-Bernoulli performs 2-3 times worse
than our proposed SJ-SGM across the examined network scales, (b) in Jeffrey Divergence monitoring, JD-Bernoulli
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Figure 14: Comparison of SGM vs Bernoulli Sampling Variant
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Figure 15: Reuters Data Set: Impact of Revised Sampling on χ2 Monitoring

falls short from 6 to 36 times compared to our JD-SGM and (c) L∞−Bernoulli provides from 5 to 50 times more
transmitted messages than our L∞−SGM proposal. These ratios exhibit the ability of our proposed gi to decrease
communication burden compared to other, straightforward, sampling function choices. The differences in the perfor-
mance with the Bernoulli sampling variant are mainly attributed to the fact that, contrary to the gi we proposed in
this work (Section 3), Bernoulli sampling does not take into consideration the size of the local deviation vector ‖∆vi‖.
Thus, sites with small deviations that less affect the global average but lie near the threshold surface, are equally
probable to be included in the sample as peers with large ‖∆vi‖ that push the global average away from it. A plausible
characteristic is that such a behavior is not allowed by our proposed sampling function which incorporates ‖∆vi‖ in
its calculation formula.

6.6. CV Related Experiments

In this section we concentrate on studying the impact of the ideas introduced in Section 4 throughout the moni-
toring process. First we present the communication cost (number of transmitted messages) when applying the convex
safe zone concept [14, 27] on our monitored functions across various network scales without applying any of our
sampling techniques. This approach is denoted as CVGM in our graphs, where we also include the other approaches
to provide a holistic picture on their respective performances.

Next, we focus on our sampling-based schemes and apply our revised tracking method of Section 4.2 that takes ad-
vantage of the novel unidimensional mapping introduced in Section 4.1, which we term as CVSGM. Recall that, based
on our discussion in Section 4.1, our proposed mapping can reduce the amount of communicated data proportionally
to the data dimensionality, while Section 4.2 shows that our revised sampling-scheme reduces the approximation error
roughly by a factor of 2 (see Figure 9) for the practical δ values we examine in our evaluation. Therefore for CVSGM,
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Figure 16: Jester Data Set: Impact of Revised Sampling on SJ Monitoring

apart from measuring the total number of transmitted messages versus network scale, we analyze both the number
of FPs and FNs they yield as well as the number of communicated bytes. The first is to account for the effect of the
reduced approximation error on the number of false decisions, while the second illustrates the cumulative effect of our
unidimensional mapping. Since we found only slight (positive) effect of CVSGM on Jeffrey Divergence monitoring,
we next focus on χ2, Self-Join size and L∞ functions. In the current section, for each of the tested cases, we computed
the convex safe zone as the subset of the admissible region (i.e., where v can move without causing the monitored
function to cross the threshold surface) that corresponds to the maximal non-intersecting hypersphere [27].

Starting with the CVGM approach, as Figure 15(a) shows, it provides reduced number of messages compared to
GM, BGM, PGM that is only 2-3 times more than the respective number of SGM for network scales up to 100 sites.
However, Figures 16(a) and 17(a) expose the scalability issues that CVGM encounters for larger network scales (up
to 1000 sites) where its performance coincides with the worst competitors in the graphs. This validates the claim we
made at the introductory part of Section 4.

Turning to our sampling-based techniques, based on Figure 10(c), we see that the vast majority of false synchro-
nization decisions come from FPs and we found that CVSGM provides an identical number of FNs for the χ2 and
SJ functions. Hence, for these functions we focus on CVSGM’s impact on FP decisions, while for L∞, based on
Figure 11(c), we are primarily concerned with FNs.

Figure 15(a) and Figure 16(a) depict, apart from the performance of non sampling-based tracking schemes, the
improvement in terms of the number of transmitted messages provided by CVSGM compared to SGM in χ2 and SJ
monitoring (respective lines approach the horizontal axis). In these two graphs CVSGM can reduce the number of
transmitted messages by 25% to 60% under different network scales while keeping the δ parameter in its default 0.1
value. Let us now examine the reason for this improvement. Figure 15(b) and Figure 16(b) depict the number of FP
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synchronization decisions for different δ values for χ2 and SJ respectively. The stacked bar including CVSGM and
”CVSGM 1-d Res” shows the overall number of FPs for CVSGM and we will return to analyze its components in the
next paragraph. It can be observed that CVSGM can on average halve the amount of FPs for χ2 monitoring, while the
respective improvement for SJ monitoring is on the average about 1/3. These results are attributed to the ability of
our proposed CVSGM approach to reduce the amount of false decisions (also providing equivalent FNs) compared to
SGM due to the reduced approximation error (Figure 9) which, expectedly and as we just showed practically, makes
the tracking process more accurate.

Proceeding one step further, of particular interest in Figures 15(b) and 16(b) is the stacked bar including CVSGM
and ”CVSGM 1-d Res”. The latter counts the portion of FP decisions of CVSGM which were resolved by having
sites transmit a single value for their signed distance (Section 4.1) instead of their d−dimensional vectors, in which
case the coordinator simply checks if the average signed distance is negative (Lemma 4). Contrary to the width of
SGM and CVSGM, for CVSGM 1-d Res, the closer the bar to CVSGM, the more we gain because of our proposed
unidimensional mapping. As CVSGM 1-d Res in Figure 15(b) demonstrates, 40% to 50% of the FPs caused in
CVSGM can be resolved by transmitting only the 1− d signed distance value instead of sites local vectors, while
for SJ monitoring in Figure 16(b) almost each and every FP decision is efficiently resolved using our unidimensional
mapping across the given δ values (hence the corresponding bar is nearly empty). We again stress that CVSGM 1-d
Res does not represent additional FP decisions regarding CVSGM, but the portion of the total FPs (accumulated in
the respective stacked bar) that were resolved by transmitting a single value per site.

Let us now study the impact of both our proposed unidimensional mapping and the reduced approximation error
in terms of the bytes communicated throughout the tracking process. For χ2 monitoring, Figure 15(c) illustrates
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that for CVSGM, our proposed mapping mechanism can boost the almost 2 times average savings due to fewer
FPs (Figure 15(b)) to up to a factor of 4.3 (for δ = 0.1) in terms of communicated bytes compared to SGM. More
interestingly, in the case of SJ monitoring where, according to Figure 16(b), CVSGM reduces FPs by the more
moderate 1/3 ratio, savings in terms of communicated bytes reach a factor of 5 due to the fact that almost all of the
FPs can be resolved using a single signed distance value per site. It can easily be deduced that for tracking tasks of
higher dimensionality the savings provided by our novel mapping scheme of Section 4.1 would be even larger. We
leave experimentation with monitoring tasks of higher dimensionality to future work.

With respect to L∞ monitoring, for which we concentrate on FNs where our unidimensional mapping alone does
not have an impact on the transmitted bytes, Figure 17(a) shows that CVSGM exhibits an increased number of trans-
mitted messages compared to SGM. However, as Figure 17(b) demonstrates, CVSGM considerably decreases the
amount of FN synchronization decisions for all the tested δ values. For instance, for N = 500 and δ = 0.1 FNs are
reduced from 112 in SGM to 32 in CVSGM, i.e., by a factor of 3.5, which is equivalent to >40K additional messages
devoted to meaningful centralization decisions. Therefore, increasing the number of communicated messages is not
only acceptable but also desired in this case due to true threshold crossings. Moreover, in Figure 17(b) our CVSGM
approach can reduce the amount of FNs up to a factor of 6.2 which is an improvement solely attributed to the ability
of CVSGM to reduce the approximation error of the monitored (unidimensional) estimator.

7. Analysis of Sum-parameterized Functions

At the very beginning of the discussion in Section 1.2, we argued that the scalability issues that arise when
monitoring sum-parameterized functions are much more pronounced compared to the average case. There, we stressed
that this is because, apart from having more sites contributing vectors to form the convex hull (as happens with
average input), sum-parameterization requires all site drift vectors to be scaled proportionally to N. Hence, the size
of the convex hull and of the covering spheres increases with the network scale, making it much more prone to false
positives.

In this section, we provide the details for monitoring sum-parameterized functions, and study the impact of sum-
parameterization from different perspectives as well as in conjunction with our sampling-based approach. First, our
study focuses on the effect of sum-parameterization on the tracked input domain and then on the function range, for
different function categories. Finally, we prove that monitoring sum-parameterized functions can be transformed to
an equivalent problem of monitoring average-parameterized functions, which avoids scaling the drift vectors by N.
We then provide a theoretical analysis of the frequency of FP alerts.

7.1. Impact on Monitored Input Domain - The Adapted Drift Vectors Approach

Consider the case where the function that needs to be monitored is parameterized with the sum rather than the

global average, i.e., f (vsum(t)) ≶ T with vsum(t) = N · v(t) =
N
∑

i=1
vi(t). Such functions, for instance, include Lp norms

during approximate function monitoring queries [12, 19].
The proposed approach, henceforth termed the Adapted Vectors approach, focuses on adapting the drift vectors

(e(t)+∆vi(t)) used in the initial framework of Section 1.1 so that they can bound a volume of the input domain where
vsum(t) should lie. Towards this end, notice that vsum(t) can be expressed as (esum(t) = vsum(ts) stands for the global
sum at the synchronization time ts):

vsum(t) =
N
∑

i=1
vi(t) =

N
∑

i=1

N·vi(t)
N = esum(t)+

N
∑

i=1

N·∆vi(t)
N

The above equation shows that vsum(t) can be expressed as a convex combination of the (e(t)+∆vi(t)) vectors scaled
by N since N ·(e(t)+∆vi(t)) = esum(t)+N ·∆vi(t). As a consequence vsum(t) ∈Conv( esum(t) +N ·∆v1(t), . . . , esum(t)
+N ·∆vN(t)). In order to monitor the newly constructed convex hull in a distributed manner we also need to scale the
sites’ local constraints to ensure they cover it:

Conv(esum(t)+N ·∆v1(t), . . . ,esum(t)+N ·∆vN(t))⊂
N⋃

i=1

B(esum(t)+
N
2

∆vi(t),
N
2
‖∆vi(t)‖)
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Hence, the local constraint in each site Si is B(esum(t)+ N
2 ∆vi(t), N

2 ‖∆vi(t)‖), which is checked to judge whether it
invades the threshold surface. Obviously, the size of the monitored portion of the input domain and thus the possibility
of FP synchronizations increases with N.

7.2. Impact on Function Range

Section 7.1 concentrated on studying the effect of sum-parameterization on the (size of the) monitored input

domain. Here, we focus on the range of the tracked function. Note that since vsum(t) =
N
∑

i=1
vi(t) = N ·v(t), we actually

have f (v(t)) and f (vsum(t)) = f (N · v(t)) versions of f (·), which share the same multivariate (vector) input v(t) at a
different scale. We now wish to study the effect of the above linear scaling of the input on the function’s range. Our
aim is to obtain useful conclusions with respect to how the two versions of f (·) change and thus approach or draw
away from a given threshold T . For instance, if the two versions of the function are asymptotically equal, then their
values will be almost identical for large variable values, and they will simultaneously surpass any given T . On the
other hand, if f (N · v(t)) asymptotically dominates f (v(t)), f (N · v(t)) will most likely cross a given threshold before
f (v(t)) does.

To extract general conclusions with respect to the above questions, extended asymptotic analysis [44] to multi-
variate scalar functions can be used. We study the Relative Rate of Growth, RRG = `im

‖v(t)‖∞→∞

∣∣∣ f (N·v(t))
f (v(t))

∣∣∣, with ‖v(t)‖∞

denoting the L∞ norm. We analyze (not necessarily disjoint) function categories that include the majority of functions
used in GM related work, and show that most of the times we can derive a tight bound. In the rest of this subsection
we omit the temporal reference t.
Homogeneous Functions of constant degree α have the property: f (vsum) = Nα · f (v). Hence, RRG = Nα . When
α = 0, the two versions of the function are actually (not only asymptotically) equal. This is indeed the case for many
functions that have been used in GM-related work, including, χ2 score [21, 18], cosine similarity [13] or correlation
coefficient [21]. Additionally, general Lp norms [19, 12] are homogeneous of degree 1. Linear growth also holds for
divergence measures such as Kullback-Leibler and Jeffrey Divergence.
Polynomial Functions are very popular, for example vsum = [x,y], f (vsum) = 2 · x2+ 4 · x · y+ y2− 7. In this case,
f (vsum) = f1(v) ·Nα , with α denoting the degree of the polynomial. The function f1(·) is derived by dividing
f (vsum) by Nα , and if the polynomial is homogeneous it equals f (v). In our initial example where the polynomial is
quadratic [39], i.e., α = 2, f1(v) = 2 · x2

N2 + 4 · x·y
N2 +

y2

N2 − 7
N2 . In any case, f (·), f1(·) will be of the same degree and

RRG = Nα .
Rational Functions constitute quotients of polynomial functions. Therefore, they behave similarly to polynomials
with α being determined by subtracting the degrees of the numerator and denominator polynomial.
Composite Functions combining the above categories with:
Logarithmic Functions of the form, f (vsum) = `ogβ (g(vsum)). A logarithmic function f (·) of base β with a rational,
polynomial or general homogeneous input g(·) yields f (vsum) = f1(v)−α · `ogβ (N), where α is defined as described
in the respective function category. Mutual Information used in our running example is an instance of a logarithmic
function with a rational parameter, where α = 1. Hence, the factor N in the input has an additive effect on the function
value. However, the two versions of the function are again asymptotically equal since, RRG = 1.
Exponential Functions of the form f (vsum) = β g(vsum), β , 0, often exhibit the rate at which a tracked quantity decays
or grows [6]. The value of RRG depends on g(vsum). If it is a polynomial, then RRG = ∞ which is equivalent to f (v)
being dominated by f (vsum). For a rational g(vsum), α > 0 yields RRG = ∞ (dominance) and 1 (asymptotic equality)
otherwise.

7.3. A Function Transformation Approach

We now generalize our discussion of Section 7.2 to show how the monitoring task of a sum-parameterized function,
i.e. f (vsum(t)) = f (v(t) ·N) ≶ T , can be transformed to an equivalent average-parameterized problem. The latter
avoids scaling the drift vectors of GM by N, in principle offering an alternative solution (instead of the Adapted
Vectors approach of Section 7.1). We term the alternative approach proposed here as the Function Transformation
approach, and the question is then whether it encounters the additional scalability issues of sum-parameterization, even
after the scaling by a factor of N is no longer performed. We answer this question in the negative, by formally proving
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that irrespectively of the monitored function, threshold and transformation operators, the GM-based monitoring task
of the Adapted Vectors and the Function Transformation approaches yield equivalent tracking schemes.

The Function Transformation Approach is based on the simple observation we make in Section 7.2 that v(t) =
vsum(t)

N . Hence, the monitoring task involving the sum-parameterized function is equivalent to f (v(t) ·N) ≶ T . In
Section 7.2 we showed that for a wide range of function categories, f (v(t) ·N) can be decomposed to a function of the
global average f1(v(t)) and a function of N. For instance, for homogeneous, polynomial or rational functions it holds
that f (vsum(t)) = f1(v(t)) ·Nα . Generalizing the previous discussion, f (v(t) ·N) can be decomposed into two distinct
functions f (v(t) ·N) = f1(v(t)) ◦ f2(N), where ◦ denotes an operation between functions from the set {+,−, ·,÷}.
Let • denote the inverse operation of ◦ (i.e. from + to −, · to ÷ or vice versa); then the tracked function can be
transformed to one that is parameterized by the average vector v(t) (T,N are assumed a priori known):

f (vsum(t))≶ T ⇔ f1(v(t))≶ T • f2(N) (10)

and the original geometric monitoring framework can be utilized to accomplish the task as described in Section 1.1.
Interestingly, the transformed monitoring task does not require scaling the drift vectors of the sites by N.

The following lemma compares the threshold surfaces of the two methods:

Lemma 6. Let Cvsum = {rvsum ∈ Rd : f (rvsum) = T } denote the threshold surface of the monitoring task f (vsum(t))≶ T
and, for v(t)= vsum(t)

N , Cv = {rv ∈ Rd : f1(rv)= T • f2(N) } the threshold surface defined by the function transformation
according to Equivalence 10. Then, irrespectively of f (·), f1(·), f2(·):
a) There is a bijection that maps every rvsum ∈Cvsum to exactly one r′vsum ∈Cv.
b) Given (a), every possible distance between v(t) and Cv in the transformed setting is N times shorter than the
respective vsum(t) and Cvsum distance in the original, sum-parameterized task.

Proof. a) Notice that since f (rvsum) = T , then, according to Equivalence 10, f1(
rvsum

N ) = T • f2(N) and thus ∀rvsum ∈
Cvsum , r′vsum =

rvsum
N ∈ Cv. Similarly, ∀rv ∈Cv, N · rv ∈ Cvsum . Hence, there is a bijection that pairs every vector in Cvsum

with exactly one vector in Cv and vice versa.
b) Let us now examine the ratio of the corresponding distances. Simple calculations show that ∀rvsum ∈ Cvsum ,
‖vsum(t)−rvsum‖
‖v(t)− rvsum

N ‖ = ‖vsum(t)−rvsum‖
‖ vsum(t)

N − rvsum
N ‖

= N and r′vsum =
rvsum

N ∈Cv, as shown in (a). This completes the proof.

This result holds independently of the distributed protocol (GM or any other) used to execute the monitoring
process. The next lemma exploits Lemma 6 and shows that applying GM using the Function Transformation does
not amend the scalability issues of the Adapted Vectors approach. More precisely, it proves that irrespectively of the
category of the monitored function (Section 7.2), the intersection of the union of balls with the threshold surface in
the Function Transformation scheme is isomorphic (denoted by �) to (i.e. there is an invertible linear transformation
among the vectors of) the respective intersection in the Adapted Vectors scheme. Further, this linear transformation is
an isometry (scales every vector by a factor of N).

Lemma 7. The Function Transformation and the Adapted Vectors approach result in equivalent GM monitoring

schemes, i.e.:
N⋃

i=1
B(e(t)+ 1

2 ∆vi(t), 1
2‖∆vi(t)‖)

⋂
Cv �

N⋃
i=1

B(esum(t)+ N
2 ∆vi(t), N

2 ‖∆vi(t)‖)
⋂

Cvsum .

Proof. Sketch. In the proof of Lemma 6 we showed that there is an invertible linear transformation among the vectors
belonging to each threshold surface, i.e., ∀rvsum ∈Cvsum , rvsum

N ∈ Cv and ∀rv ∈Cv, N · rv ∈ Cvsum . To conclude the proof,
just consider the subset of these vectors that also belong to the intersection with the respective unions of balls (if
non-empty).

Extending the above to the convex safe zone in Section 4 requires noting that (a) the CV scheme would sim-
ply check e(t)+∆vi(t) and esum(t)+N ·∆vi(t) correspondingly, among which there is trivially an invertible linear
transformation, and (b) the threshold surface in CV is a special case of Cvsum ,Cv being convex.
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7.4. Effect of Sum-parameterization and Sampling-based Monitoring Performance in Practice
Since we just showed that the scalability issues are much more pronounced for sum-parameterized functions and

non-amendable even by function transformation, the usefulness (in terms of communication saving) of our sampling-
based approaches is expected to increase in this case. To further elucidate and practically study the effect of sum-
parameterization, we perform the following test: we track the same function - standard deviation (stdev - square
root of variance) - once parameterized by the sum (stdev(vsum(t))) and once by the average of sites’ local vectors
(stdev(v(t))), using the Jester data. Note that in this test stdev(v(t)) is different than the Function Transformation ap-
proach, since to study the pure effect of sum versus average input we do not apply T • f2(N). Function Transformation
has been proven equivalent to the Adapted Vectors approach which is represented by stdev(vsum(t)) performance.

With respect to the function value (Section 7.2), stdev(vsum(t)) scales linearly with N · v, but the results are anal-
ogous for the variance that scales quadratically. Thus, our study accounts for linear to super-linear growth with sum
input. Having parameterized the function by the sum and average input respectively, we choose two different thresh-
olds, both of which are never actually crossed by any version of the tracked function, so the monitoring in both versions
of stdev may only produce false positives. This choice is made in order to isolate the effect of sum-parameterization
which exacerbates false positives compared to the average case. Since parameterizing stdev by the average entails a
factor 1/N in the calculation of stdev, it receives lower (closer to zero) values for the average parameterization case,
while it is proportionately higher upon parameterizing the function by the sum of local vectors. Therefore, we choose
one threshold close to zero (0.1), and thus to the actual stdev upon parameterization by the average, termed ”lower
T”, and one threshold close to 100, termed ”upper T” that was close to the stdev value upon parameterizing by the
sum of local vectors.

The graph in Figure 18 measures the GM/SGM gain ratio over different network scales (N). We make the follow-
ing two observations:
• In the case of ”lower T”: comparing ”AVG lower T” against ”SUM lower T” shows that the ratio GM/SGM of the
latter is an order of magnitude (or more) higher than the respective ratio of the former. This holds despite the fact
that the ”lower T” threshold is far away from the actual values stdev receives upon parameterization by the sum of
local vectors. The reason for the ”SUM lower T” behavior is twofold: a) GM causes many more FPs compared to
”AVG lower T” since the drift vectors are scaled by N, b) these FPs are better amended by using our sampling-based
approach, as shown by the gains (ratio GM/SGM) which are proportionately higher in ”SUM lower T” compared to
the ”AVG lower T” case. The ”SUM lower T” remains stable across network scales (the small decline is due to the
fact that as sites are added they contribute their local values to the global sum which changes its position as well) for
this case where the threshold is far from the actual values the function receives.
• In case of ”upper T”: studying ”AVG upper T” demonstrates that if we place the threshold extremely far from the
actual (close to zero) value of the average-parameterized version of stdev, the respective GM/SGM receives its lowest
values. This is in contrast to the ”SUM lower T” behavior and is attributed to the fact that ”AVG upper T” does not
require scaling local vectors by N. On the other hand, despite the fact that the sum-parameterized version of stdev
never truly crosses the threshold, because ”upper T” is near the values it receives throughout the tracking process,
the GM/SGM ratio for ”SUM upper T” increases with the number of sites. In fact, doubling the network scale from
500 to 1000 sites causes over an order of magnitude increase in the GM/SGM ratio, which further demonstrates the
advantage of the proposed sampling-based approach.

8. Conclusions

In this work we rendered the GM framework, introduced in [5], capable of operating in highly distributed settings.
We initially studied the culprits that cause the GM approach and its variants to become impractical due to severe
scalability issues. To counter these issues, we introduced novel sampling-based GM techniques capable of perform-
ing the tracking process utilizing only a sample of the available sites. The sample size entailed by our methods is
proportional to

√
N and also depends on the application’s accuracy requirements. Our experimental evaluation using

a wide variety of functions, network scales, thresholds and related work comparisons shows that our sampling-based
techniques can significantly reduce the communication cost throughout the monitoring process while abiding by con-
trollable accuracy guarantees, outperforming the other competitors proposed in the literature. In that, we managed to
apply the geometric monitoring concepts on much higher network scales, far beyond what previous related techniques
had achieved.
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Appendix A. Proofs of Lemma 1, Lemma 2 and Lemma 5

Lemma 1. For Estimator 1 the following hold:
(a) Estimator 1 is an unbiased estimator of v when sampling ∀Si ∈ {S1, . . . , SN} with 0≤ gi ≤ 1.
(b) E[v̂] ∈Conv( e+∆v1, . . . , e+∆vN)

(c) v̂ ∈Conv({e+ ∆vi
gi
} : ∀Si ∈ K)

Proof.

(a) To prove that the estimator is unbiased we need to show that E[v̂] = v. Recall from Equation 1 that ∑
Si∈K

∆vi

gi
=

N

∑
i=1

∆
′vi and that E[∆′vi] = gi · ∆vi

gi
+(1−gi) ·0 = ∆vi. By applying the properties of the expected value we get:

E[v̂] = E[e+ ∑
N
i=1 ∆′vi

N ] = e+ ∑
N
i=1 E[∆′vi]

N = e+

N
∑

i=1
∆vi

N = v
(b) Obvious, since E[v̂] = v and v ∈Conv( e+∆v1, . . . , e+∆vN).
(c) v̂ is a convex combination of the e+∆′vi vectors and, therefore, lies in their convex hull. Since ∆′vi = 0 for all sites
not included in the sample, the convex hulls Conv({e+ ∆vi

gi
} : ∀Si ∈K) and Conv({e+∆′vi} : ∀i∈ [1,N]) coincide.

Lemma 2. (a) For a single sampling trial with sample of cardinality |K|:
v̂ ∈Conv({e+ |K|

N·gi
∆vi} : ∀Si ∈ K)⇒ v̂ ∈

⋃
Si∈K

B(e+ |K|
N·gi

∆vi
2 , |K|N·gi

‖∆vi
2 ‖)⇒∃Si ∈ K : v̂ ∈ B(e+ |K|

N·gi

∆vi
2 , |K|N·gi

‖∆vi
2 ‖)

(b) On expectation |K|
N·gi
≤ 1+ 1

N ≈ 1, ∀Si ∈ K.

(c) Assume each site Si ∈ {S1, . . . ,SN} performs 1 ≤M ≤
⌈

`og(0.01)

`og( `n(1/δ )√
N

+ 1
N )

⌉
independent (among sites and among tri-

als) sampling trials, using its own sampling function gi. Further assume that gis are chosen so that in each trial the

expected sample size is bounded by `n(1/δ )
√

N, i.e., E[|Kµ |] =
N
∑

i=1
gi ≤ `n(1/δ )

√
N, ∀µ ∈ [1,M]. Then, with 0.99

probability, there will be at least one trial that includes a version v̂µ of Estimator 1 in the GM-spheres (i.e, not scaled
by 1/gi) of Sis ∈ Kµ :

P

@v̂µ ∈ {v̂1, . . . , v̂M} : v̂µ ∈
⋃

Si∈Kµ

B(e+
∆vi

2
,‖∆vi

2
‖)

≤ 0.01

Proof. (a) For ease of exposition, and without loss of generality assume that e = 0. For any given sample K, from
Estimator 1 we have:

v̂ = ∑
Si∈K

∆vi

N ·gi
=

∑
Si∈K

|K|
N·gi

∆vi

|K|
⇒ v̂ ∈Conv({ |K|

N ·gi
∆vi},∀Si ∈ K)

This shows that v̂ can be expressed as a convex combination (average) of the K sampled sites and, having obtained
the sample, it will be included in Conv({ |K|N·gi

∆vi},∀Si ∈ K). Then:

Conv({ |K|
N ·gi

∆vi},∀Si ∈ K)⊆
⋃

Si∈K

B(
|K|

N ·gi

∆vi

2
,
|K|

N ·gi
‖∆vi

2
‖)⇒∃Si ∈ K : v̂ ∈ B(

|K|
N ·gi

∆vi

2
,
|K|

N ·gi
‖∆vi

2
‖)

(b) The above coefficients |K|
N·gi

are produced based on a sampling process where each site independently decides to
include itself in K or not, based on its own sampling function gi. Therefore, each such coefficient is produced as a
result of a pair of dependent random variables: the (global) sample size which incorporates the decisions of all sites
and the individual decision of a site with respect to Si ∈ K.

Let xi denote a random variable that receives the value of 1 if Si ∈ K with probability gi and 0 otherwise. Let X

denote the sum of xis, i.e., X =
N
∑

i=1
xi. Obviously, since xi = 0 for Si < K, X =

N
∑

i=1
xi = ∑

Si∈K
1 = |K|. Furthermore, yi
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denotes a random variable that receives the value of 1
N·gi

if Si ∈ K with probability gi and 0 otherwise. Then E[X · yi]

expresses the expectation of |K|N·gi
and since the two variables are correlated, the expectation of their product engages

their covariance: E[X · yi] = E[X ] ·E[yi]+Cov(X ,yi). Regarding Cov(X ,yi) we have:

Cov(X ,yi) = E[(X−E[X ])(yi−E[yi])] = (X−E[X ])(
1

N ·gi
− 1

N
)gi +(X−1−E[X ])(0− 1

N
)(1−gi) =

(X−E[X ])(
1
N
− gi

N
)+(X−1−E[X ])(

gi

N
− 1

N
) = (

1
N
− gi

N
)(X−E[X ]−X +1+E[X ]) = (

1
N
− gi

N
)

gi≤1
≤ 1

N

Because |K| ≤ N and for high N the term 1
N is negligible:

E[X · yi] = E[X ] ·E[yi]+Cov(X ,yi)≤ E[|K|] · 1
N ·gi

·gi +
1
N

=
E[|K|]

N
+

1
N
≤ 1+

1
N
≈ 1

(c) Due to Lemma 2(a) and again assuming e = 0 for simplicity, we know that if each Si ∈ {S1, . . . ,SN} performs
one sampling trial based on gi, there will be at least one site Sλ for which v̂ ∈ B( |K|N·gλ

∆vλ

2 , |K|N·gλ
‖∆vλ

2 ‖). The question

is what is the probability that the |K|
N·gλ

coefficient utilized in the ball of Sλ , which on expectation is at most 1+ 1
N

(Lemma 2(b)), happens to be > 1 and thus simply inscribing B(∆vλ

2 ,‖∆vλ

2 ‖) in site Sλ may (if Sλ is the only site whose
B( |K|N·gλ

∆vλ

2 , |K|N·gλ
‖∆vλ

2 ‖) includes v̂) leave v̂ uncovered by the area of the input domain tracked by the sample. Using
the same notation as in Lemma 2(b), we essentially seek to quantify the probability of X · yλ > 1. Since we only
assume primitive knowledge of an upper bound on E[|K|]≤ `n(1/δ )

√
N, fostering Markov’s inequality:

P(X · yλ > 1)≤ P(X · yλ ≥ 1)≤ E[X · yλ ]≤
E[|K|]

N
+

1
N
≤ `n(1/δ )√

N
+

1
N

The above bounds the probability of failing to monitor v̂ in case sites perform a single sampling trial. If we repeat
this process in M sampling trials, then M (not necessarily disjoint) samples will be formed, each monitoring a version
of Estimator 1, i.e., v̂µ ∈ {v̂1, . . . , v̂M} and in each trial there will be at least one site (not necessarily the same Sλ ) for
which v̂µ ∈ B( |K|N·gλ

∆vλ

2 , |K|N·gλ
‖∆vλ

2 ‖) and P(X · yλ > 1) ≤ `n(1/δ )√
N

+ 1
N . Therefore, the probability of failing to monitor

at least one v̂µ is at most
(
`n(1/δ )√

N
+ 1

N

)M
. Should we bound this probability by 0.01 and solving for M we finally get:

M ≥ `og(0.01)

`og
(
`n(1/δ )√

N
+ 1

N

)
so it suffices to pick M =

⌈
`og(0.01)

`og
(
`n(1/δ )√

N
+ 1

N

)⌉, but since `n(1/δ )√
N

+ 1
N is an upper bound on the tracking failure probability

of a single trial (i.e., the actual failure probability is smaller or equal), therefore the statement of the lemma, M ≤⌈
`og(0.01)

`og
(
`n(1/δ )√

N
+ 1

N

)⌉.

Lemma 5. The revised Sampling-Based GM Scheme in the convex safe zone (CV) context under the mapping of
Lemma 4 yields:

• PFN ≤ δ +0.01 i f M trials
∧
∀Si ∈ {S1, . . . ,SN}, |dC(e+∆vi)|√

2
> εC

• PFN = O(δ
|Z|M√

N ) otherwise

where 1 ≤M ≤
⌈

`og(0.01)

`og
(

e−0.042
√

`n(1/δ )N
)⌉ and Z (more precisely Z(t)) denotes the set of threshold crossing sites. Thus,

one can properly tune δ to obtain the desired FN probability.
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Proof. We first concentrate on the first case of the lemma. Initially notice that if there exists a sampled site with
dC(e+∆vi) > 0, that site will inform the coordinator and a synchronization phase will begin. During this phase, the
scheme is always FN safe with probability 1−δ due to Inequality 8.

We then examine the case when all sampled sites have a negative signed distance, i.e., dC(e+∆vi) < 0,∀Si ∈ K
and thus D̂C < 0. According to Inequality 8, in order to be FN safe with probability 1− δ in this case, D̂C < −εC
should hold. Based on Estimator 5, gC

i and εC = U√
2`n(1/δ )

:

D̂C = ∑
Si∈K

dC(e+∆vi)

N ·gC
i

<−εC⇔ ∑
Si∈K

dC(e+∆vi)

N · |dC(e+∆vi)|`n(1/δ )

U ·
√

N

<− U√
2`n(1/δ )

dC(e+∆vi)<0⇔
∀Si∈K

|K|>
√

`n(1/δ )N
2

This shows that D̂C < −εC ⇔ |K| >
√

`n(1/δ )N
2 . In other words, if dC(e+∆vi) < 0,∀Si ∈ K, D̂C < −εC strictly

depends on whether the scheme achieved sufficiently high sample size.

When ∀Si ∈ {S1, . . . ,SN}, |dC(e+∆vi)|√
2

> εC as required by the lemma, gC
i >

√
`n(1/δ )

N . Moreover, by the definition

of gC
i , |dC(e+∆vi)|<U and thus gC

i ≤
`n(1/δ )√

N
. For δ ∈ (0,e−1) as in Equation 4, `n(1/δ )>

√
`n(1/δ ) and overall:√

`n(1/δ )

N
< gC

i ≤
`n(1/δ )√

N
⇔
√

`n(1/δ )N < E[|K|] =
N

∑
i=1

gC
i ≤ `n(1/δ )

√
N

We now have a lower, apart from an upper, bound on the expected sample size. Therefore, we can use the lower
tail of Chernoff inequality [26] to bound the probability of not getting enough sample size. Formally, for α = 1− 1√

2
:

P

(
|K| ≤

√
N`n(1/δ )

2

)
= P

(
|K| ≤ (1− (1− 1√

2
))
√
`n(1/δ )N

)
≤ P

(
|K| ≤ (1− (1− 1√

2
))E[|K|]

)
=

P(|K| ≤ (1−α)E[|K|])≤ e−
α2E[|K|]

2 = e−

(
1− 1√

2

)2
E[|K|]

2 ≤ e−0.042E[|K|] ≤ e−0.042
√

`n(1/δ )N

This is a bound on the probability of failing to reach a sample of at least
√

N`n(1/δ )
2 size after one sampling trial

(per site and in the network). Should we instruct sites attempt M sampling trials, then either (a) at some trial a site with
dC(e+∆vi)> 0 will get sampled thus causing a (initially partial) synchronization, in which case the scheme is always
safe with probability 1−δ or (b) none of the sites that get sampled throughout the M trials will possess a dC(e+∆vi)>

0, in which case we are safe with probability 1−δ if in one trial D̂C <−εC ⇔ |K|>
√

`n(1/δ )N
2 . The probability of

having failed to gather enough sample size in at least one out of M trials is given by
(

e−0.042
√

`n(1/δ )N
)M

. Should we
bound this quantity by 0.01 and solving for M we get:

M ≥ `og(0.01)

`og
(

e−0.042
√

`n(1/δ )N
)

Thus, it suffices to pick M =
⌈

`og(0.01)

`og
(

e−0.042
√

`n(1/δ )N
)⌉. Since e−0.042

√
`n(1/δ )N is an upper bound on the failure

probability of a single trial, actually M ≤
⌈

`og(0.01)

`og
(

e−0.042
√

`n(1/δ )N
)⌉ trials are needed. This concludes our proof for the

first part of the lemma.
The second case of the lemma is introduced to cover situations where ∃Si ∈ {S1, . . . ,SN}, |dC(e+∆vi)|√

2
≤ εC. Then,

PFN depends on the number of threshold crossing sites. The analysis is similar to that of Sections 2.2 and 3 resulting
in Lemma 3, only this time εT stands for the minimum distance of ∂C from the true threshold surface (a priori known
and tunable based on the choice of C) and ‖∆vi‖ is replaced by |dC(e+∆vi)|.
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