
Communication-Efficient Distributed Online
Prediction by Dynamic Model Synchronization?

Michael Kamp1, Mario Boley1, Daniel Keren2, Assaf Schuster3, and Izchak
Sharfman3

1 Fraunhofer IAIS & University Bonn, {surname.name}@iais.fraunhofer.de
2 Haifa University, dkeren@cs.haifa.ac.il

3 Technion, Israel Institute of Technology, {assaf,tsachis}@technion.ac.il

Abstract. We present the first protocol for distributed online prediction
that aims to minimize online prediction loss and network communication
at the same time. This protocol can be applied wherever a prediction-
based service must be provided timely for each data point of a mul-
titude of high frequency data streams, each of which is observed at a
local node of some distributed system. Exemplary applications include
social content recommendation and algorithmic trading. The challenge is
to balance the joint predictive performance of the nodes by exchanging
information between them, while not letting communication overhead
deteriorate the responsiveness of the service. Technically, the proposed
protocol is based on controlling the variance of the local models in a
decentralized way. This approach retains the asymptotic optimal regret
of previous algorithms. At the same time, it allows to substantially re-
duce network communication, and, in contrast to previous approaches,
it remains applicable when the data is non-stationary and shows rapid
concept drift. We demonstrate empirically that the protocol is able to
hold up a high predictive performance using only a fraction of the com-
munication required by benchmark methods.

1 Introduction

We consider distributed online prediction problems on multiple connected high-
frequency data streams where one is interested in minimizing predictive error
and communication at the same time. This situation abounds in a wide range
of machine learning applications, in which communication induces a severe cost.
Examples are parallel data mining [Zinkevich et al., 2009, Hsu et al., 2011] and
M2M communication [Wang et al., 2013] where communication constitutes a per-
formance bottleneck, learning with mobile sensors [Nguyen et al., 2004, Predd
et al., 2006] where communication drains battery power, and, most centrally,
prediction-based real-time services [Dekel et al., 2012] carried out by several
servers, e.g., for social content promotion, ad placement, or algorithmic trading.

? A preliminary extended abstract of this paper was presented at the BD3 workshop
at VLDB’13. This research has been supported by the EU FP7-ICT-2013-11 under
grant 619491 (FERARI).

Here, due to network latency, the cost of communication can also be a loss of
prediction quality itself, because, in order to avoid inconsistent system states
some data points have to be discarded for learning whenever a communication
event is triggered. In this paper, we abstract on all these various motivations
and provide a protocol that aims to minimize communication as such. In par-
ticular, we provide the first protocol that dynamically adapts communication to
exploit the communication reduction potential of well-behaved input sequences
but at the same time retains the predictive performance of static communication
schemes.

In contrast to work on the communication complexity of batch learning [Bar-Or
et al., 2005, Ouyang et al., 2009, Balcan et al., 2012, Daumé III et al., 2012], we
consider the online in-place performance of a streaming distributed prediction
system. For this setting, earlier research focused on strategies that communi-
cate periodically after a fixed number of data points have been processed [Mann
et al., 2009, Dekel et al., 2012]. For these static communication schemes Dekel
et al. [2012] shows that for smooth loss functions and stationary environments
optimal asymptotic regret bounds can be retained by updating a global model
only after observing a mini-batch of examples. While such a fixed periodic com-
munication schedule reduces the communication, further reduction is desirable:
the above mentioned costs of communication can have a severe impact on the
practical performance—even if they are not reflected in asymptotic performance
bounds. Moreover, distributed learning systems can experience periodical or sin-
gular target drifts. In these settings, a static schedule is bound to either provide
only little to none communication reduction or to insufficiently react to changing
data distributions.

In this work, we give the first data-dependent distributed prediction protocol
that dynamically adjusts the amount of communication performed depending on
the hardness of the prediction problem. It aims to provide a high online in-place
prediction performance and, at the same time, explicitly tries to minimize com-
munication. The underlying idea is to perform model synchronizations only in
system states that show a high variance among the local models, which indicates
that a synchronization would be most effective in terms of its correcting effect
on future predictions. While the model variance is a non-linear function in the
global system, we describe how it can be monitored locally in a communication-
efficient way. The resulting protocol allows communicative quiescence in stable
phases, while, in hard phases where variance reduction is crucial, the protocol
will trigger a lot of model synchronizations. Thus, it remains applicable when the
data is non-stationary and shows rapid concept drifts—cases in which a static
scheme is doomed to either require a high communication frequency or suffer
from low adaption. We show theoretically (Sec. 3.1), that, despite the communi-
cation reduction achieved by our dynamic protocol, it retains any shifting regret
bounds provided by its static counterpart. We also demonstrate its properties
empirically (Sec. 4) with controlled synthetic data and real-world datasets from
stock markets and the short-message service Twitter.

2 Preliminaries

In this section we formally introduce the distributed online prediction task. We
recall simple sequential learning algorithms and discuss a basic communication
scheme to utilize them in the distributed scenario.

2.1 Distributed Online Prediction

Throughout this paper we consider a distributed online prediction system of k
local learners that maintain individual linear models wt,1, . . . , wt,k ∈ Rn of
some global environment through discrete time t ∈ [T] where T ∈ N denotes the
total time horizon with respect to which we analyze the system’s performance.
This environment is represented by a target distribution Dt : X × Y → [0, 1]
that describes the relation between an input space X ⊆ Rn and an output space
Y ⊆ R. The nature of Y varies with the learning task at hand; Y = {−1, 1} is
used for binary classification, Y = R for regression. Generally, we assume that
all training examples x ∈ X are drawn from a ball of radius R and also that
xn = 1 for all x ∈ X, i.e., ‖x‖ ∈ [1/n,R]—two common assumptions in online
learning (the latter avoids to explicitly fit a bias term of the linear models). All
learners sample from Dt independently in parallel using a constant and uniform
sampling frequency, and we denote by (xt,l, yt,l) ∼ Dt the training example
received at node l at time t. Note that, while the underlying environment can
change over time, we assume that at any given moment t there is one fixed
distribution governing the points observed at all local nodes.

Conceptually, every learner first observes the input part xt,l and performs
a real time service based on the linear prediction score pt,l = 〈wt,l, xt,l〉, i.e.,
the inner product of xt,l and the learner’s current model vector. Only then it
receives as feedback the true label yt,l, which it can use to locally update its
model to wt+1,l = ϕ(wt,l, xt,l, yt,l) by some update rule ϕ : Rn ×X × Y → Rn.
Let Wt ∈ Rk×n denote the complete model configuration of all local mod-
els at time t (denoting by wt,l the model at learner l at time t as above). The
learners are connected by a communication infrastructure that allows them to
jointly perform a synchronization operation σ : Rk×n → Rk×n that resets
the whole model configuration to a new state after local updates have been per-
formed. This operator may take into account the information of all local learners
simultaneously. The two components (ϕ, σ) define a distributed learning pro-
tocol that, given the inputs of the environment, produces a sequence of model
configurations W = W1, . . . ,WT . Its performance is measured by:

1. the in-place predictive performance
∑T
t=1

∑k
l=1 f(wt,l, xt,l, yt,l) measured by

a loss function f : Rn × Rn × Y → R+ that assigns positive penalties
to prediction scores based on how (in-)appropriately they describe the true
label; and

2. the amount of communication within the system that is measured by the
number of bits send in-between learners in order to compute the synchro-
nization operation σ.

Regarding the predictive performance, one is typically interested in bounding
the average regret of the model configurations produced by the protocol with
respect to a reference sequence U = U1, . . . , UT . For technical reasons, in this
paper we focus on the squared regret, i.e.,

R(W,U) =
1

T

T∑
t=1

1

k

k∑
l=1

(f(wt,l, xt,l, yt,l)− f(ut,l, xt,l, yt,l))
2 .

This type of regret is often referred to as shifting regret (see, Herbster and
Warmuth [2001]) and typically bounds are given in the total shift per node of the

reference sequence
∑T
t=1

∑k
l=1 ‖ut,l − ut−1,l‖2. Traditional results often restrict

regret analysis to the case of a static reference sequence, i.e., u1,1 = u1,2 = · · · =
ut,l. This is particularly useful if we consider the stationary scenario where
D1 = · · · = DT .

2.2 Loss-Proportional Convex Update Rules

Principally, the protocol developed in this paper can be applied to a wide range of
update rules for online learning (from, e.g., stochastic gradient descend [Zinke-
vich et al., 2010] to regularized dual averaging [Xiao, 2010]). For the formal
analysis, however, we focus on update rules covered by the following definition.

Definition 1 We call an update rule ϕ an f-proportional convex update for
a loss function f if there are a constant γ > 0, a closed convex set Γx,y ⊆ Rn,
and τx,y ∈ (0, 1] such that for all w ∈ Rn, x ∈ X, and y ∈ Y it holds that

(i) ‖w − ϕ(w, x, y)‖ ≥ γf(w, x, y), i.e., the update magnitude is a true fraction
of the loss incurred, and

(ii) ϕ(w, x, y) = w+ τx,y (Px,y (w)− w) where Px,y (w) denotes the projection of
w onto Γx,y, i.e., the update direction is identical to the direction of a convex
projection that only depends on the training example.

As a first example for update rules satisfying these conditions, consider the
passive aggressive update rules [Crammer et al., 2006]. These rules are
defined for a variety of learning tasks including classification, regression, and
uni-class prediction and can be uniformly described by

ϕ(w, x, y) = arg min
w′∈Rn

1

2
‖w − w′‖2 s.t. f(w′, x, y) = 0 (1)

where for classification f is the hinge loss, i.e., f(w, x, y) = max(1−y〈w, x〉, 0),
for regression the ε-insensitive loss, i.e., f(w, x, y) = max(|〈w, x〉 − y| − ε, 0),
and for uni-class prediction (where no x is observed and Y = Rn) the loss is
given by f(w, y) = max(|w − y| − ε, 0). It can be observed immediately that,
in all three cases, these update rules are an actual projection on the convex set
Γx,y = {w ∈ Rn : f(w, x, y) = 0}, which corresponds to a half-space, a 2ε-strip,
and an ε-ball, respectively. Hence, Cond. (ii) of the definition follows immediately

with τx,y = 1. Cond. (i) can then be verified from the closed form solution of
Eq. 1, which in case of classification is given by

ϕ(w, x, y) = w +
f(w, x, y)

‖x‖2
yx .

Using the data radius R, we can easily bound the update magnitude from below
as ‖w − ϕ(w, x, y)‖ > R−1f(w, x, y), i.e., Cond. (i) holds with γ = R−1. The
other cases follow similarly. Crammer et al. [2006] also gives other variants of
passive aggressive updates that have a reduced learning rate determined by an
aggressiveness parameter C > 0. These rules also satisfy the conditions of Def. 1.
For example the rule for classification then becomes

ϕ(w, x, y) = wt +
f(w, x, y)

‖x‖2 + 1
2C

yx .

Using ‖x‖ ∈ [1/n,R], one can show that this variant remains hinge-loss propor-
tional with γ = n−1(R2 + 1/(2C))−1, and the update direction is identical to
the same convex projection as in the standard case.

Another popular family of update rules for differentiable loss functions is
given by stochastic gradient descent, i.e., rules of the form

ϕ(w, x, y) = w − η∇wf(w, x, y)

with a positive learning rate η > 0. If one uses the squared hinge loss, f(w, x, y) =
1/2 max(1 − y〈w, x〉, 0)2, we have ∇wf(w, x, y) = y(1 − y〈w, x〉)x. Hence, this
update rule is hinge loss proportional with γ = η/n, and the update direction is
identical to the passive aggressive update rule for classification—that is, in the
direction of a convex projection. The same can be checked for regression using
the squared ε-insensitive loss and many other variants of gradient descent.

In the following we will define a static averaging protocol that reduces the
communication cost in a distributed online learning scenario and serves as base-
line to our dynamic synchronization protocol.

2.3 Static Averaging

In terms of cost, every synchronization operator lies between two extreme
baselines—constant broadcast of all training examples and quiescence, i.e., no
communication at all. The predictive performance of these two extremes in terms
of static regret lies between O(

√
kT) for serial learning (which is optimal for the

stationary setting, see Cesa-Bianchi and Lugosi [2006] and Abernethy et al.
[2009]) and O(k

√
T) for no communication, which corresponds to solving k sep-

arate online learning problems in parallel.
An intermediate solution is to only reset all local models to their joint average

every b rounds where b ∈ N is referred to as batch size (see Mann et al. [2009]
and Dekel et al. [2012]). Formally, this static averaging operator is given
by σ(Wt) =

(
W t, . . . ,W t

)
if t mod b = 0 and σ(Wt) = Wt, otherwise. Here,

Algorithm 1 Static Averaging Protocol

Initialization:

local models w1,1, . . . , w1,k ← (0, . . . , 0)

Round t at node l:

observe xt,l and provide service based on pt,l
observe yt,l and update wt+1,l ← ϕ(wt,l, xt, yt)
if t mod b = 0 then

send wt,l to coordinator

At coordinator every b rounds:

receive local models {wt,l : l ∈ [k]}
For all l ∈ [k] set wt,l ← σ(wt,1, . . . , wt,k)l

W t = 1/k
∑k
l=1 wt,l denotes the mean model. This choice of a (uniform) model

mixture is often used for combining linear models that have been learned in
parallel on independent training data (see also McDonald et al. [2010], Zinkevich
et al. [2010]). The motivation is that the mean of k models provides a variance
reduction of

√
k over an individual random model (recall that all learners sample

from the same distribution, hence their models are identically distributed). For
certain learning problems in the stationary setting, it can even be shown that
this protocol retains the asymptotically optimal regret of O(

√
kT) [Dekel et al.,

2012] for small enough batch sizes4.

For assessing the communication cost of this operation, we use a simplified
cost model that only counts the number of model vectors sent between the
learners: independently of the exact communication infrastructure, the number
of model messages asymptotically determines the true bit-based communication
cost. Using a designated coordinator note as in Alg. 1, σ can be applied to a
configuration of the distributed prediction system simply by all nodes sending
their current model to the coordinator, who in turn computes the mean model
and sends it back to all the nodes. Hence, the communication cost of static
averaging over k nodes with batch size b is O(kT/b).

While this is less than the naive baseline by a factor of b, in many scenarios
the achieved reduction might still be insufficient. In particular, for non-stationary
settings the batch size has to be chosen small enough for the protocol to remain
adaptive to changes in the environment so that the communication reduction
effect can be marginal. A big weakness of the scheme is that it is oblivious to
the actual model configuration observed, so that it also induces a lot of com-
munication in situations where all models are approximately identical. In the

4 Dekel et al. [2012] consider a slightly modified algorithm, which accumulates updates
and then only applies them delayed at the end of a batch. However, the expected
loss of eager updates (as used in Alg. 1) is bounded by the expected loss of delayed
updates in the stationary setting (as used in Dekel et al. [2012]) as long as the
updates reduce the distance to a loss minimizer on average (which is the case for
sufficient regularization; see again Zhang [2004, Eq. 5]).

following section, we present a data-dependent dynamic averaging operator that
can substantially reduce the communication cost while approximately retaining
the performance of static averaging.

3 Dynamic Synchronization

In this section, we develop a dynamic protocol for synchronizations based on
quantifying their effect. In order to assess the performance of this protocol from
a learning perspective, we compare it to the static protocol as described in
Alg. 1. After showing that this approach is sound from a learning perspective,
we discuss how it can be implemented in a distributed prediction system in a
communication-efficient way.

3.1 Partial Averaging

Intuitively, the communication for performing model averaging is not well in-
vested in situations where all models are already approximately equal. A simple
measure to quantify the effect of synchronizations is given by the variance of
the current local model configuration space, i.e., δ(W) = 1

k

∑k
l=1 ‖W −Wl‖2 .

In the following definition we provide a relaxation of the static averaging opera-
tion that allows to omit synchronization in cases where the variance of a model
configuration is low.

Definition 2 A partial averaging operator with positive variance threshold
∆ ∈ R and batch size b ∈ N is a synchronization operator σ∆ such that σ∆(Wt) =
Wt if t mod b 6= 0 and otherwise: (i) Wt = σ∆(Wt), i.e., it leaves the mean
model invariant, and (ii) δ(σ∆(W)) ≤ ∆, i.e., after its application the model
variance is bounded by ∆.

An operator adhering to this definition does not generally put all nodes into sync
(albeit the fact that we still refer to it as synchronization operator). In particular
it allows to leave all models untouched as long as the variance remains below
the threshold ∆ or to only average a subset of models in order to satisfy the
variance constraint. This is the basis for our dynamic averaging protocol. In the
following, we analyze the impact on the learning performance of using partial
averaging instead of static averaging. We start with showing that, given two
model configurations D and S, applying the partial averaging operator σ∆ to D
and the static averaging operator σ to S increases their average squared pairwise
model distances by at most ∆.

Lemma 3 Let Dt, St ∈ Rk×n be model configurations at time t ∈ N. Then

1

k

k∑
l=1

‖σ∆(Dt)l − σ(St)l‖2 ≤
1

k

k∑
l=1

‖dt,l − st,l‖2 +∆ .

Proof. We consider the case t mod b = 0 (otherwise the claim follows immedi-
ately). Expressing the pairwise squared distances via the difference to Dt and
using the definitions of σ and σ∆ we can bound

1

k

k∑
l=1

‖σ∆(Dt)l − σ(St)l‖2 =
1

k

k∑
l=1

‖σ∆(Dt)l −Dt +Dt − St‖2

=
1

k

k∑
l=1

‖σ∆(St)l − St‖2︸ ︷︷ ︸
≤∆, by (ii) of Def. 2

+2〈1
k

k∑
l=1

σ∆(Dt)l −Dt︸ ︷︷ ︸
=0, by (i) of Def. 2

, Dt − St〉+ ‖Dt − St‖2

≤∆+ ‖1

k

k∑
l=1

(dt,l − st,l)‖2 = ∆+
1

k

k∑
l=1

‖dt,l − st,l‖2 .

ut

In order to prove a regret bound of partial over static averaging it remains to
show that this increase in distance cannot separate model configurations too
far during the learning process. For this we show that f -propotional convex
updates on the same training example reduce the distance between a pair of
models proportional to their loss difference.

Lemma 4 Let ϕ be an f -proportional convex update rule with constant γ > 0.
Then for all models d, s ∈ Rn it holds that

‖ϕ(d, x, y)− ϕ(s, x, y)‖2 ≤ ‖d− s‖2 − γ2 (f(d, x, y)− f(s, x, y))
2
.

Proof. For w ∈ Rn we write Px,y (w) = P (w) for the projection of w on Γx,y
and w′ = ϕ(w, x, y). Since P (·) is a projection on a convex set, it holds for all
v, w ∈ Rn that

‖P (v)− P (w) ‖2 ≤ ‖v − w‖2 − ‖v − P (v)− w + P (w) ‖2 (2)

(e.g., by lemma 3.1.4 in Nesterov [2003]). Also since w′ = τx,yP (w) + (1− τx,y)w
by (ii) of the definition of f -proportional convex updates, the idempotence of
P (·) implies that P (w) = P (w′). Applying (2) to the models d, s and to the
updated models d′, s′, respectively, and subtracting the two inequalities gives

0 ≤ ‖d− s‖2 −‖d′ − s′‖2 −‖d−P (d)− s+P (s) ‖2 + ‖d′ −P (d)− s′ +P (s) ‖2 .

By inserting w′ = w + τx,y (P (w)− w) and using τx,y ∈ (0, 1] it follows that

‖d′ − s′‖2 ≤‖d− s‖2 − ‖(d− P (d))− s+ P (s) ‖2

+ (1− τx,y)2‖(d− P (d))− s+ P (s) ‖2

≤‖d− s‖2 − τx,y (‖d− P (d) ‖ − ‖s− P (s) ‖)2

≤‖d− s‖2 − γ2 (f(d, x, y)− f(s, x, y))
2

(3)

as required, where the last inequality follows from τx,y ∈ (0, 1] and (i) of the
definition of f -proportionality by noting that

‖w − P (w) ‖ =
1

τx,y
‖w − (w + τx,y(P (w)− w))‖ =

‖w − w′‖
τx,y

≥ γ

τx,y
f(w, x, y) .

ut

From the two lemmas above we see that, while each synchronization increases the
distance between the static and the dynamic model by at most ∆, with each up-
date step, the distance is decreased proportional to the loss difference. In the fol-
lowing theorem, we state that the average squared regret of using a partial aver-
aging operator σ∆ over a static averaging operator σ with batch size b is bounded
by∆/(bγ2). We use the notion ϕ(Wt) = (ϕ(wt,1, xt,1, yt,1), . . . , ϕ(wt,k, xt,k, yt,k)).

Theorem 5 Let D = D0, . . . , DT and S = S0, . . . , ST be two sequences of
model configurations such that D0 = S0 and for t = 1, . . . , T defined by Dt+1 =
σ∆(ϕ(Dt)) and St+1 = σ(ϕ(St)), respectively (with an identical batch size b ∈
N). Then it holds that R(D,S) ≤ ∆/(bγ2).

Proof. Let βt = 1 if t mod b = 0 and βt = 0 otherwise. By combining Lm. 3
and 4 we have for all t ∈ [T] that

1

k

k∑
l=1

‖dt+1,l − st+1,l‖2 ≤
1

k

k∑
l=1

‖dt,l − st,l‖2 −
γ2

k

k∑
l=1

(f(dt,l)− f(st,l))
2 + βt∆ .

Applying this inequality recursively for t = 0, . . . , T , it follows that

1

k

k∑
l=1

‖dT+1,l − sT+1,l‖2 ≤
1

k

k∑
l=1

‖d0,l − s0,l‖2 +

⌊
T

b

⌋
∆

−
T∑
t=1

γ2

k

k∑
l=1

(f(dt,l)− f(st,l))
2.

Using D0 = S0 we can conclude

T∑
t=1

1

k

k∑
l=1

(f(dt,l)− f(st,l))
2 ≤ 1

γ2

(⌊
T

b

⌋
∆− 1

k

k∑
l=1

‖dT+1,l − sT+1,l‖2
)
≤ T

bγ2
∆

which yields the result after dividing both sides by T . ut

We remark that Thm. 5 implies that partial averaging retains the optimality
of the static mini-batch algorithm of Dekel et al. [2012] for the case of stationary
targets: by using a time-dependent variance threshold based on ∆t ∈ O(1/

√
t)

the bound of O(
√
T) follows. From Thm. 5 it follows that if a shifting bound ex-

ists for the static protocol then this bound also applies to the dynamic protocol.
Formally, suppose the shifting regret R(S,U) of using the static averaging oper-

ator is bounded by c1
∑T
t=1

∑k
l=1 ‖ut,l−ut−1,l‖22 +c2, for a reference sequence U

and positive constants c1, c2 ∈ R+ (as, e.g., in [Herbster and Warmuth, 2001]).
Then the shifting regret of using dynamic averaging is bounded by

R(D,U) ≤ c1
T∑
t=1

k∑
l=1

‖ut,l − ut−1,l‖22 + c2 +
1

γ2
∆ ,

where D denotes the sequence of model configurations produced by σ∆. For the
proof let furthermore S denote the sequence of model configurations produced by
σ. With this we can directly derive the bound by using the definition of shifting
regret, i.e.,

R(D,U) =
1

T

T∑
t=1

1

k

k∑
l=1

(f(dt,l)− f(ut,l))
2

=
1

T

T∑
t=1

1

k

k∑
l=1

((f(dt,l)− f(st,l)) + (f(st,l)− f(ut,l)))
2

Thm.5︷︸︸︷
≤ 1

γ2
∆+

1

T

T∑
t=1

1

k

k∑
l=1

(f(st,l)− f(ut,l))
2

≤ 1

γ2
∆+R(S,U) =

1

γ2
∆+ c1

T∑
t=1

k∑
l=1

‖ut,l − ut−1,l‖22 + c2 .

Intuitively, this means that the dynamic protocol only adds a constant to any
shifting bound of static averaging.

3.2 Communication-efficient Protocol

After seeing that partial averaging operators are sound from the learning per-
spective, we now turn to how they can be implemented in a communication-
efficient way. Every distributed learning algorithm that implements a partial
averaging operator has to implicitly control the variance of the model config-
uration. However, we cannot simply compute the variance by centralizing all
local models, because this would incur just as much communication as static full
synchronization. Our strategy to overcome this problem is to first decompose
the global condition δ(W) ≤ ∆ into a set of local conditions that can be moni-
tored at their respective nodes without communication (see, e.g., Sharfman et al.
[2007]). Secondly, we define a resolution protocol that transfers the system back
into a valid state whenever one or more of these local conditions are violated.
This includes carrying out a sufficient amount of synchronization to reduce the
variance to be less or equal than ∆.

For deriving local conditions we consider the domain of the variance function
restricted to an individual model vector. Here, we identify a condition similar to
a safe-zone (see Keren et al. [2012]) such that the global variance can not cross
the ∆-threshold as long as all local models satisfy that condition.5

5 Note that a direct distribution of the threshold across the local nodes (as in, e.g.,
Keralapura et al. [2006]) is in-feasible, because the variance function is non-linear.

Algorithm 2 Dynamic Synchronization Protocol

Initialization:

local models w1,1, . . . , w1,k ← (0, . . . , 0)
reference vector r ← (0, ..., 0)
violation counter v ← 0

Round t at node l:

observe xt,l and provide service based on pt,l
observe yt,l and update wt+1,l ← ϕ(wt,l, xt, yt)
if t mod b = 0 and ‖wt,l − r‖2 > ∆ then

send wt,l to coordinator (violation)

At coordinator on violation:

let B be the set of nodes with violation
v ← v + |B|
if v = k then B ← [k], v ← 0
while B 6= [k] and 1

B

∑
l∈B ‖wt,l − r‖2 > ∆ do

augment B by augmentation strategy
receive models from nodes added to B

send model w = 1
B

∑
l∈B wt,l to nodes in B

if B = [k] also set new reference vector r ← w

Theorem 6 Let Dt = dt,1, ..., dt,k ∈ Rn be the model configuration at time t
and r ∈ Rn be some reference vector. If for all l ∈ [k] the local condition
‖dt,l − r‖2 ≤ ∆ holds, then the global variance is bounded by ∆, i.e.,

1

k

k∑
l=1

‖dt,l −Dt‖2 ≤ ∆ .

Proof. The theorem follows directly from the fact that the current average vector
Dt minimizes the squared distances to all dt,i, i.e.,

1

k

k∑
i=1

‖dt,l −Dt‖2 ≤
1

k

k∑
i=1

‖dt,l − r‖2 ≤ ∆

ut

We now incorporate these local conditions into a distributed prediction al-
gorithm. As a first step, we have to guarantee that at any time all nodes use
the same reference vector r, for which a natural choice is the last average model
that has been set to all local nodes. If the reference vector is known to all local
learners a local learners l can then monitor its local condition ‖dt,l− r‖2 ≤ ∆ in
a decentralized manner.

It remains to design a resolution protocol that specifies how to react when
one or several of the local conditions are violated. A direct solution is to trigger
a full synchronization in that case. This approach, however, does not scale well
with a high number of nodes in cases where model updates have a non-zero

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
Number of messages

40000

60000

80000

100000

120000

140000

160000

E
rr

o
r

8
16

24
32

64
96

128

256

8-0.18-0.28-0.38-0.5

8-0.7
8-0.8
8-1.0

8-1.4

8-1.8

nosync

dynamic
static

0 200000 400000 600000 800000 1000000 1200000 1400000
Number of messages

480000

500000

520000

540000

560000

580000

600000

620000

640000

660000

E
rr

o
r

8

12

16

24

32

48

64

8-0.25

8-0.2

8-0.18

8-0.15

8-0.18-0.088-0.05 8-0.01 8-0.005

nosync

dynamic
static

Fig. 1. Performance of static and dynamic model synchronization that track (left) a
rapidly drifting disjunction over 100-dim. data with 512 nodes; and (right) a neural
network with one hidden layer and 150 output vars. with 1024 nodes.

probability even in the asymptotic regime of the learning process. When, e.g.,
PAC models for the current target distribution are present at all local nodes, the
probability of one local violation, albeit very low for an individual node, increases
exponentially with the number of nodes. An alternative approach that can keep
the amount of communication low relative to the number of nodes is to perform
a local balancing procedure: on a violation, the respective node sends his model
to a designated node we refer to as coordinator. The coordinator then tries to
balance this violation by incrementally querying other nodes for their models. If
the mean of all received models lies within the safe zone, it is transferred back as
new model to all participating nodes, and the resolution is finished. If all nodes
have been queried, the result is equal to a full synchronization and the reference
vector can be updated. In both cases, the variance of the model configuration is
bounded by ∆ at the end of the balancing process, because all local conditions
hold. Also, it is easy to check that this protocol leaves the global mean model
unchanged. Hence, it is complying to Def. 2.

While balancing can achieve a high communication reduction over direct
resolution particularly for a large number of nodes, it potentially degenerates
in certain special situations. We can end up in a stable regime in which local
violations are likely to be balanced by a subset of the nodes; however a full syn-
chronization would strongly reduce the expected number of violations in future
rounds. In other words: balancing can delay crucial reference point updates in-
definitely. A simple hedging mechanism for online optimization can be employed
in order to avoid this situation: we count the number of local violations using
the current reference point and trigger a full synchronization whenever this num-
ber exceeds the total number of nodes. This concludes our dynamic protocol for
distributed prediction. All components are summarized in Alg. 2

4 Empirical Evaluation

In this section we investigate the practical performance of the dynamic learning
protocol for settings ranging from clean linearly separable data, over unseparable
data with a reasonable linear approximation, up to real-world data without any

0 5000 10000 15000 20000 25000
Time

0

50000

100000

150000

200000
E
rr

o
r

No Synchronization
static-8
static-16
static-128
dynamic-0.1
dynamic-3.0

0 5000 10000 15000 20000 25000
Time

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

M
e
ss

a
g
e
s

static-8
static-16
static-128
dynamic-0.1
dynamic-3.0

Fig. 2. Cumulative error (left) and communication (right) over time for tracking a
rapidly drifting disjunction for different synchronization protocols; vertical lines depict
drifts.

guarantee. Our main goal is to empirically confirm that the predictive gain of
static full synchronizations (using a batch size of 8) over no synchronization
can be approximately preserved for small enough thresholds, and to assess the
amount of communication reduction achieved by these thresholds.

4.1 Linearly Separable Data

We start with the problem of tracking a rapidly drifting random disjunction.
In this case the target distribution produces data that is episode-wise linearly
separable. Hence, we can set up the individual learning processes so that they
converge to a linear model with zero classification error within each episode.
Formally, we identify a target disjunction with a binary vector z ∈ {0, 1}n. A
data point x ∈ X = {0, 1}n is labeled positively y = 1 if 〈x, z〉 ≥ 1 and otherwise
receives a negative label y = −1. The target disjunction is drawn randomly at
the beginning of the learning process and is randomly re-set after each round
with a fixed drift probability of 0.0001. In order to have balanced classes, the
disjunctions as well as the data points are generated such that each coordinate
is set independently to 1 with probability

√
1− 2−1/n. We use the unregularized

passive aggressive update rule with hinge loss.
In Fig. 1 (left) we present the result for dimensionality n = 100, with k = 512

nodes, processing m = 12.8M data points through T = 100000 rounds. For diver-
gence thresholds up to 0.3, dynamic synchronization can retain the error number
of statically synchronizing every 8 rounds. At the same time the communication
is reduced to 9.8% of the original number of messages. An approximately similar
amount of communication reduction can also be achieved using static synchro-
nization by increasing the batch size to 96. This approach, however, only retains
61.0% of the accuracy of statically synchronizing every 8 rounds.

Fig. 2 provides some insight into how the two evaluation metrics develop
over time. Target drifts are marked with vertical lines that frame episodes of a
stable target disjunction. At the beginning of each episode there is a relatively
short phase in which additional errors are accumulated and the communicative
protocols acquire an advantage over the baseline of never synchronizing. This is

0 1000 2000 3000 4000 5000 6000 7000
Number of messages

24000

24200

24400

24600

24800

25000

25200

E
rr

o
r

8

16

32

64

128

8-0.35

8-0.3

8-0.25

8-0.2 8-0.17

8-0.1

nosync

dynamic
static

0 50000 100000 150000

Number of messages

800

1000

1200

1400

1600

1800

2000

2200

E
rr

o
r

+3.326e6

8

16

24

32

64

128

8-0.04

8-0.03

8-0.02

8-0.01

8-0.005 8-0.001

nosync

dynamic
static

Fig. 3. Performance of static and dynamic synchronization with 256 nodes that predict
(left) Twitter retweets over 1000 textual features and (right) stock prices based on 400
prices and sliding averages.

followed by a phase during which no additional error is made. Here, the commu-
nication curve of the dynamic protocols remain constant acquiring a gain over
the static protocols in terms of communication.

4.2 Non-separable Data with Noise

We now turn to a harder experimental setting, in which the target distribu-
tion is given by a rapidly drifting two-layer neural network. For this target even
the Bayes optimal classifier per episode has a non-zero error, and, in particu-
lar, the generated data is not linearly separable. Intuitively, it is harder in this
setting to save communication, because a non-zero residual error can cause the
linear models to periodically fluctuate around a local loss minimizer—resulting
in crossings of the variance threshold even when the learning processes have
reached their asymptotic regime. We choose the network structure and param-
eter ranges in a way that allow for a relatively good approximation by lin-
ear models (see Bshouty and Long [2012]). The process for generating a single
labeled data point is as follows: First, the label y ∈ Y = {−1, 1} is drawn
uniformly from Y . Then, values are determined for hidden variables Hi with
1 ≤ i ≤ dlog ne based on a Bernoulli distribution P [Hi = · |Y = y] = Ber(phi,y).
Finally, x ∈ X = {−1, 1}n is determined by drawing xi for 1 ≤ i ≤ n according
to P [Xi = xi, |Hp(i) = h] = Ber(poi,h) where p(i) denotes the unique hidden layer
parent of xi. In order to ensure linear approximability, the parameters of the
output layer are drawn such that |poi,−1 − poi,1| ≥ 0.9, i.e., their values have a
high relevance in determining the hidden values. As in the disjunction case all
parameters are re-set randomly after each round with a fixed drift probability
(here, 0.01). For this non-separable setting we choose again to optimize the hinge
loss, this time with regularized passive aggressive updates with C = 10.0 and a
batch size of b = 8.

Fig. 1 (right) contains the results for dimensionality 150, with k = 1024
nodes, processing m = 2.56M data points through T = 10000 rounds. For vari-
ance thresholds up to 0.08, dynamic synchronization can retain the error of the

baseline. At the same time, the communication is reduced to 45% of the origi-
nal number of messages. Moreover, even for thresholds up to 0.2, the dynamic
protocol retains more than 90% of the accuracy of static synchronization with
only 20% of its communication.

4.3 Real-world Data

We conclude our experimental section with tests on two real-world datasets
containing stock prices and Twitter short messages, respectively.

The data from Twitter has been gathered via its streaming API (https:
//dev.twitter.com/docs/streaming-apis) during a period of 3 weeks (Sep 26
through Oct 15 2012). Inspired by the content recommendation task, we consider
the problem of predicting whether a given tweet will be re-tweeted within one
hour after its posting—for a number of times that lies below or above the median
hourly re-tweet number of the specific Twitter user. The feature space are the
top-1000 textual features (stemmed 1-gram, 2-gram) ranked by information gain,
i.e., X = {0, 1}1000. Learning is performed with C = 0.25. The stock price
data is gathered from Google Finance (http://www.google.com/finance) and
contains the daily closing stock prices of the S&P100 stocks between 2004 and
2012. Inspired by algorithmic trading, we consider the problem of predicting
tomorrow’s closing price, i.e., Y = R, of a single target stock based on all stock
prices and their moving averages (11, 50, and 200 days) of today, i.e., X = R400.
The target stock is switched with probability 0.001. Here, we use the epsilon
insensitive loss, ε = 0.1, and a regression parameter of C = 1.0 for regularized
passive aggressive updates.

The results for 1.28M data points distributed to k = 256 nodes are pre-
sented in Fig. 3. Again, the gap between no synchronization and the baseline is
well preserved by partial synchronizations. For Twitter (left), a threshold of 0.1
performs even better then the static baseline with less communication (0.97%).
With a threshold of 0.2 the dynamic protocol still preserves 74% of predictive
gain using only 27% communication. For the stock prices (right), a threshold of
0.005 preserves 99% of the predictive gain using 54% of the communication. The
trade-off is even more beneficial for threshold 0.01 which preserves 92% of the
gain using only 36% communication.

5 Conclusion

We presented a protocol for distributed online prediction that can save communi-
cation by dynamically omitting synchronizations in sufficiently stable phases of a
modeling task, while at the same time being adaptive in phases of concept drifts.
The protocol has a controlled predictive regret over its static counterpart and
experiments show that it can indeed reduce the communication substantially—
up to 90% in settings where the linear learning processes are suitable to model
the data well and converge reasonably fast. Generally, the effectiveness of the

approach appears to correspond to the effectivity of linear modeling with f -
proportional convex update rules in the given setting.

For future research a theoretical characterization of this behavior is desirable.
A practically even more important direction is to extend the approach to other
model classes that can tackle a wider range of learning problems. In principle,
the approach of controlling model variance remains applicable, as long as the
variance is measured with respect to a distance function that induces a useful
loss bound between two models. For probabilistic models this can for instance be
the KL-divergence. However, more complex distance functions constitute more
challenging distributed monitoring tasks, which currently are open problems.

Bibliography

Jacob Abernethy, Alekh Agarwal, Peter L. Bartlett, and Alexander Rakhlin. A stochastic view of
optimal regret through minimax duality. In COLT 2009, 2009.

Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Mansour. Distributed learning, commu-
nication complexity and privacy. CoRR, abs/1204.3514, 2012.

Amir Bar-Or, Ran Wolff, Assaf Schuster, and Daniel Keren. Decision tree induction in high dimen-
sional, hierarchically distributed databases. In SDM, 2005.

Nader H. Bshouty and Philip M. Long. Linear classifiers are nearly optimal when hidden variables
have diverse effects. Machine Learning, 86(2):209–231, 2012.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University
Press, 2006. ISBN 978-0-521-84108-5.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online passive-
aggressive algorithms. Journal of Machine Learning Research, 7:551–585, 2006.

Hal Daumé III, Jeff M. Phillips, Avishek Saha, and Suresh Venkatasubramanian. Efficient protocols
for distributed classification and optimization. CoRR, abs/1204.3523, 2012.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research, 13:165–202, 2012.

Mark Herbster and Manfred K Warmuth. Tracking the best linear predictor. The Journal of
Machine Learning Research, 1:281–309, 2001.

Daniel Hsu, Nikos Karampatziakis, John Langford, and Alexander J. Smola. Parallel online learning.
CoRR, abs/1103.4204, 2011.

Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham. Communication-efficient
distributed monitoring of thresholded counts. In SIGMOD, pages 289–300, 2006.

Daniel Keren, Izchak Sharfman, Assaf Schuster, and Avishay Livne. Shape sensitive geometric
monitoring. Knowledge and Data Engineering, IEEE Transactions on, 24(8):1520–1535, 2012.

G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-scale distributed
training of conditional maximum entropy models. In NIPS, volume 22, pages 1231–1239, 2009.

Ryan T. McDonald, Keith Hall, and Gideon Mann. Distributed training strategies for the structured
perceptron. In HLT-NAACL, pages 456–464, 2010.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87. Kluwer
Academic Publisher, 2003.

XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Decentralized detection and clas-
sification using kernel methods. In ICML, page 80. ACM, 2004.

Jie Ouyang, Nilesh Patel, and Ishwar Sethi. Induction of multiclass multifeature split decision trees
from distributed data. Pattern Recognition, 42(9):1786–1794, 2009.

Joel B Predd, SB Kulkarni, and H Vincent Poor. Distributed learning in wireless sensor networks.
Signal Processing Magazine, IEEE, 23(4):56–69, 2006.

Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to monitoring threshold
functions over distributed data streams. ACM Trans. Database Syst., 32(4), 2007.

Jui-Pin Wang, Yu-Chen Lu, Mi-Yen Yeh, Shou-De Lin, and Phillip B Gibbons. Communication-
efficient distributed multiple reference pattern matching for m2m systems. In ICDM. IEEE,
2013.

Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimization. The
Journal of Machine Learning Research, 11:2543–2596, 2010.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent algo-
rithms. In ICML 2004, 2004.

Martin Zinkevich, Alex J. Smola, and John Langford. Slow learners are fast. In NIPS 2009, pages
2331–2339, 2009.

Martin Zinkevich, Markus Weimer, Alexander J. Smola, and Lihong Li. Parallelized stochastic
gradient descent. In NIPS 2010, pages 2595–2603, 2010.

