Image Processing - Lesson 9

Edge Detection

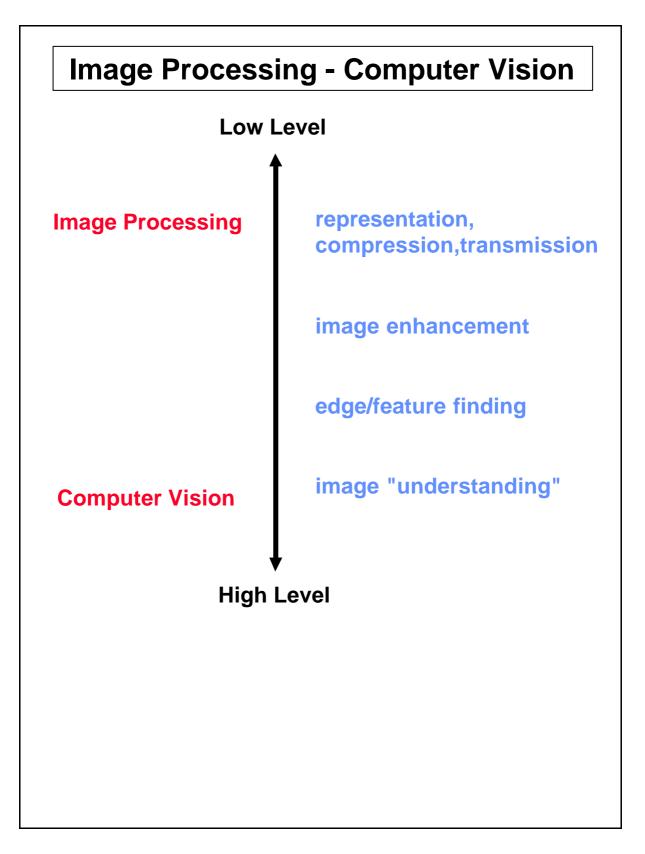
Edge detection masks

Gradient Detectors

Compass Detectors

Second Derivative - Laplace detectors

Edge Linking Hough Transform

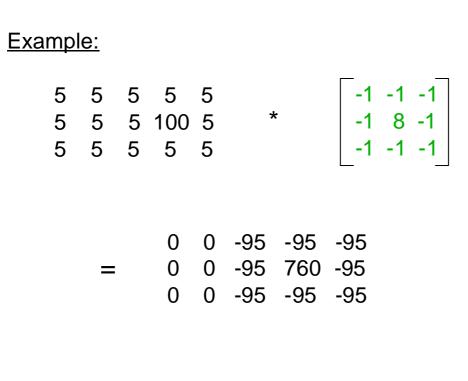


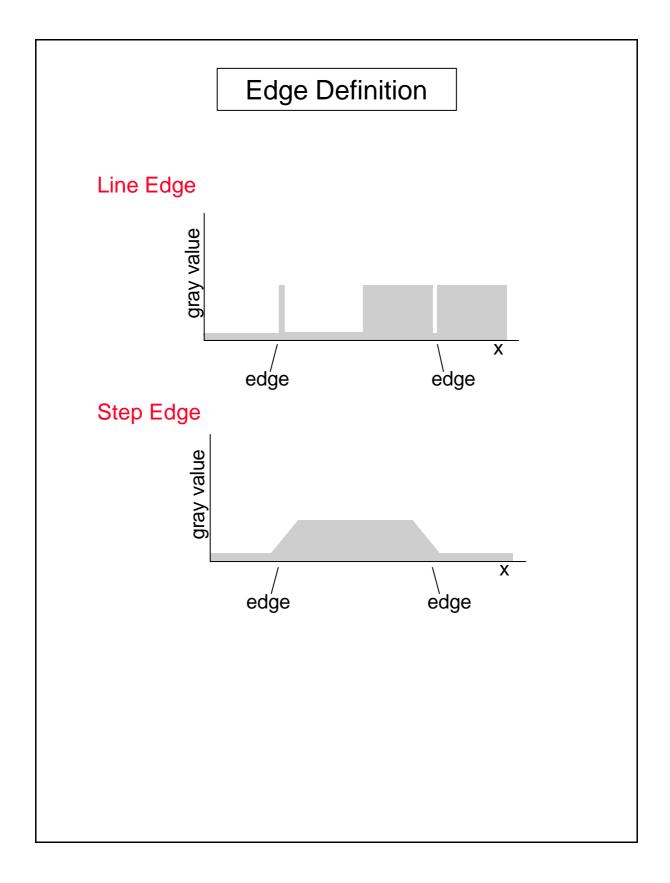
UFO - Unidentified Flying Object

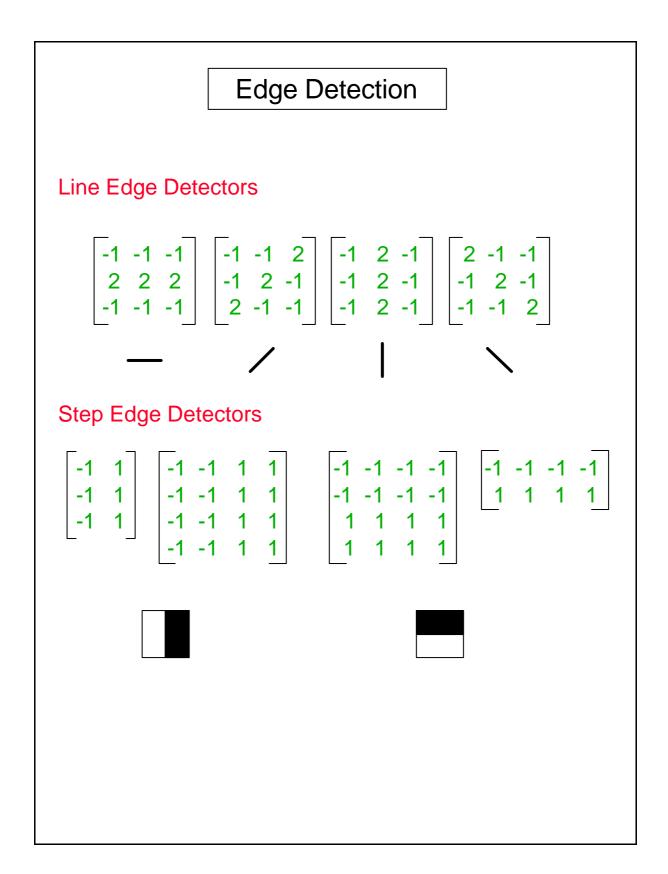
Point Detection

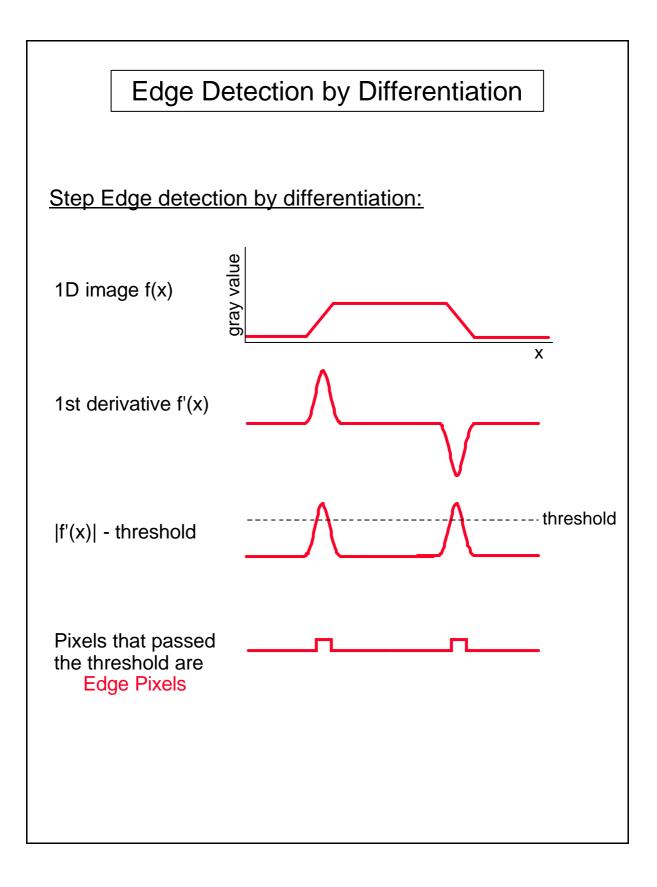
Convolution with:

Large Positive values = light point on dark surround Large Negative values = dark point on light surround

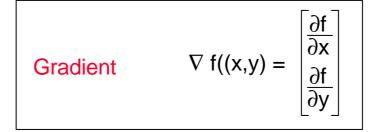






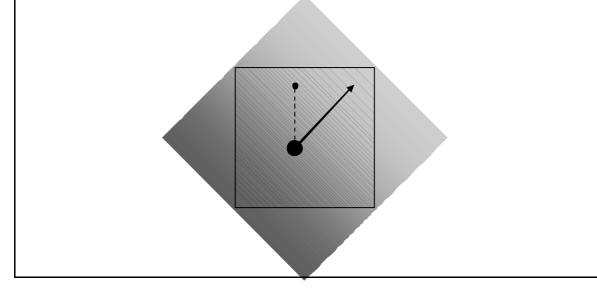


Gradient Edge Detection



Gradient Direction

 $tg^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$



Differentiation in Digital Images

horizontal - differentiation approximation:

$$F_A = \frac{\partial f(x,y)}{\partial x} = f(x,y) - f(x-1,y)$$

convolution with [1 -1]

vertical - differentiation approximation:

$$F_{B} = \frac{\partial f(x,y)}{\partial y} = f(x,y) - f(x,y-1)$$

convolution with $\begin{bmatrix} 1\\ -1 \end{bmatrix}$
Gradient (F_{A}, F_{B})

Magnitude $((F_A)^2 + (F_B)^2)^{1/2}$

Approx. Magnitude $|F_A| + |F_B|$

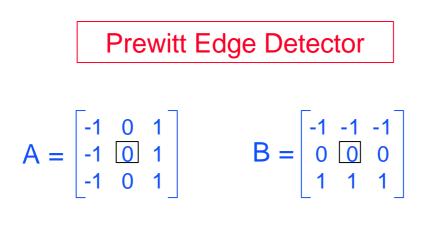
Roberts Edge Detector

$$F_{A} = f(x,y) - f(x-1,y-1)$$

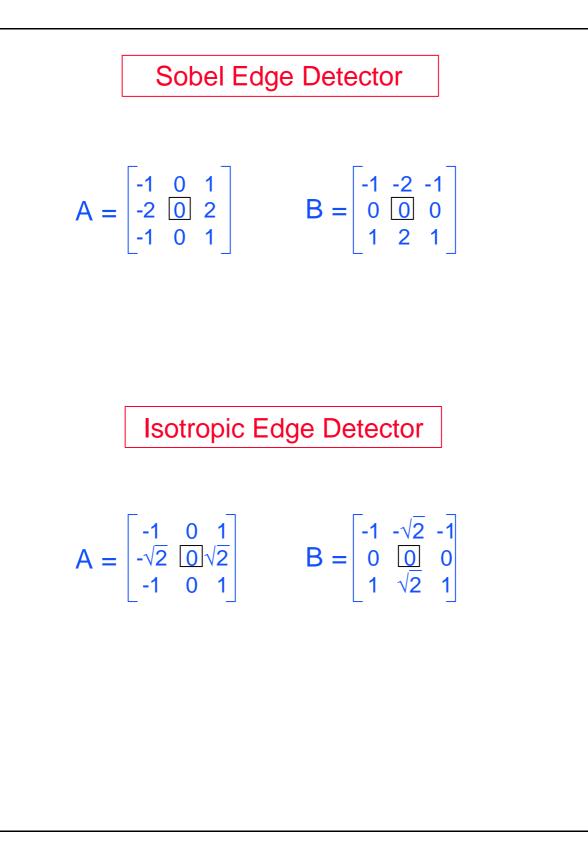
$$F_{B} = f(x-1,y) - f(x,y-1)$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Roberts and other 2x2 operators are sensitive to noise.



Smoothed operators



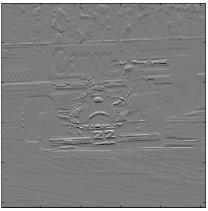
Example Edge

Original

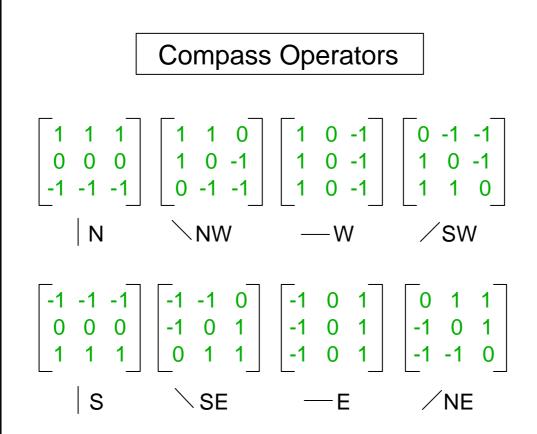
Gradient-X

Gradient-Magnitude

Gradient-Y



Gradient-Direction

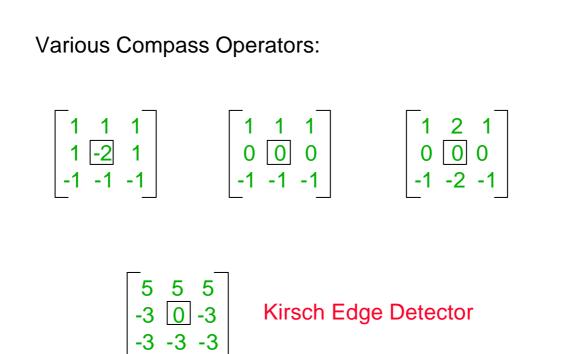


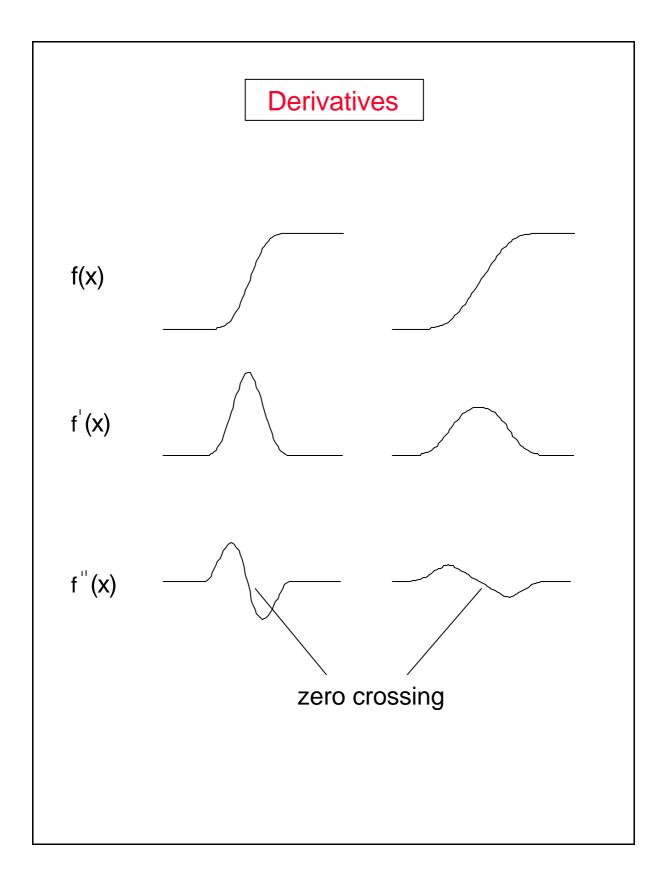
Given **k** operators, $g_k(x,y)$ is the image obtained by convolving f(x,y) with the k^{th} operator.

The gradient is defined as:

 $g(x,y) = \max_{k} g_{k}(x,y)$

k defines the edge direction





Laplacian Operators

Approximation of second derivative (horizontal):

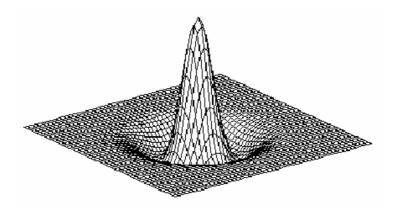
$$\frac{\partial f^{2}(x,y)}{\partial^{2}x} = f''(x,y) = f'(x+1,y) - f'(x,y) =$$

$$= [f(x+1,y) - f(x,y)] - [f(x,y) - f(x-1,y)]$$

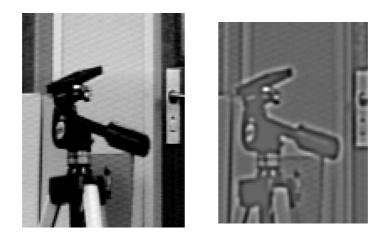
$$= f(x+1,y) - 2 f(x,y) + f(x-1,y)$$
convolution with: [1 -2 1]
Approximation of second derivative (vertical):
convolution with: $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$
Laplacian Operator
$$\nabla^{2} = \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right)$$
convolution with: $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$

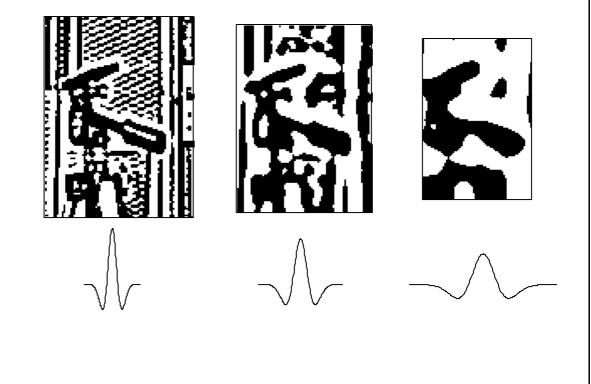
Variations on Laplace Operators:

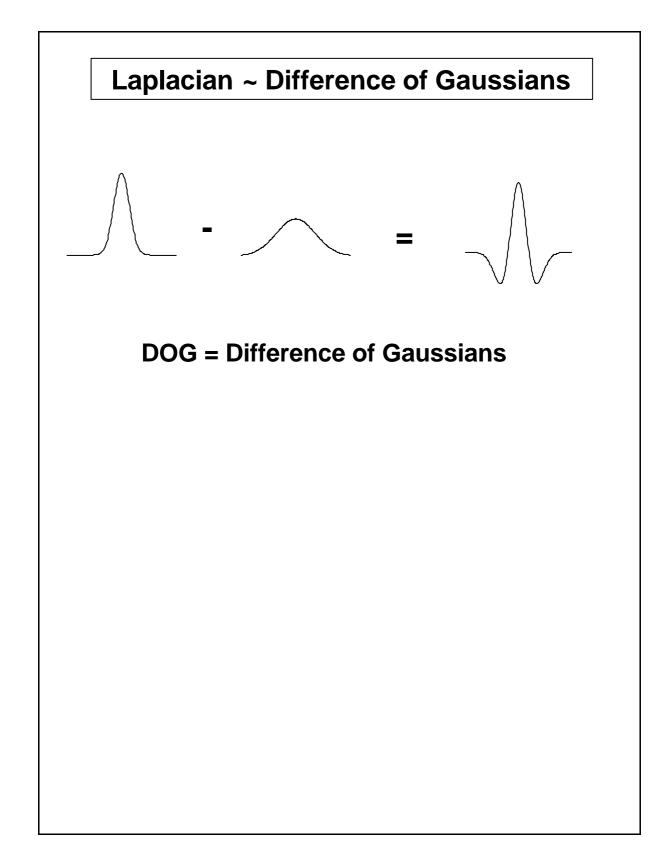
All are approximations of:

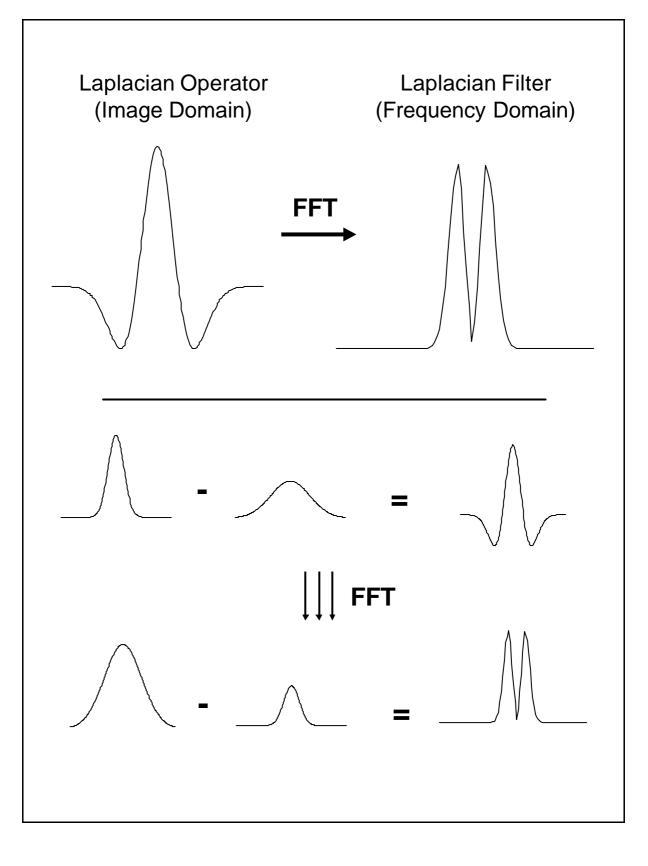


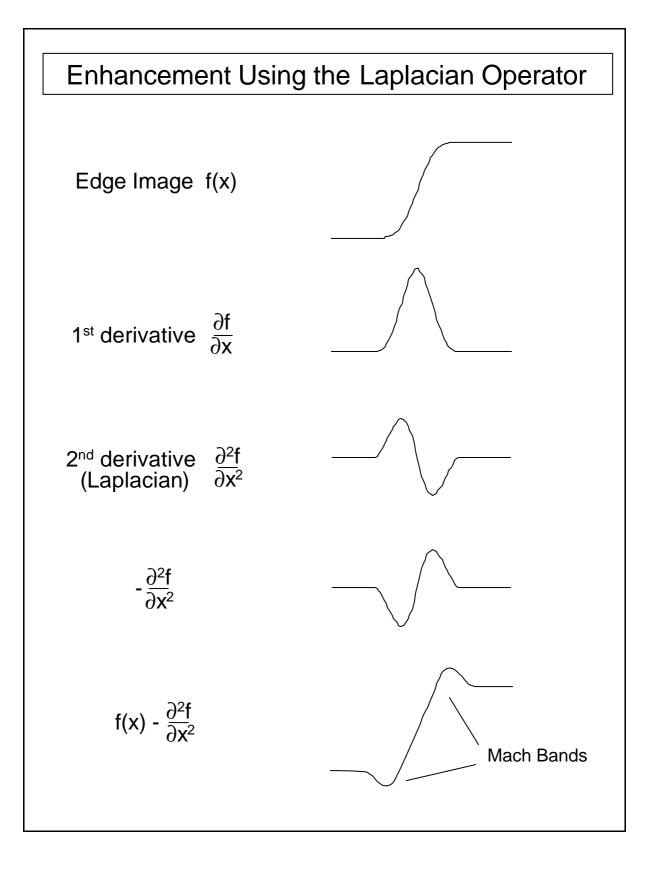
Example of Laplacian Edge Detection











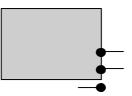
Edge Linking

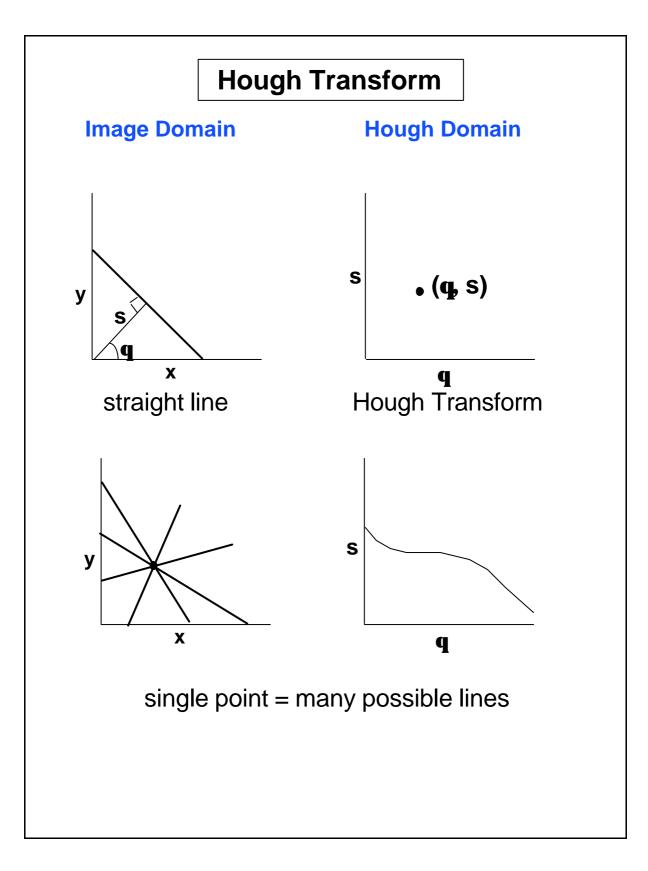
(x,y) is an edge pixel. Search for neighboring edge pixels that are "similar".

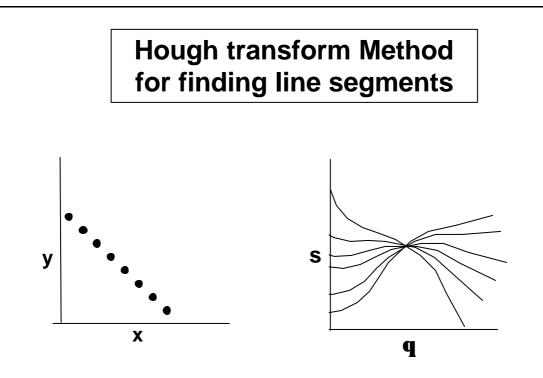
Similarity:

Similarity in Edge Orientation Similarity in Edge strength (Gradient Amplitude)

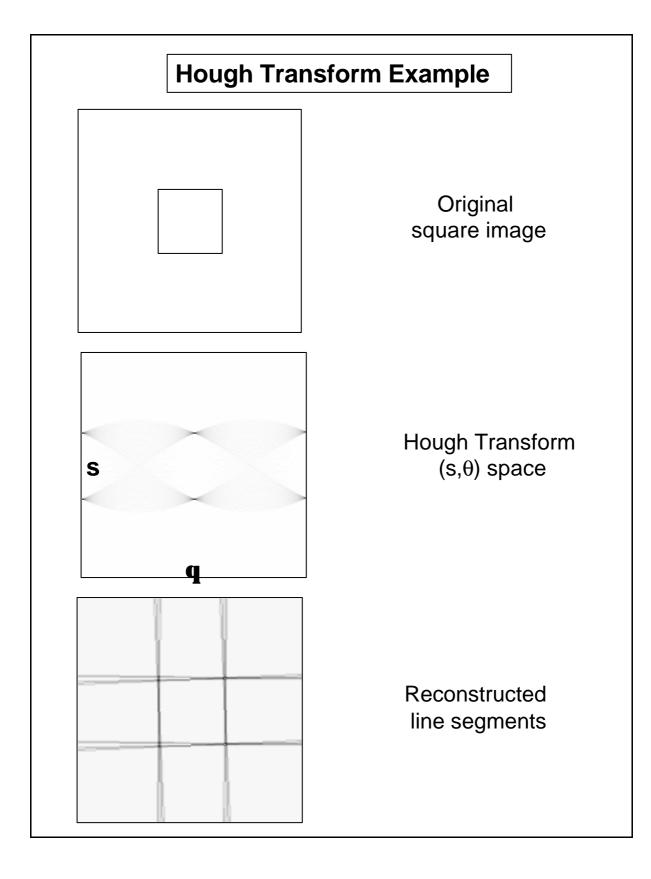
Perform Edge Following along similar edge pixels. (as in Contour Following in binary images).







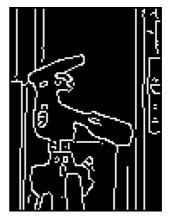
many points on a line = many lines in the Hough transform space which intersect at 1 point.



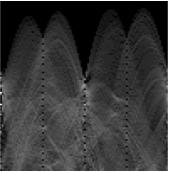
Hough Transform Example

Original

Edges

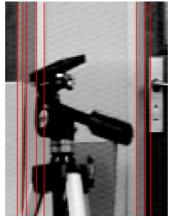


Hough Transform



Results1

Results2



Results3

Hough Transform Example

