Computational tools for logic-based grammar formalisms

M. Moortgat & W. Vermaat
Abstract

A well-known slogan in language technology is ‘parsing-as-deduction’: syntax and meaning analysis of a text takes the form of a mathematical proof/derivation. Developers of language technology (and students of computational linguistics) want to visualize these mathematical objects in a variety of formats.

We discuss a language engineering environment for two ‘logic-based’ frameworks: type-logical grammar and ‘derivational’ minimalism. The kernel is a general theorem prover for the relevant framework, implemented in the logic-programming language Prolog. The kernel produces ‘proof objects’ for its internal computations. The front-end displays these proof objects in a number of user-defined formats. Local interaction with the kernel is via a tcl/tk GUI. Alternatively, one can call the kernel remotely from dynamic PDF documents, using the form features of Sebastian Rahtz’ hyperref package.
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The project</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>The team</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Current uses of the material</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Type-logical grammar</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Type-logical grammar</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Illustration: square</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>The logic of grammar</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>Parsing as deduction</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>The structural module</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>The GRAIL system</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>A session</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>Export formats</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>Dynamic derivations</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>Dynamic derivations: bottom up</td>
<td>18</td>
</tr>
<tr>
<td>15</td>
<td>Dynamic derivations: top down</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>Internal proof term representation</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>Web interaction with the kernel</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>18</td>
<td>Prolog command line interaction</td>
<td>22</td>
</tr>
<tr>
<td>19</td>
<td>From shell interaction to web interaction</td>
<td>23</td>
</tr>
<tr>
<td>20</td>
<td>Using Rahtz’ hyperref package</td>
<td>24</td>
</tr>
<tr>
<td>21</td>
<td>Fragment libraries</td>
<td>25</td>
</tr>
<tr>
<td>22</td>
<td>hyperref form interaction</td>
<td>26</td>
</tr>
<tr>
<td>23</td>
<td>Future work/worries</td>
<td>27</td>
</tr>
</tbody>
</table>
1. The project

- Aim: teaching materials/courseware for logic-based NLP
- Frameworks: type-logical grammar, ‘derivational’ minimalism
- Architecture:
 - Kernel: logic programming implementation of the general algorithmic proof theory for TLG/MG
 - Interaction with the kernel:
 - tcl/tk GUI
 - dynamic PDF documents
- Inspiration: the fold/unfold concept of the Mathematica notebook. Discourse interleaved with mathematical expressions that can be evaluated, visualized on demand.
2. The team

Michael Moortgat Coordinating the computational linguistics curriculum at Utrecht University. Research interests: math and language, type-logical grammar.

Richard Moot Author of the type-logical grammar development environment GRAIL. PhD thesis on proof nets for NLP.

Willemijn Vermaat Currently: PhD project on the logical perspective on minimalist grammars. Before: IT in the computational linguistics curriculum.
3. Current uses of the material

► Graduate level courses
 ▶ various ESSLLI installments
 ▶ European Master School on Language and Speech (Leuven, 2002).

► Undergraduate level courses
 ▶ CKI (CogScience/AI) Utrecht University
 ▶ Linguistics, Utrecht University

► Secondary school
 ▶ β workshops, Utrecht University
 ▶ Adriatic coast (Raffaella Bernardi)

► ...
4. **Type-logical grammar**

Background reading for the technical set-up:

General project info and course pages:

- http://grail.let.uu.nl/tour.pdf
- http://www.let.uu.nl/~ctl/docenten/moortgat.html
5. **Type-logical grammar**

Think of type-logical grammar as a functional *programming language* (cf Haskell), customized for NLP (analysis, generation).

Functional programming

- basic types: integers, booleans, ...
- functional types $T \rightarrow T'$
- using/constructing types $T \rightarrow T'$: application/abstraction

Curry-Howard-de Bruyn Perspective shift logic/computation.

- functional types/implicational formulas,
- type computations/logical derivations.
6. **Illustration: square**

A simple example: constructing a *square* function out of a built-in *times* function:

\[
\begin{align*}
\text{times} : \text{Int} \to (\text{Int} \to \text{Int}) & \quad x : \text{Int} \\
(times \ x) : \text{Int} \to \text{Int} & \quad (\text{Elim} \to) \\
(times \ x \ x) : \text{Int} & \quad (\text{Elim} \to) \\
\lambda x. (times \ x \ x) : \text{Int} \to \text{Int} & \quad (\text{Intro} \to)
\end{align*}
\]

- *(Elim →)*: use of a function, application
- *(Intro →)*: construction of a function, abstraction
7. The logic of grammar

Let us write $A \bullet B$ for the combination of an expression A with an expression B. We obtain a grammar logic by dropping all ‘structural rules’ for the product:

- Resource sensitivity: no duplication/waste of material
- Structure sensitivity: linear order/grouping
 - Drop Commutativity: $A \bullet B = B \bullet A$
 Would imply that linear order doesn’t affect well-formedness
 But: compare *man bites dog* and *dog bites man.*
 - Drop Associativity: $(A \bullet B) \bullet C = A \bullet (B \bullet C)$
 Destroys structural information:
 I had completely forgotten how good beer tastes.
8. Parsing as deduction

Two implications in the absence of Commutativity!

Algebra: residuation laws

\[A \rightarrow C/B \quad \text{iff} \quad A \bullet B \rightarrow C \quad \text{iff} \quad B \rightarrow A\setminus C \]

Logic: inference rules (elimination/introduction)

\[
\begin{align*}
\frac{X \vdash B \quad Y \vdash B\setminus A}{X \circ Y \vdash A} & \quad \text{\textbackslash E} & \quad \frac{X \vdash A/B \quad Y \vdash B}{X \circ Y \vdash A} & \quad /E \\
\frac{B \circ X \vdash A}{X \vdash B\setminus A} & \quad \text{\textbackslash I} & \quad \frac{X \circ B \vdash A}{X \vdash A/B} & \quad /I
\end{align*}
\]
9. The structural module

To capture variation, structural rules can be reintroduced in a controlled form. Control operations ♦, □ in addition to the composition operations /, •, \.

- Logical rules

\[\Diamond A \rightarrow B \quad \text{iff} \quad A \rightarrow \Box B \]

- Structural rules: under ♦ control. For example:

\[\Diamond A \cdot B \rightarrow B \cdot \Diamond A \]
\[(A \cdot B) \cdot \Diamond C \rightarrow A \cdot (B \cdot \Diamond C) \]
10. The GRAIL system

Richard Moot’s unix-based GRAIL system offers a general development environment for type-logical grammars. Software components:

▶ SICStus Prolog: the programming language for the kernel;
▶ Tcl/Tk for the graphical user interface;
▶ a standard teTeX environment for the visualization/export of derivations.

The system is available under the GNU General Public License agreement from

ftp.let.uu.nl/pub/users/moot
11. A session

The user designs a grammar fragment, using the following tools:

- **Lexicon tool**: graphical editor to assign formulas (and meaning programs) to words in the lexicon or edit lexical entries,

- **Postulate tool**: graphical editor to add or modify structural rewrite rules,

- **Parsing/debugging**: run the theorem prover on sample expressions; interactive mode using proof net technology.
12. Export formats

User-defined \LaTeX output formats.

Prawitz style Derivations in tree format, using Tatsuta’s `proof.sty` package.

\[
\begin{align*}
\text{knuth} & : \frac{(np \backslash s)/np}{np} & \frac{\text{surpassed \ o \ himself} \vdash np \backslash s}{(np \backslash s)/np \backslash (np \backslash s)} \quad [\backslash E] \\
\text{surpassed} \circ \text{himself} & \vdash s \\
\text{knuth} \circ (\text{surpassed} \circ \text{himself}) & \vdash s \quad [\backslash E]
\end{align*}
\]

Fitch style Linear format, handy when meaning assembly is included.

1. \text{knuth} : np \to \text{knuth} \quad \text{Lex}
2. \text{surpassed} : (np \backslash s)/np \to \text{surpass} \quad \text{Lex}
3. \text{himself} : ((np \backslash s)/np \backslash (np \backslash s)) \to \lambda z_2. \lambda x_3. ((z_2 \ x_3) \ x_3) \quad \text{Lex}
4. \text{surpassed} \circ \text{himself} : np \backslash s \to \lambda x_3. ((\text{surpass} \ x_3) \ x_3) \quad [E \ (2, 3)]
5. \text{knuth} \circ (\text{surpassed} \circ \text{himself}) : s \to ((\text{surpass \ knuth}) \ \text{knuth}) \quad [E \ (1, 4)]
13. Dynamic derivations

The core notion of ‘proof’ is inherently dynamic:

‘a sequence of inference steps, leading from axioms to the desired conclusion’

\(\leadsto\) dynamic display format

Tools for the implementation (thanks to Bernhard Fisseni):

▶ an expanded version of \texttt{\texttt{infer}} from \texttt{proof.sty}, taking advantage of

▶ the \texttt{\texttt{stepwise}} family of commands from Lehmke’s \texttt{texpower.sty} package

▶ the kernel computes the sequencing order from the internal proof object, with
 bottom-up or top-down options
14. Dynamic derivations: bottom up
Meaning. $\nu(\lambda y_3. (\text{write} (\text{knuth}, y_3) \land \text{book}(y_3)))$
14. Dynamic derivations: bottom up

\[\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \]

Meaning.
14. Dynamic derivations: bottom up

\[\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \]

Meaning. \[\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \]
14. Dynamic derivations: bottom up

Meaning. $\nu(\lambda y_3.(\text{write(knuth, } y_3) \land \text{book}(y_3)))$
14. Dynamic derivations: bottom up

Meaning. $\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))$
14. Dynamic derivations: bottom up

Meaning. $\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))$
14. Dynamic derivations: bottom up

Meaning. $\nu(\lambda y_3. (\text{write(}\text{knuh}, y_3) \land \text{book}(y_3)))$
14. Dynamic derivations: bottom up

that

\[\text{book} \]
\[\text{the} \]
\[np/n \]

Meaning. \(\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

Meaning. \(\nu (\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

\[
\frac{\text{book}}{n} \quad \frac{n}{(n/n)/(s=np)} \quad \text{that} \quad \frac{\text{the}}{np/n}
\]

Meaning. \(\nu (\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

\[
\text{knuth} \\
\text{that} \\
\frac{\text{book}}{n} \\
\frac{(n\ln)/(s/np)}{np/n}
\]

\text{Meaning. } \nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))
14. Dynamic derivations: bottom up

\[\text{knuth} \]

\[\frac{\text{the}}{n} \frac{\text{book}}{n} \frac{\text{that}}{(n/n)/(s/np)} \]

Meaning. \(\nu(\lambda y_3. (\text{write(knuth, } y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

\[
\frac{\text{knuth}}{np}
\]

\[
\frac{\text{book}}{n}
\]

\[
\frac{\text{that}}{(n\backslash n)/(s/np)}
\]

\[
\frac{\text{the}}{np/n}
\]

Meaning. \(\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

wrote

\[\frac{\text{knuth}}{np} \]

that

\[\frac{(n \setminus n) \setminus (s/np)}{np/n} \]

the

\[\frac{\text{book}}{n} \]

\[\frac{np/n}{np/np} \]

Meaning. \(\nu(\lambda y_3. (\text{write(knuth, } y_3\text{) } \wedge \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

\[
\begin{array}{c}
\text{the} \\
\text{np/n}
\end{array}
\]

\[
\frac{\text{np/n}}{	ext{book}}
\]

\[
\frac{\text{np/n}}{(n \setminus n) / (s / np)}
\]

\[
\begin{array}{c}
\text{knuth} \\
\text{np}
\end{array}
\]

\[
\text{that}
\]

\[
\begin{array}{c}
\text{book} \\
\text{n}
\end{array}
\]

\[
(n \setminus n) / (s / np)
\]

\[
\text{Meaning. } \nu (\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))
\]
14. Dynamic derivations: bottom up

\[
\frac{\text{wrote} \quad \text{knuth}}{(np/s)/np} \quad \frac{\text{that} \quad \text{book}}{(n\backslash n)/(s/np)}
\]

\[\frac{\text{the} \quad \text{book}}{np/n} \quad \frac{\text{n} \quad \text{np/n}}}{\text{Meaning. } \nu(\lambda y_3.(\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))}\]
14. Dynamic derivations: bottom up

\[
\frac{\text{knuth}}{np} \quad \frac{\text{wrote}}{(np \backslash s)/np} \quad [p_1 \vdash np]^1
\]

\[
\frac{\text{book}}{n} \quad \frac{\text{that}}{(n \backslash n)/(s/np)}
\]

\[
\frac{\text{the}}{np/n}
\]

Meaning. \(\nu(\lambda y_3.(\text{write(knuth, } y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

\[
\frac{\text{knuth}}{np} \quad \frac{\text{wrote}}{(np\backslash s)/np} \quad \frac{[p_1 \vdash np]}{[\text{/E}]}
\]

\[
\frac{\text{the}}{np/n} \quad \frac{\text{book}}{(n\backslash n)/(s/np)}
\]

Meaning. \(\nu(\lambda y_3. (\text{write(knuth, } y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

\[
\frac{\text{wrote}}{\text{knuth}} \quad \frac{(np/s)/np}{\text{wrote} \circ p_1 \vdash np/s} \quad \frac{[p_1 \vdash np]}{1} \quad [/E]
\]

\[
\frac{\text{that}}{\text{book}} \quad \frac{(n/n)/(s/np)}{np/n}
\]

Meaning. \(\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

\[
\begin{align*}
\text{knuth} & \quad \frac{\text{wrote}}{(np \backslash s)/np} \quad [p_1 \vdash np] \quad [/E] \\
np & \quad \frac{\text{wrote} \circ p_1 \vdash np \backslash s}{\backslash E}
\end{align*}
\]

\[
\begin{align*}
\text{the} & \quad \frac{\text{book}}{(n \backslash n)/(s/np)} \\
np & \quad \frac{n}{np/n}
\end{align*}
\]

Meaning. \(\nu(\lambda y_3. (\text{write(knuth, } y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

Meaning. $\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))$
14. Dynamic derivations: bottom up

\[
\begin{align*}
\text{wrote} & \frac{(np \backslash s)/np}{p_1 \vdash np}^1 ~/E \\
\text{wrote} \circ p_1 & \vdash np \backslash s \ [\|E]
\end{align*}
\]

\[
\begin{align*}
\text{knuth} & \frac{(np \backslash s)/np}{p_1 \vdash np}^1 \ [\|E] \\
\text{knuth} \circ (\text{wrote} \circ p_1) & \vdash s \ [P2]
\end{align*}
\]

\[
\begin{align*}
\text{book} & \frac{\text{that}}{(n \backslash n)/(s/np)} \\
\text{np}/n & \frac{\text{the}}{(n \backslash n)/(s/np)}
\end{align*}
\]

Meaning. \(\iota(\lambda y_3. (\text{write(knuth}, y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

\[
\begin{align*}
\text{Meaning. } & \nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))
\end{align*}
\]
14. Dynamic derivations: bottom up

\[
\begin{align*}
\text{Meaning.} & \quad \nu(y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))
\end{align*}
\]
14. Dynamic derivations: bottom up

\[
\frac{\text{wrote} \ (np\backslash s)/np \ [p_1 \vdash np]^1}{\text{knuth} \ np} \\
\frac{\text{wrote} \circ p_1 \vdash np\backslash s}{[\backslash E]} \\
\frac{\text{knuth} \circ (\text{wrote} \circ p_1) \vdash s}{[P2]} \\
\frac{(\text{knuth} \circ \text{wrote}) \circ p_1 \vdash s}{[\backslash I]^1} \\
\frac{\text{knuth} \circ \text{wrote} \vdash s/np}{\text{book} \ n} \\
\frac{\text{the} \ np/\ n}{(n\backslash n)/(s/np)}
\]

Meaning. \(\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

\[
\begin{align*}
\text{Meaning. } & \quad \nu (\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))
\end{align*}
\]
14. Dynamic derivations: bottom up

\[
\frac{\text{wrote}}{(np/s)/np} \frac{\text{knuth}}{np} \frac{\text{that}}{(n/n)/(s,np)} \frac{\text{book}}{\text{the}} \frac{n}{np/n}
\]

\[
\frac{\text{knuth} \circ \text{wrote} \circ p_1}{\frac{\text{wrote} \circ p_1}{np/s}} \frac{\text{knuth} \circ (\text{wrote} \circ p_1)}{s} \frac{(\text{knuth} \circ \text{wrote}) \circ p_1}{s} \frac{\text{knuth} \circ \text{wrote}}{s/np}
\]

\[
\frac{[p_1 \vdash np]^1}{\frac{\text{[/E]}}{\text{[/E]}}} \frac{\text{[/E]}}{\text{[/E]}} \frac{\text{[/I]^1}}{\text{[/I]^1}} \frac{\text{[/E]}}{\text{[/E]}}
\]

\[
\frac{\text{that} \circ (\text{knuth} \circ \text{wrote})}{n/n}
\]

\[
\frac{\text{Meaning. } \nu(\lambda y_3. \text{write(knuth, } y_3 \text{) } \land \text{ book}(y_3))}{\text{[/E]}}
\]
14. Dynamic derivations: bottom up

\[
\begin{array}{c}
\text{wrote} \quad \frac{(np/s)/np}{p_1 \vdash np}^1 [\text{/E}] \\
\text{knuth} \quad \frac{\text{that} \quad \frac{(n\backslash n)/(s/np)}{\text{book} \quad \frac{n}{np/n}}}{\text{wrote} \circ p_1 \vdash np/s} [\text{\textbackslash E}] \\
\text{knuth} \circ (\text{wrote} \circ p_1) \vdash s [P2] \\
\text{knuth} \circ \text{wrote} \vdash s/np [\text{/I}]^1 \\
\text{that} \circ (\text{knuth} \circ \text{wrote}) \vdash n \backslash n [\text{\textbackslash E}] \\
\end{array}
\]

Meaning. \(\nu (\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

\[
\begin{align*}
\text{Meaning. } & \nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \\
\end{align*}
\]
14. Dynamic derivations: bottom up

\[
\begin{align*}
\text{wrote} & \quad \frac{(np\backslash s)/np}{[p_1 \vdash np]} \quad [/E] \\
\text{knuth} & \quad \frac{\text{wrote} \circ p_1 \vdash np\backslash s}{[/E]} \\
\text{knuth} \circ (\text{wrote} \circ p_1) & \vdash s \quad [P2] \\
\text{knuth} \circ \text{wrote} & \vdash s/np \quad [/I]^1 \\
\text{that} & \quad \frac{(knuth \circ wrote) \circ p_1 \vdash s/np}{[/E]} \\
\text{book} & \quad \frac{(knuth \circ wrote) \circ (\text{that} \circ (knuth \circ wrote)) \vdash n/n}{[/E]} \\
\text{the} & \quad \frac{(\text{book} \circ (\text{that} \circ (knuth \circ wrote))) \vdash n/n}{[/E]} \\
\text{np/n} & \quad \frac{\text{book} \circ (\text{that} \circ (knuth \circ wrote)) \vdash n/n}{[/E]} \\
\text{np/n} & \quad \frac{(n\backslash n)/(s/np)}{[/E]} \\
\text{that} & \quad \frac{(knuth \circ wrote) \circ p_1 \vdash s/np}{[/E]} \\
\text{book} & \quad \frac{(knuth \circ wrote) \circ (\text{that} \circ (knuth \circ wrote)) \vdash n/n}{[/E]} \\
\text{np/n} & \quad \frac{\text{book} \circ (\text{that} \circ (knuth \circ wrote))) \vdash n/n}{[/E]} \\
\text{np/n} & \quad \frac{(n\backslash n)/(s/np)}{[/E]}
\end{align*}
\]

Meaning. \(\nu(\lambda y_3.(\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
14. Dynamic derivations: bottom up

Meaning. \(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)) \)
15. Dynamic derivations: top down
15. Dynamic derivations: top down

Meaning. \(\nu(\lambda y_3. (\text{write} (\text{knuth}, y_3) \land \text{book}(y_3))) \)
15. Dynamic derivations: top down

the ° (book ° (that ° (knuth ° wrote))) ⊢ np

Meaning. \(\nu(\lambda y_3. (\text{write(knuth, } y_3) \land \text{book}(y_3))) \)
15. Dynamic derivations: top down

\[
\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np \quad [/E]
\]

Meaning. \(\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
15. Dynamic derivations: top down

\[
\begin{align*}
\frac{np/n}{\text{the } \circ (\text{book } \circ (\text{that } \circ (\text{knuth } \circ \text{wrote}))))} \vdash np \quad [/E]
\end{align*}
\]

Meaning. \(\iota(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
Dynamic derivations: top down

\[
\frac{np/n}{\text{the } \circ (\text{book } \circ (\text{that } \circ (\text{knuth } \circ \text{wrote})))) \vdash np \quad [/E]
\]

Meaning. \(\nu(\lambda y_3. (\text{write(knuth, } y_3) \land \text{book}(y_3))) \)
15. Dynamic derivations: top down

\[
\begin{align*}
\text{the} & \\
\frac{np/n}{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))))} & \vdash np \quad [/E]
\end{align*}
\]

Meaning. \(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
15. Dynamic derivations: top down

\[
\frac{\text{the}}{np/n} \quad \frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n}{np} \\
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np}{[/E]}
\]

Meaning. \(\nu (\lambda y_3. (\text{write(knuth, } y_3) \land \text{book}(y_3))) \)
15. Dynamic derivations: top down

\[
\frac{\text{the}}{np/n} \quad \frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n}{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np} \quad \text{[\abstractform]} \\
\]

\[
\frac{\text{the}}{np/n} \quad \frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n}{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np} \quad \text{[\abstractform]} \\
\]

Meaning. \(\nu(y_3. (\text{write(knuth, } y_3) \land \text{book}(y_3))) \)
15. Dynamic derivations: top down

\[
\begin{align*}
\text{the} & \quad n \\
np/n & \quad \text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n \\
\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) & \vdash np
\end{align*}
\]

$[\backslash E]$

$[/E]$

Meaning. $\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))$
15. Dynamic derivations: top down

\[
\begin{align*}
\text{the} & \quad \text{n} \\
\text{np/n} & \quad \text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n & \quad [\backslash E] \\
\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) & \vdash np & \quad [/E]
\end{align*}
\]

Meaning. \(\nu (\lambda y_3. (\text{write} (\text{knuth}, y_3) \land \text{book} (y_3))) \)
15. Dynamic derivations: top down

\[
\begin{align*}
\text{the} & \quad \text{book} \\
\frac{\text{np} / n}{n} & \quad \text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n \\
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))))}{n} & \quad [\setminus E] \\
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))))}{\text{np}} & \quad [/E]
\end{align*}
\]

Meaning. \(\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
15. Dynamic derivations: top down

\[
\begin{array}{c}
\frac{\text{the}}{np/n} \quad \frac{\text{book}}{n} \quad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote})}{n \setminus n} \quad \frac{\text{[\setminus E]}}{}
\end{array}
\]

\[
\begin{array}{c}
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))))}{n} \quad \frac{\text{[\setminus E]}}{}
\end{array}
\]

Meaning. \(\nu (\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))) \)
15. Dynamic derivations: top down

\[
\frac{\text{the}}{np/n} \quad \frac{\text{book}}{n} \quad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote}) \vdash n \setminus n \quad [\setminus E]}{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n \quad [/E]} \\
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np \quad [/E]}{
}
\]

Meaning. $\nu(\lambda y_3. (\text{write(knuth, } y_3) \land \text{book}(y_3)))$
15. Dynamic derivations: top down

\[
\frac{\text{the} \quad \frac{\text{book}}{n} \quad \frac{(n/n)/(s/np)}{\text{that} \circ (\text{knuth} \circ \text{wrote})} \vdash n \mid n}{n \mid n} \quad [/E]
\]

\[
\frac{\text{the} \quad \frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))}{n} \vdash n}{n \mid n} \quad [/E]
\]

\[
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))))}{n \mid np} \quad [/E]
\]

Meaning. \(\nu (\lambda y_3. (\text{write(knuth, } y_3) \land \text{book}(y_3)))) \)
15. Dynamic derivations: top down

Meaning. \(\lambda y_3.(\text{write}(\text{k}n\text{u}t\text{h}, y_3) \wedge \text{book}(y_3))) \)
15. **Dynamic derivations: top down**

\[
\frac{\text{the} \quad \text{book}}{\frac{(n \, n) / (s / np)}{\text{that} \circ (\text{knuth} \circ \text{wrote})} \vdash n \, n} \quad [\backslash E]
\]

\[
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np}{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))} \vdash n \quad [\backslash E]
\]

\[
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np}{\text{that} \circ (\text{knuth} \circ \text{wrote})} \vdash n \quad [/E]
\]

Meaning. \(\nu(y_3. (\text{write(knuth, } y_3) \land \text{book}(y_3)))) \)
15. Dynamic derivations: top down

\[\text{Meaning. } \iota(\lambda y_3. (\text{write(knuth, } y_3) \land \text{book}(y_3))) \]
15. Dynamic derivations: top down

\[
\begin{align*}
\text{the} & \quad \frac{\text{book}}{n} \quad \frac{(n\backslash n)/(s/np) \quad \text{knuth} \circ \text{wrote} \vdash s/np}{[\vdash I]^1} \\
np/n & \quad \frac{\text{that}}{n} \quad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote}) \vdash n\backslash n}{[\vdash E]} \\
 & \quad \frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n}{[\vdash E]} \\
 & \quad \frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np}{[\vdash E]}
\end{align*}
\]

Meaning. \(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)) \)
15. Dynamic derivations: top down

\[
\begin{align*}
\text{np/n} & \vdash n [\text{//I}]^1 \\
\text{that} \quad \frac{(n\backslash n)/(s/np)}{(\text{knuth }\circ \text{ wrote}) \circ p_1 \vdash s} \quad [\text{//I}]^1 \\
\text{book} \quad \frac{\text{knuth }\circ \text{ wrote} \vdash s/np}{\text{book }\circ (\text{that }\circ (\text{knuth }\circ \text{ wrote})) \vdash n [\text{//E}]} \\
\text{n/n} \quad \frac{\text{that }\circ (\text{knuth }\circ \text{ wrote}) \vdash n\backslash n}{\text{book }\circ (\text{that }\circ (\text{knuth }\circ \text{ wrote})) \vdash n [\text{//E}]} \\
\text{np/n} \quad \frac{\text{the }\circ (\text{book }\circ (\text{that }\circ (\text{knuth }\circ \text{ wrote}))) \vdash np [\text{//E}]}{\text{the } \circ (\text{book }\circ (\text{that }\circ (\text{knuth }\circ \text{ wrote}))) \vdash np [\text{//E}]} \\
\end{align*}
\]

\text{Meaning. } \iota(\lambda y_3. (\text{write(knuth, y_3)} \land \text{book(y_3)}))
15. Dynamic derivations: top down

\[
\frac{\text{that}}{(n\backslash n)/(s/np)} \quad \frac{(\text{knuth} \circ \text{wrote}) \circ p_1 \vdash s}{[P2]} \\
\frac{\text{knuth} \circ \text{wrote} \vdash s/np}{[\setminus I]^1} \\
\frac{\text{the} \circ \text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n\backslash n}{[\setminus E]} \\
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))) \vdash np}{[\setminus E]}
\]

Meaning. \(\lambda y_3. (\text{write(}\text{knuth, } y_3) \land \text{book}(y_3)) \)
15. Dynamic derivations: top down

\[
\begin{align*}
\text{the} & \quad \frac{\text{book}}{n} \quad \frac{\text{that}}{(n \setminus n)/(s/np)} \quad \frac{\text{knuth} \circ (\text{wrote} \circ p_1) \vdash s}{[P2]} \\
\text{np/n} & \quad \frac{(\text{knuth} \circ \text{wrote}) \circ p_1 \vdash s}{[I]^1} \\
\text{np/n} & \quad \frac{\text{knuth} \circ \text{wrote} \vdash s/np}{[/E]} \\
\text{the} & \quad \frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n \setminus n}{[\setminus E]} \\
\text{np/n} & \quad \frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np}{[/E]} \\
\end{align*}
\]

Meaning. \(\nu(\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
15. Dynamic derivations: top down

\[
\begin{align*}
\frac{\text{the}\ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))))}{n p} & \vdash n p & [\ \ [E]] \\
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))))}{n} & \vdash n \ n & [\ \ [E]] \\
\frac{\text{that} \circ (\text{knuth} \circ \text{wrote})}{(n \ n)/(s/np)} & \vdash s/np & [\ \][I]^1 \\
\frac{\text{knuth} \circ \text{wrote}}{\vdash s/np} & \vdash s & [\ \][P2] \\
\frac{\text{knuth} \circ (\text{wrote} \circ p_1)}{\vdash s} & \vdash s & [\ \]
\end{align*}
\]

Meaning. \(\nu (\lambda y_3. (\text{write(knuth, y_3)} \land \text{book(y_3)})) \)
15. Dynamic derivations: top down

\[
\begin{align*}
\text{the} & \quad \frac{\text{np}}{n} \\
\text{np} & \quad \frac{\text{that}}{(n \backslash n)/(s/np)} \\
\text{book} & \quad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote})}{n} \\
\text{n/n} & \quad \frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))}{n} \\
\text{the} & \quad \frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))))}{\text{np}}
\end{align*}
\]

Meaning. \(\upsilon (\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))) \)
15. Dynamic derivations: top down

\[
\begin{array}{c}
\text{the} \quad \frac{\text{book}}{n} \quad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote})}{n \setminus n} \quad \frac{\text{np}}{n} \\
\frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))}{n} \quad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote})}{n \setminus n} \quad \frac{\text{np}}{n} \\
\end{array}
\]

\[\frac{\text{that} \circ (\text{knuth} \circ \text{wrote}) \vdash s}{[\setminus E]} \quad \frac{\text{knuth} \circ \text{wrote} \vdash s/np}{[P2]} \quad \frac{\text{np} \vdash \text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))}{[\setminus E]} \]

\[\frac{\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n \setminus n}{[\setminus E]} \quad \frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})))) \vdash np}{[\setminus E]} \]

Meaning. \(\nu (\lambda y_3. (\text{write} (\text{knuth}, y_3) \land \text{book} (y_3))) \)
15. Dynamic derivations: top down

\[
\begin{array}{c}
\text{the} \qquad \frac{\text{book}}{n} \qquad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote})}{n/n} \qquad \frac{\text{np}}{n} \\
np/n \qquad \frac{\text{that} \circ (\text{knuth} \circ \text{wrote})}{n/n} \qquad \frac{\text{np}}{n} \\
\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))) \vdash np
\end{array}
\]

\[
\begin{array}{c}
\text{Meaning. } \nu(\lambda y_3. (\text{write(}\text{knuth}, y_3) \land \text{book}(y_3)))
\end{array}
\]
15. Dynamic derivations: top down

\[\begin{align*}
\text{np/n} & \vdash \text{np/s} \quad \text{[E]} \\
\text{knuth} & \circ (\text{wrote} \circ \text{p}_1) \vdash \text{s} \quad \text{[P2]} \\
\text{knuth} & \circ \text{wrote} \vdash \text{s/np} \quad \text{[I]}^1 \\
\text{the} & \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))) \vdash \text{n/n} \quad \text{[E]} \\
\text{book} & \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash \text{n/np} \quad \text{[E]} \\
\text{that} \circ (\text{knuth} \circ \text{wrote}) & \vdash \text{n/n} \quad \text{[E]} \\
\text{np/n} & \vdash \text{np} \quad \text{[E]} \\
\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))) & \vdash \text{np} \quad \text{[E]} \\
\end{align*} \]

Meaning. \(\iota(\lambda y_3. (\text{write(knuth, y_3) \land book(y_3))) \)
15. Dynamic derivations: top down

Meaning. $\nu (\lambda y_3. (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))$
15. Dynamic derivations: top down

Meaning. $\iota(\lambda y_3. \text{write}(\text{knuth}, y_3) \land \text{book}(y_3)))$
15. Dynamic derivations: top down

\[
\frac{\text{knuth}}{\text{np}} \quad \frac{(np \backslash s) / np}{wrote \circ p_1 \vdash np \backslash s} \quad [\backslash E]
\]
\[
\frac{\text{knuth} \circ (wrote \circ p_1) \vdash s}{\text{[P2]}} \quad [\backslash E]
\]
\[
\frac{\text{knuth} \circ wrote \vdash s / np}{[\text{/I}]} \quad [\text{P2}]
\]
\[
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ wrote)))) \vdash n \backslash n}{\text{[\text{/I}]}} \quad [\backslash E]
\]
\[
\frac{\text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ wrote)))) \vdash np}{\text{[\text{/E}]}}
\]

Meaning. \(\nu (\lambda y_3. (\text{write(\text{knuth}, y_3)} \land \text{book}(y_3))) \)
15. Dynamic derivations: top down

\[
\begin{align*}
\frac{\text{wrote}}{(np\backslash s)/np} & \quad \text{wrote} \circ p_1 \vdash np\backslash s \quad [/ E] \\
\frac{\text{knuth}}{np} & \quad \text{knuth} \circ (\text{wrote} \circ p_1) \vdash s \quad \text{[\backslash E]} \quad [P2] \\
\frac{(\text{knuth} \circ \text{wrote}) \circ p_1 \vdash s}{\text{knuth} \circ \text{wrote} \vdash s/np} & \quad [/ I]^{1} \\
\frac{(n/n)/((s/np)}{\text{that}} & \quad \text{that} \circ (\text{knuth} \circ \text{wrote}) \vdash n\backslash n \quad \text{[\backslash E]} \\
\frac{n}{\text{book}} & \quad \text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote})) \vdash n \quad \text{[\backslash E]} \\
\frac{n/p/n}{\text{the}} & \quad \text{the} \circ (\text{book} \circ (\text{that} \circ (\text{knuth} \circ \text{wrote}))) \vdash np \quad [\backslash E]
\end{align*}
\]

\text{Meaning. } \nu(\lambda y_3. (\text{write(knuth, } y_3) \land \text{book}(y_3)))
15. Dynamic derivations: top down

\[
\begin{align*}
\text{Meaning. } & \quad \nu(y_3). (\text{write}(\text{knuth}, y_3) \land \text{book}(y_3))
\end{align*}
\]
16. Internal proof term representation

N: 1 ; Mean: $\iota(K.(\text{write}(\text{knuth},K) \& \text{book}(K)))$
rule(dre([],(the *[] (book *[] (that *[] (knuth *[] wrote)))),np,B(D(\text{^E.H(E)(G)})(C)),
[rule(lex,the,(np /[] n),B,[])],
rule(dle([],(book *[] (that *[] (knuth *[] wrote)))),n,D(\text{^E.H(E)(G)})(C),
[rule(lex,book,n,C,[])],
rule(dre([],(that *[] (knuth *[] wrote))),n \[] n),D(\text{^E.H(E)(G)}),
[rule(lex,that,((n \[] n) /[] (s /[] np)),D,[])],
rule(dri([],1),(knuth *[] wrote),(s /[] np),\text{^E.H(E)(G)}),
[rule(P2,((knuth *[] wrote) *[] E),s,H(E)(G),
[rule(dle([],(knuth *[] (wrote *[] E)),s,H(E)(G),
[rule(lex,knuth,np,G,[])],
rule(dre([],(wrote *[] E),(np \[] s)),H(E),
[rule(lex,wrote,((np \[] s) /[] np),H,[])],
rule(hyp(1),E,np,E,[]))]]))]]))]]),
Con: [],Subst: [ι,book,3-^I.^J.^K.(I(K) & J(K)),knuth,write], NV 8
17. **Web interaction with the kernel**

To realize web interaction with the kernel, we move through the following stages.

- Command line interaction (Prolog)
- Shell interaction (Unix)
- Web interaction (Cgi)
18. Prolog command line interaction

Consulting a fragment, parsing test sentences, producing \LaTeX output eg.tex to be processed by a wrapper file proofs.tex

Licensed to let.uu.nl
| ?- consult('notcl2000.pl'). % the kernel without tcl/tk GUI
{consulting notcl2000.pl...}
yes
| ?- consult('knuth.pl').
{consulting knuth.pl...}
{consulted knuth.pl in module user, 20 msec 6952 bytes}
yes
| ?- tex([knuth,surpassed,himself],s).
===
Lookup: 0, Max # links: 12
===
Telling \LaTeX output directory eg.tex
1 solution found. CPU Time used: 0.200 latex ready
19. From shell interaction to web interaction

Unix \(\sim\) shell interaction. The SICStus `save_program` predicate saves a state of the run of the program that can be resumed with the `-r` flag. In addition, arguments can be passed from the unix command line using the `-a` flag.

\%
```
sicstus -r wwwgrailstate
-a knuth yes yes yes inactive nd s knuth surpassed himself
{restoring wwwgrailstate...}
{wwwgrailstate restored in 80 msec 513808 bytes}
{consulting knuth.pl...}
```

Cgi \(\sim\) web interaction. The `sicstus -r ... -a ...` call is realized via acgi program, using the html or pdf form facilities.
20. Using Rahtz’ hyperref package

We can use the \href command of the hyperref package to call a cgi script:

\hyperbaseurl{http://grail.let.uu.nl/cgi-bin/grail/}
\newcommand{\parsescript}[4]{\href{wwwgrail.cgi?frag=#1&struct=yes&sem=no&lexsem=yes&unary=inactive&mode=nd&goal=#2&test=#3}{#4}}

The parameters for \parsescript are a fragment name (#1), a goal formula (#2), and the test expression, in cgi (#3) and print (#4) format. Sample sentences can now be evaluated/parsed on-line. wwwgrail.cgi sends back the typeset derivation, and the source file.

\parsescript{whleft}{np}{de+soepschildpad+die+alice+wil+plagen}
{de Soepschildpad die Alice wil plagen} $\vdash np$
21. Fragment libraries

The next step in the direction of the Mathematica ‘notebook’ concept:

The kernel transforms Prolog source code into a typeset fragment, with evaluable examples, and form interaction.

▶ Static library. A directory of annotated fragments used for didactic purposes. For example

http://www.let.uu.nl/~Michael.Moortgat/personal/Courses/fragments/

▶ Dynamic library. Users submit their individual fragments, which the Perl LWP module fetches from a specified URL.

http://grail.let.uu.nl/submitfragment-e.html
22. hyperref form interaction

\section{Interactive session}
\renewcommand{\LayoutTextField}[2]{\makebox[2in][l]{#1}\#2}
\renewcommand{\LayoutChoiceField}[2]{\makebox[1.5in][l]{#1}\#2}
\renewcommand{\LayoutCheckField}[2]{#1\makebox[1.5in][l]{#2}}
\renewcommand{\DefaultWidthofCheckBox}{12pt}
\renewcommand{\DefaultHeightofCheckBox}{12pt}

\begin{Form}[action=http://grail.let.uu.nl/cgi-bin/grail/wwwgrail.cgi, encoding=html, method=post]

\subsection*{Test example}
\TextField[width=3in,name=test]{Type in an example:}
\TextField[width=3in,name=goal]{Goal formula:}
...
\subsection*{Display options}
\ChoiceMenu[radio,default=yes,name=struct]{Structure labels:}{Yes=yes,No=no}
...
\Submit{\textsf{Submit}}\quad\Reset{\textsf{Reset}}
\end{Form}
23. Future work/worries

▶ Work. Extend the form interaction to allow for
 ▶ Lexicon editing/updating
 ▶ Postulate editing/updating
 ▶ Proof net unfolding

▶ Worry. Can we depend on Acrobat? Dynamic PDF features might change, disappear . . .

▶ Alternative? Is a switch to Hans Hagen’s conTeXt environment an option?
 ▶ let’s ask him . . .
Type-logical grammar

