ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton

Motivation

Classification goals:

- •Make I guess about the label (Top-I error)
- •Make 5 guesses about the label (Top-5 error)

No Bounding Box

Database

ImageNet

- I5M images
- ■22K categories
- Images collected from Web
- ■RGB Images
- ■Variable-resolution
- •Human labelers (Amazon's Mechanical Turk crowd-sourcing)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2010)

- IK categories
- ■1.2M training images (~1000 per category)
- ■50,000 validation images
- ■150,000 testing images

Strategy – Deep Learning

"Shallow" vs. "deep" architectures

Traditional recognition: "Shallow" architecture

Deep learning: "Deep" architecture

Learn a feature hierarchy all the way from pixels to classifier

reference: http://web.engr.illinois.edu/~slazebni/spring14/lec24_cnn.pdf

Neuron - Perceptron

hyperbolic tangent function

reference: http://en.wikipedia.org/wiki/Sigmoid_function#mediaviewer/File:Gjl-t(x).svg

Multi-Layer Neural Networks

- Nonlinear classifier
- Learning can be done by gradient descent
 - → Back-Propagation algorithm

Feed Forward Operation

input layer:
d features

hidden layer:

output layer: m outputs one for each class

Notation for Weights

• Use \mathbf{w}_{ji} to denote the weight between input unit \mathbf{i} and hidden unit \mathbf{j}

• Use \mathbf{v}_{kj} to denote the weight between hidden unit \mathbf{j} and output unit \mathbf{k}

Notation for Activation

Use net; to denote the activation and hidden unit j

$$net_j = \sum_{i=1}^d x^{(i)} w_{ji} + w_{j0}$$

• Use net_k^* to denote the activation at output unit k

$$net_k^* = \sum_{j=1}^{N_H} y_j v_{kj} + v_{k0}$$

Network Training

- I. Initialize weights w_{ii} and v_{kj} randomly but not to 0
- 2. Iterate until a stopping criterion is reached

BackPropagation

- Learn w_{ii} and v_{ki} by minimizing the training error
- What is the training error?
- Suppose the output of MNN for sample x is z and the target (desired output for x) is t
- Error on one sample:

$$J(w,v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2$$

Training error:

$$J(w,v) = \frac{1}{2} \sum_{i=1}^{n} \sum_{c=1}^{m} (t_c^{(i)} - z_c^{(i)})^2$$

Use gradient descent:

$$\mathbf{v}^{(0)}, \mathbf{w}^{(0)} = \text{random}$$

repeat until convergence:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla_{\mathbf{w}} J(\mathbf{w}^{(t)})$$
$$\mathbf{v}^{(t+1)} = \mathbf{v}^{(t)} - \eta \nabla_{\mathbf{v}} J(\mathbf{v}^{(t)})$$

BackPropagation: Layered Model

activation at hidden unit j

output at hidden unit j

activation at output unit **k**

activation at output unit **k**

objective function

$$net_{j} = \sum_{i=1}^{d} x^{(i)} w_{ji} + w_{j0}$$

$$y_{j} = f(net_{j})$$

$$net_{k}^{*} = \sum_{j=1}^{N_{H}} y_{j} v_{kj} + v_{k0}$$

$$z_{k} = f(net_{k}^{*})$$

$$J(w,v) = \frac{1}{2} \sum_{j=1}^{m} (t_{c} - z_{c})^{2}$$

 $\partial \mathbf{J}$

BackPropagation of Errors
$$\frac{\partial J}{\partial w_{ji}} = -f'(net_j)x^{(i)}\sum_{k=1}^{m} (t_k - z_k)f'(net_k^*)v_{kj} \quad \frac{\partial J}{\partial v_{kj}} = -(t_k - z_k)f'(net_k^*)y_j$$

Name "backpropagation" because during training, errors propagated back from output to hidden layer

Learning Curves

- this is a good time to stop training, since after this time we start to overfit
- Stopping criterion is part of training phase, thus validation data is part of the training data
- To assess how the network will work on the unseen examples, we still need test data

Momentum

Gradient descent finds only a local minima

not a problem if J(w) is small at a local minima. Indeed, we do not wish to find w s.t. J(w) = 0 due to overfitting

Momentum

- Momentum: popular method to avoid local minima and also speeds up descent in plateau regions
 - weight update at time **t** is

$$\Delta \mathbf{w}^{(t)} = \mathbf{w}^{(t)} - \mathbf{w}^{(t-1)}$$

add temporal average direction in which weights have been moving recently

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + (\mathbf{1} - \alpha) \left[\eta \frac{\partial \mathbf{J}}{\partial \mathbf{w}} \right] + \alpha \Delta \mathbf{w}^{(t-1)}$$
previous direction

- at $\alpha = 0$, equivalent to gradient descent
- at $\alpha = 1$, gradient descent is ignored, weight update continues in the direction in which it was moving previously (momentum)
- usually, α is around 0.9

ID Convolution

$$(A * B)(x) = \sum_{i} A(i)B(x-i)$$

Neural ID Convolution Implementation

2D Convolution Matrix

Convolutional Filter

Feature Map

reference: http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/fergus_dl_tutorial_final.pptx

- •Trained with stochastic gradient descent on two NVIDIA GPUs for about a week (5~6 days)
- •650,000 neurons, 60 million parameters, 630 million connections
- •The last layer contains 1,000 neurons which produces a distribution over the 1,000 class labels.

Response-Normalization Layer

- $a_{x,y}^i$: the activity of a neuron computed by applying kernel i at position (x, y)
- The response-normalized activity is given by

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2}\right)^{\beta}$$

- N: the total # of kernels in the layer
- n : hyper-parameter, n=5
- k : hyper-parameter, k=2
- α : hyper-parameter, $\alpha = 10^{-4}$
- β : hyper-parameter, β =0.75
- This aids generalization even though ReLU don't require it.
- This reduces top-I error by I.4, top-5 error rate by I.2%

Pooling Layer

- Non-overlapping / overlapping regions
- Sum or max

Max

Sum

Reduces the error rate of top-I by 0.4% and top-5 by 0.3%

First Layer Visualization

ReLU

Very bad (slow to train)

Very good (quick to train)

Learning rule

- Use stochastic gradient descent with a batch size of 128 examples, momentum of 0.9, and weigh decay of 0.0005
- The update rule for weight w was

$$v_{i+1} := 0.9 \cdot v_i - 0.0005 \cdot \epsilon \cdot w_i - \epsilon \cdot \left\langle \frac{\partial L}{\partial w} \Big|_{w_i} \right\rangle_{D_i}$$

$$w_{i+1} := w_i + v_{i+1}$$

- i:the iteration index
- $m{\epsilon}$: the learning rate, initialized at 0.01 and reduced three times prior to termination
- $\left\langle \frac{\partial L}{\partial w} |_{w_i} \right\rangle_{D_i}$ the average over the i-th batch D_i of the derivative of the objective with respect to w
- Train for 90 cycles through the training set of 1.2 million images

Fighting overfitting - input

 This neural net has 60M real-valued parameters and 650,000 neurons

 It overfils a lot therefore train on five 224x224 patches extracted randomly from 256x256 images, and also their horizontal

reflections

- Independently set each hidden unit activity to zero with 0.5 probability
- Used in the two globally-connected hidden layers at the net's output
- Doubles the number of iterations required to converge

A hidden layer's activity on a given training image

reference: http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

Results - Classification

• ILSVRC-2010 test set

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

• ILSVRC-2012 test set

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]		W	26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	2-2
7 CNNs*	36.7%	15.4%	15.3%

Results Classification

Results Retrival

The End

Thank you for your attention

Refernces

- www.cs.toronto.edu/~fritz/absps/imagenet.pd
- https://prezi.com/jiilm_br8uef/imagenetclassification-with-deep-convolutionalneural-networks/
- $sglab.kaist.ac.kr/\sim sungeui/IR/.../second/201454$ 81 \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}
- http://alex.smola.org/teaching/cmu2013-10-701/slides/14 PrincipalComp.pdf
- Hagit Hel-or (Convolution Slide)
- http://www.cs.haifa.ac.il/~rita/ml_course/lectures /NN.pdf