-~ ImageNet Classification
with
Deep Convolutional Neural
Networks

Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton

Motivation

Classification goals:

*Make | guess about the label (Top-I error)
*Make 5 guesses about the label (Top-5 error)

rapeseed T C suit brown bear

rapeseed suit brown bear
mustard || spinach bow tie otter
sunflower soy || academic gown lion
lesser celandine cucumber brace ice bear
wallflower zucchini oilskin golden retriever

No

owler monkey Americn lobster '

BO un d | n g . lotion : howler monkey American | obs!:er dune
hair spray spider monkey tick tent
ink bottle raccoon crayfish crutch

nipple bullfrog king crab fishing rod
nail polish indri barn spider solar dish

Database

ImageNet
" | 5M images
»22K categories
"Images collected from Web
"RGB Images
"Variable-resolution
*Human labelers (Amazon’s Mechanical Turk crowd-sourcing)

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC-2010)

" |K categories

" |.2M training images (~1000 per category)
*50,000 validation images

50,000 testing images

Strategy — Deep Learning
“Shallow” vs.“deep” architectures

Traditional recognition: “Shallow” architecture

Image/
Video |:>
Pixels

Object
Class

Deep learning: “Deep” architecture

Image/ :
Video |:',>-:> -:‘:Slm e >
Pixels

Learn a feature hierarchy all the way from pixels to classifier

Object
Class

reference : http://web.engr.illinois.edu/~slazebni/spring | 4/lec24 _cnn.pdf

Neuron - Perceptron

hyperbolic tangent function

tanh(x)
1.00 f
0.50
Input . /

(raw pixel) /

. Weights i

-4.00 -2.00 0.00 2.00 4.00 X

Output: f(w*x+b)

[
—lp

sinhy e —e T & _1 11—
tanhzr = = = — = 5
coshr eT4+e T e 41 1 4+e=x

reference : http://en.wikipedia.org/wiki/Sigmoid_functionf#mediaviewer/File:Gjl-t(x).svg

Multi-Layer Neural Networks

e Nonlinear classifier

e Learning can be done
by gradient descent
—> Back-Propagation

algorithm

Input
Layer

Hidden
Layer

Output
Layer

Feed Forward Operation

input layer: hidden layer: output layer:
Fis e iR Al

Notation for Weights

Use w;; to denote the weight between input

unit i and hidden unit j
input unit i hidden unit j

wW..
> J! > >
x(i) w..x(i) Y;
J! J

Use v,; to denote the weight between hidden
unit j and output unit k

hidden unit j output unit k

L3 L z
Yj VkjYj k

Notation for Activation

= Use net; to denote the activation and hidden unit j

hidden unit j
d x(D) W,
net, =) xw, +w, OWp
i=1 / yj
AP

= Use net*, to denote the activation at output unit k

output unit k

Ny
- y
net, = Zijkj T Vo k
: e

¥

Network Training

l. Initialize weights w; and v,; randomly but not to 0

2. Iterate until a stopping criterion is reached

input sample x,, output Z =

MNN with weights .
choose p | > w; and v, Z

Compare output z with the desired target t;
adjust wj; and v,; to move closer to the goal
t (by backpropagation)

BackPropagation

* Learn wj; and v;; by minimizing the training error
* What is the training error?

e Suppose the output of MNN for sample x is z and the target
(desired output for x) is t

= Error on one sample: J(w,v)= %i(tc i
c=1

= Training error: Jw,v)= %ii (tgi) _ zg))2

i=1 c=1

V(O),W(O) — random

= Use gradient descent: repeat until convergence:

W —w® _pv g(w®)
Ve Oy g(y©)

BackPropagation: Layered Model

activation at _ (i)
hidden unit j netj = ZX Wj,- + WjO
i=1 D
tput at
hi%llélepnuuﬁitj yj = f(netj)
s Ny
Sutput uni k net, = y v, +V
j=1
d) B
activation at . ~ ~
output unit k zZ, = f(netk) § %
I | S S
m
objective function J(W,V) — 12 (tc ~z,)2 oJ oJ

BackPropagation of Errors

. . oJ o
o _ —f'(net,)xO> (t, - z,) F'(net; Jv,, PV ~(t - z.)F (net,)y,
GWJ, k=1 ij ——
error
unit i
unit j
———— < ‘j Z

y 4

m

==

e Name “backpropagation” because during training, errors
propagated back from output to hidden layer

Learning Curves

classification error

training time

—

. this is a good time to stop training, since after this time we start to overfit
. Stopping criterion is part of training phase, thus validation data is part of the training data
. To assess how the network will work on the unseen examples, we still need test data

Momentum

* Gradient descent finds only a local minima

" nota problem if J(w) is small at a local minima. Indeed, we do not wish to find w
s.t. J(w) = 0 due to overfitting

n
>

J(w)

reasonaple local
minimum —

global minimum

*= problem if J(w) is large at a local Jw)
minimum w
bad jocal
minfmum

global minimum

Momentum

* Momentum: popular method to avoid local minima and

also speeds up descent in plateau regions
" weight update at time t is Aw(t) _ W(t) _ W(t—1)

" add temporal average direction in which weights have been moving recently

w) = w4 (1- a)[n ﬂ} +aAw

— previous
steepest descent direction
direction

= at o= 0, equivalent to gradient descent

"= at o= |, gradient descent is ignored, weight update continues in the direction in
which it was moving previously (momentum)

= usually, ¢ is around 0.9

| D Convolution

(A4 * B)(A

Example: A

A'B

24()3 1—?

(AB)(3)

10 1622

Neural |D Convolution
Implementation

Output

Hidden

2D Convolution Matrix

| Tre— |
| 4 a4 RS
Identity

0 -1 0

Sharpen —1 5 =1
0 -1 0

Edge detection 1 1 1

Box blur 1 111

{normalized) 0 111

_ M 81

Gausmlanlblur E 2 4 9

{approzimation} 1 92 1

reference : http://en.wikipedia.org/wiki/Kernel_(image_processing)

Convolutional Filter

reference : http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr|2/fergus_dl_tutorial_final.pptx

Architecture

128 2048 7048 \dense

224 I

dense| [dense

1000

s
o 192 192 128 Max
§Eride Max 128 Max pooling
Uof 4 pooling pooling

3 a8

204 2048

oo

*Trained with stochastic gradient descent on two NVIDIA GPUs for about a
week (5~6 days)
*650,000 neurons, 60 million parameters, 630 million connections

*The last layer contains 1,000 neurons which produces a distribution over
the 1,000 class labels.

Architecture

|

5 Convolutional
layers

- B I
N

; S0 o | x
4 : . .L‘.-,{') E— |['~I| - =
h A,] 3| \ L3
1 27 3
LA
1I -) 4

24

152

3 Fully connected layers

a4

IIIII

Architecture

intra-GPU connections

Done on GPU#1
o0 o . E s) | |

o] 204 Foag \Hense
24 | g [T, i
[l LS [- E 1] B EE 13 dense ensg|
5 _Io by [T e | -
sl | 3| Ei. -
| s . .
1 = 152 107

. = T "7 ™7 Done on GPU#2
3 BEEE

inter-GPU connections

Architecture

Response normalization layers

1

ﬂﬂﬂﬂﬂ

\ 3
L

]1. -
3

ax-pooling layers

-
Wy
i

e

1
L ¥ 103 108 ?
4
13 13 i3
S\ [YA
s 1
\ EA i |
[.j = E NS 13
EF] 187 1 5

T

Response-Normalization Layer

a;jy : the activity of a neuron computed by applying kernel i at
position (X, y)

The response-normalized activity is given by

min(N—1,i4n/2) B
b, =da. /| k+a > (al)2

j=max(0,i—n/2)

N : the total # of kernels in the layer

n : hyper-parameter, n=5

k : hyper-parameter, k=2

a : hyper-parameter, a=107(-4)

B : hyper-parameter, 3 =0.75

This aids generalization even though ReLU don’t require it.

This reduces top-| error by 1.4, top-5 error rate by 1.2%

Pooling Layer

- Non-overlapping /Pverlapping regions‘
° Sum or max

Max

Sum

Reduces the error rate of top-1 by 0.4% and top-5 by 0.3%

reference : http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr|2/fergus_dl_tutorial_final.pptx

Architecture

224x224x3 256 kernels 384 kernels 2048 neurons each
input image 5x5x48 3x3x192

; 13
B
13
, o0
128
3 - 256 kernels
384 kernels 3x%3x192
96 kernels 3%3x256

11%11%3

First Layer Visualization

RelLU

f(x) = tanh(; 075 - = max(0, X)
T3.U 3.u
+2.0 2.0
L 0.5+
&
+1.0 = 1.0
-
i) M,
2 -~
0 -1.0 +1 £ == - +1.0 +3.
o 025+ =
1.0 I~ 1.0
2.0 2.0
{J T T T T T T
0 10 15 20 25 30 35 40
Epochs

Very bad (slow to train)

Very good (quick to train)

Learning rule

Use stochastic gradient descent with a batch size of 128 examples,

momentum of 0.9, and weigh decay of 0.0005

The update rule for weight w was

OL
Vi1 = 0.9'@1—0.0005'E'w1—6'< w'>
Q' Wi f o
Wi;41 = Wy + Vi1
i :the iteration index
€ : the learning rate, initialized at 0.01 and reduced three times prior to

termination

o,

objective with respect to w

<6L > the average over the i-th batch D, of the derivative of the
Dy

Train for 90 cycles through the training set of |.2 million images

Fighting overfitting - input

 This neural net has 60M real-valued
parameters and 650,000 neurons

* It overfils a lot therefore train on five
224x224 patches extracted randomly from
256x256 images, and also their horizontal
reflections

Fighting overfitting - Dropout
* Independently set each hidden unit activity to zero with 0.5
probability

* Used in the two globally-connected hidden layers at the net's
output

e Doubles the number of iterations required to converge

A hidden layer's activity on a given training image

H BN BE B H B

| |

A hidden unit A hidden unit
turned off by unchanged
dropout

reference : http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

Results - Classification
e ILSVRC-2010 test set

Model Top-1 Top-5
Sparse coding [2] | 47.1% | 28.2%
SIFT + FVs [24] | 45.7% | 25.7%
CNN [37.5% | 17.0%

e ILSVRC-2012 test set

Model Top-1 (val) | Top-5 (val) | Top-5 (test)
SIFT + FVs [7] — — 26.2%

1 CNN 40.7% 18.2% —

5 CNNs 38.1% 16.4% 16.4%

| CNN* - 39.0% 1669 —

7 CNNs* <36.7% 15.4% - 153% >

peanut

lotion

parsni

polyp

| pecan

sunflower seed
pumpkin seed
peanut

clam

|lotion

hair spray
ink bottle

nipple
nail polish

parsnip

brussels sprouts
okra

orangutan
button

pelyp

5ea anemone

coral
sea slug

—

flatworm

metronome

celandine poppy

e XA
saltshaker chimpanzee
saltshaker | gorilla
candle || cougar
ceramic ware chimpanzee
mug baboon
goblet | lion|

cello
whistle

microphone ||

lipstick
pencil sharpener

celandine poppy
Welsh poppy
celandine
iceland poppy

calceolaria

The End

Thank you for your attention

Refernces

e sglab.kaist.ac.kr/~sungeuil/lR/...Isecond/201454
81 2 = +.pptx

» Hagit Hel-or (Convolution Slide)

e http://www.cs.haifa.ac.il/~rita/ml_course/lectures
INN.pdf

