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Motivation

Classification goals:

*Make | guess about the label (Top-I error)
*Make 5 guesses about the label (Top-5 error)
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Database

ImageNet
" | 5M images
»22K categories
"Images collected from Web
"RGB Images
"Variable-resolution
*Human labelers (Amazon’s Mechanical Turk crowd-sourcing)

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC-2010)

" |K categories

" |.2M training images (~1000 per category)
*50,000 validation images

50,000 testing images



Strategy — Deep Learning
“Shallow” vs.“deep” architectures

Traditional recognition: “Shallow” architecture

Image/
Video |:>
Pixels

Object
Class

Deep learning: “Deep” architecture

Image/ :
Video |:',>-:> -:‘:Slm e >
Pixels

Learn a feature hierarchy all the way from pixels to classifier

Object
Class

reference : http://web.engr.illinois.edu/~slazebni/spring | 4/lec24 _cnn.pdf



Neuron - Perceptron

hyperbolic tangent function
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reference : http://en.wikipedia.org/wiki/Sigmoid_functionf#mediaviewer/File:Gjl-t(x).svg



Multi-Layer Neural Networks

e Nonlinear classifier

e Learning can be done
by gradient descent
—> Back-Propagation

algorithm

Input
Layer

Hidden
Layer

Output
Layer




Feed Forward Operation

input layer: hidden layer: output layer:
Fis e iR Al




Notation for Weights

Use w;; to denote the weight between input

unit i and hidden unit j
input unit i hidden unit j

wW..
> J! > >
x(i) w..x(i) Y;
J! J

Use v,; to denote the weight between hidden
unit j and output unit k

hidden unit j output unit k

L3 L z
Yj VkjYj k




Notation for Activation

= Use net; to denote the activation and hidden unit j

hidden unit j
d x(D) W,
net, =) xw, +w, OWp
i=1 / yj
AP

= Use net*, to denote the activation at output unit k

output unit k
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Network Training

l. Initialize weights w; and v,; randomly but not to 0

2. Iterate until a stopping criterion is reached

input sample x,, output Z =

MNN with weights .
choose p | > w; and v, Z

Compare output z with the desired target t;
adjust wj; and v,; to move closer to the goal
t (by backpropagation)




BackPropagation

* Learn wj; and v;; by minimizing the training error
* What is the training error?

e Suppose the output of MNN for sample x is z and the target
(desired output for x ) is t

= Error on one sample: J(w,v)= %i(tc i
c=1

= Training error: Jw,v)= %ii (tgi) _ zg))2

i=1 c=1

V(O),W(O) — random

= Use gradient descent: repeat until convergence:

W —w® _pv g(w®)
Ve Oy g(y©)




BackPropagation: Layered Model

activation at _ (i)
hidden unit j netj = ZX Wj,- + WjO
i=1 D
tput at
hi%llélepnuuﬁitj yj = f(netj)
s Ny
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BackPropagation of Errors
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e Name “backpropagation” because during training, errors
propagated back from output to hidden layer



Learning Curves

classification error

training time

—

. this is a good time to stop training, since after this time we start to overfit
. Stopping criterion is part of training phase, thus validation data is part of the training data
. To assess how the network will work on the unseen examples, we still need test data



Momentum

* Gradient descent finds only a local minima

" nota problem if J(w) is small at a local minima. Indeed, we do not wish to find w
s.t. J(w) = 0 due to overfitting

n
>

J(w)

reasonaple local
minimum  —

global minimum

*=  problem if J(w) is large at a local Jw)
minimum w
bad jocal
minfmum

global minimum



Momentum

* Momentum: popular method to avoid local minima and

also speeds up descent in plateau regions
"  weight update at time t is Aw(t) _ W(t) _ W(t—1)

"  add temporal average direction in which weights have been moving recently

w) = w4 (1- a)[n ﬂ} +aAw

— previous
steepest descent direction
direction

= at o= 0, equivalent to gradient descent

"= at o= |, gradient descent is ignored, weight update continues in the direction in
which it was moving previously (momentum)

=  usually, ¢ is around 0.9



| D Convolution

(A4 * B)(A

Example: A

A'B
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Neural |D Convolution
Implementation

Output

Hidden




2D Convolution Matrix

| Tre— |
| 4 a4 RS
Identity

0 -1 0

Sharpen —1 5 =1
0 -1 0

Edge detection 1 1 1

Box blur 1 111

{normalized) 0 111

_ M 81

Gausmlanlblur E 2 4 9

{approzimation} 1 92 1

reference : http://en.wikipedia.org/wiki/Kernel_(image_processing)



Convolutional Filter

reference : http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr|2/fergus_dl_tutorial_final.pptx



Architecture
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*Trained with stochastic gradient descent on two NVIDIA GPUs for about a
week (5~6 days)
*650,000 neurons, 60 million parameters, 630 million connections

*The last layer contains 1,000 neurons which produces a distribution over
the 1,000 class labels.



Architecture
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Architecture

intra-GPU connections
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Architecture

Response normalization layers
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Response-Normalization Layer

a;jy : the activity of a neuron computed by applying kernel i at
position (X, y)

The response-normalized activity is given by

min(N—1,i4n/2) B
b, =da. /| k+a > (al )2

j=max(0,i—n/2)

N : the total # of kernels in the layer

n : hyper-parameter, n=5

k : hyper-parameter, k=2

a : hyper-parameter, a=107(-4)

B : hyper-parameter, 3 =0.75

This aids generalization even though ReLU don’t require it.

This reduces top-| error by 1.4, top-5 error rate by 1.2%



Pooling Layer

- Non-overlapping /Pverlapping regions‘
° Sum or max

Max

Sum

Reduces the error rate of top-1 by 0.4% and top-5 by 0.3%

reference : http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr|2/fergus_dl_tutorial_final.pptx



Architecture

224x224x3 256 kernels 384 kernels 2048 neurons each
input image 5x5x48 3x3x192

; 13
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96 kernels 3%3x256
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First Layer Visualization




RelLU

f(x) = tanh(; 075 - = max(0, X)
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Learning rule

Use stochastic gradient descent with a batch size of 128 examples,

momentum of 0.9, and weigh decay of 0.0005

The update rule for weight w was

OL
Vi1 = 0.9'@1—0.0005'E'w1—6'< w'>
Q' Wi f o
Wi;41 = Wy + Vi1
i :the iteration index
€ : the learning rate, initialized at 0.01 and reduced three times prior to

termination

o,

objective with respect to w

<6L > the average over the i-th batch D, of the derivative of the
Dy

Train for 90 cycles through the training set of |.2 million images



Fighting overfitting - input

 This neural net has 60M real-valued
parameters and 650,000 neurons

* It overfils a lot therefore train on five
224x224 patches extracted randomly from
256x256 images, and also their horizontal
reflections




Fighting overfitting - Dropout
* Independently set each hidden unit activity to zero with 0.5
probability

* Used in the two globally-connected hidden layers at the net's
output

e Doubles the number of iterations required to converge

A hidden layer's activity on a given training image

H BN BE B H B

| |

A hidden unit A hidden unit
turned off by unchanged
dropout

reference : http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf



Results - Classification
e ILSVRC-2010 test set

Model Top-1 Top-5
Sparse coding [2] | 47.1% | 28.2%
SIFT + FVs [24] | 45.7% | 25.7%
CNN [ 37.5% | 17.0%

e ILSVRC-2012 test set

Model Top-1 (val) | Top-5 (val) | Top-5 (test)
SIFT + FVs [7] — — 26.2%

1 CNN 40.7% 18.2% —

5 CNNs 38.1% 16.4% 16.4%

| CNN* - 39.0% 1669 —

7 CNNs* <36.7% 15.4% - 153% >
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The End

Thank you for your attention



Refernces

e sglab.kaist.ac.kr/~sungeuil/lR/...Isecond/201454
81 2 = +.pptx

» Hagit Hel-or (Convolution Slide)

e http://www.cs.haifa.ac.il/~rita/ml_course/lectures
INN.pdf



