Using Context in Object Recognition

Using the Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization. Torralba, Murphy, and Freeman. CACM 2009.

OBJECT LOCALIZATION

Sliding Window Approach

100

1000 classes -> 100 f.a. every image

And it's slow

Is local information even enough?

Distance

The system does not care about the scene, but we do...

We know there is a keyboard present in this scene even if we cannot see it clearly.

We know there is no keyboard present in this scene

The multiple personalities of a blob

The multiple personalities of a blob

12 A 13 C

Look-Alikes by Joan Steiner

Look-Alikes by Joan Steiner

Look-Alikes by Joan Steiner

The context challenge

How far can you go without using an object detector?

What are the hidden objects?

What are the hidden objects?

Biederman 1982

- Pictures shown for 150 ms.
- Objects in appropriate context were detected more accurately than objects in an inappropriate context.
- Scene consistency affects object detection.

Objects and Scenes

Stimuli from Hock, Romanski, Galie, and Williams (1978).

Biederman's violations (1981):

- 1. Support (e.g., a floating fire hydrant). The object does not appear to be resting on a surface.
- Interposition (e.g., the background appearing through the hydrant). The objects undergoing this
 violation appear to be transparent or passing through another object.
- 3. Probability (e.g., the hydrant in a kitchen). The object is unlikely to appear in the scene.
- Position (e.g., the fire hydrant on top of a mailbox in a street scene). The object is likely to occur in that scene, but it is unlikely to be in that particular position.
- 5. Size (e.g., the fire hydrant appearing larger than a building). The object appears to be too large or too small relative to the other objects in the scene.

Object priming

Increasing contextual information

Torralba, Sinha, Oliva, VSS 2001

The layered structure of scenes

Assuming a human observer standing on the ground

In a display with multiple targets present, the location of one target constraints the 'y' coordinate of the remaining targets, but not the 'x' coordinate.

Detecting faces without a face detector

Torralba & Sinha, 01; Torralba, 03

General Approach

GIST

- Global descriptor for scenes
- Based on statistics of low-level features over fixed image patches

GIST

GIST

R G B space -> L*a*b*

Luminance

b (yellow - blue)

Target Problems

• Object presence/absence

(generalization: the number of object instances in the scene)

- Object localization
 - specify the location and size of each of the object instances

Localization using low-level features

binary random variable representing whether image patch *i* contains an object of type *t* or not(i=1:N, N \approx 100, number of patches) Local image features, extracted from patch i of an image from class t

$c_i^t = \log p(f_i^t | O_i^t = 1) / p(f_i^t | O_i^t = 0),$

Compute this for each location i and object type t and output patches that score best (10 best scores)

Car Detection (low-level features)

a) input image

b) car detector output

Presence using high level features

- Step1: Classify the scene from gist
- Step 2: Use scene label to predict the number of objects present

Probability of n objects, given scene

Number of cars in a scene

Location Priming

- Learn the mapping from gist to vertical location (mixture of expert model)
- Predict most likely vertical location
- Mask out unlikely regions for class category

Integrated Model

- Combine global and local cues:
 - scores from the localization using local features
 - probability of n objects, given scene
 - location priming

Presence

- Find the number of objects present using gist
- Show that many confidence scores

Adding Location Information

- Let *l*^t_i indicate the location of the top ith (i=1..D) detection of class t.
- Combine expected location and presence as follows:

$$p(O_{1:D}^{t}|c_{1:D}^{t}, \ell_{1:D}^{t}, g) \propto p(O_{1:D}^{t}|g) \prod_{i=1}^{D} p(c_{i}^{t}|O_{i}^{t}) p(\ell_{i}^{t}|O_{i}^{t}, g)$$

$$p(\ell_{i}^{t}|O_{i}^{t}, g) = \int p(\ell_{i}^{t}|O_{i}^{t}, Y_{t}) p(Y_{t}|g) dY_{t}$$

$$Likelihood of the location of patch i for class t, given it's expected location.$$

$$Location priming$$

Adding Location Information

$$p(O_{1:D}^{t}|c_{1:D}^{t}, \ell_{1:D}^{t}, g) \propto p(O_{1:D}^{t}|g) \prod_{i=1}^{D} p(c_{i}^{t}|O_{i}^{t}) p(\ell_{i}^{t}|O_{i}^{t}, g)$$

- confident detections in improbable locations are suppressed;
- unconfident detections in likely locations are boosted.

- 2688 images with 8 scenes
 half for training, half for testing
- Focused solely on car identification
- Integrated model is better than local features

a) input image

b) car detector output

c) location priming

c) integrated model output

- Improves precision but not recall
 - If the detector misses an instance (due to occlusion or noise), context doesn't help
 - Reduces the number of false positives, removes cars in scenes where cars are not expected

Evaluation - Strength

- Probabilistic information fusion
- Boost confidence of probable regions suppress confidence of non-probable regions
- Location priming makes intuitive sense
- Better performance than with only local features

Evaluation - Weakness

- Tested on a single object (cars)
- Boosts false positives within probable regions
- Relies heavily on object detector accuracy
- Suppresses true positives within non-probable regions

Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification

CATEGORIZATION

Motivation

Different images have similar statistics of two most popular features

Motivation

Different images have similar statistics of two most popular features

Responses of object detectors are more specific

Motivation

- Before: quantized local features as words
- New: use objects as words.
- Simple Motivation: scene consists of objects

Object Bank

- representation of natural images
- based on objects
 - a collection of object sensing filters built on a generic collection of labeled objects

Object Bank

Object Bank

- Use latent SVM detector for blobby objects: tables, cars, humans, etc.
- Use texture classifier by Hoiem for more texture- and material-based objects: sky, road, sand, etc.
- 200 object detectors at 12 detection scales

How many objects to use?

- All (tens of thousands of generic objects)
 - Computationally infeasible
 - Some object are more important than others:

Choose few hundred most popular objects in images.

How to choose objects for OB?

- Enough training images for each object detectors
- Dataset: ESP , LabelMe, ImageNet , and the Flickr.
- Take the intersection set of the most frequent 1000 objects, resulting in 200 objects
- Training and validation are done on different sets.

Object Bank Representation

 For each object at each scale, a three-level spatial pyramid representation of the resulting object filter map is used

No. of objects x No. of scales x(1x4x16) grids

The maximum response for each object in each grid is then computed

No. of objects representation for each grid

• A concatenation of features in all grids leads to an OB descriptor for the image.

Learning Scene Classifier

- Stacking filter outputs of all object detectors
 > very large dimension => overfitting
- Use strong regularizers

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{J}} \lambda R(\boldsymbol{\beta}) + \frac{1}{m} \sum_{i=1}^{m} L(\boldsymbol{\beta}; x_{i}, y_{i})$$
regularizer Loss function

Loss function

Logistic loss:

$L = \log(1/P(y_i|\mathbf{x}_i,\beta)).$

 $P(y|\mathbf{x},\beta)) = \frac{1}{Z} \exp(\frac{1}{2}y(\mathbf{x}\cdot\beta))$

Regularizer

- L2 $R(\beta) \triangleq \|\beta\|_2$ LR
- L1 $R(\boldsymbol{\beta}) \triangleq \|\boldsymbol{\beta}\|_1$ Feature sparsity, many of β i=0
- LR1
- L1/2 (group regularizer) $R(\beta) \triangleq ||\beta||_{1,2} = \sum_{j=1}^{J} ||\beta^j||_2,$ LRG where β^j is the *j*-th group (i.e., features grouped by an object *j*)

Object level sparsity – all features of object go to zero

• L1/L2+L1 joint object feature sparsity $R(\beta) \triangleq \lambda_1 \|\beta\|_{1,2} + \lambda_2 \|\beta\|_1$

	15-Scene	UIUC-	MIT-
		Sports	Indoor
state-of	72.2%[19]	66.0% [32]	26% [27]
-the-art	81.1%[19]	73.4% [22]	
OB	80.9%	76.3%	37.6%

Degree of clutter

GIST, BOW and SPM are trained with SVM

Accuracy vs. number of examples

Conclusion: OB representation requires less training examples per scene.

Accuracy vs. percentage of features used

Conclusion: OB representation allows sparser representations. OB is over-complete representation

Accuracy as a function of number of objects

Conclusion: OB representation improves when the number of objects increases.

Interpretation of the compressed representation

Object-wise coefficients given scene class. Selected objects correspond to non-zero values learned by LRG.

Conclusions

- Object Bank representation is powerful on scene classification tasks
 - it carries rich semantic level image information
 - Allows to achieve nearly lossless semanticpreserving compression