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Previous approaches 

1. Use edge detection to find key 
points 

2. Learn key point placement in 
faces 

3. Upon receiving a new face, use 
the above to recognize face  

oHard to implement and not 
deterministic 



Eigenface approach 

oProject training images into “eigenspace” 

oDeduce the top eigenvectors from the projection 
(called “eigenfaces” because they look like faces) 

o Every face Image can be represented as a linear 
combination of the eigenfaces 
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PCA – Principal Component Analysis 

oAllows us to lower the dimension of a data set while 
retaining as much of the original data as possible 

o For example for X of dimension N: 
◦𝑋 = 𝑎1𝑣1 + 𝑎2𝑣2…+ 𝑎𝑁𝑣𝑁 

◦𝑣1, 𝑣2…𝑣𝑁 is the dimensional basis 

oWe can compute 𝑋  of dimension K << N to be: 
◦𝑋 = 𝑏1𝑢1 + 𝑏2𝑢2 +⋯+ 𝑏𝐾𝑢𝑘 

o If 𝐾 = 𝑁 then 𝑋 = 𝑋  
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PCA – Principal Component Analysis 

oDimensional reduction = Information Loss  

oPCA minimizes the error rate of 𝑋 − 𝑋  

o The best way to do this is to keep the largest 
eigenvectors of the covariance matrix of X 

◦Also called the “Principal Components” 
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PCA Methodology 

For vectors 𝑥1, 𝑥2…𝑥𝑀 of order 𝑁 × 1 

1. Compute the avg. 𝑋 =
1

𝑀
 𝑥𝑖
𝑀
𝑖=1   

2. Subtract to center at zero 𝜙𝑖 = 𝑥𝑖 − 𝑥𝑖  

3. Form the matrix 𝐴 = [𝜙1𝜙2…𝜙𝑀] of order 𝑁 × 𝑀 
then compute: 

 C =
1

𝑀
 𝜙𝑖𝜙𝑖

𝑇𝑀
𝑖=1 = 𝐴𝐴𝑇 

 (Covariance matrix of order 𝑁 × 𝑁) 
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PCA Methodology 

4.  Eigenvalues of C: 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑁 

5.  Eigenvectors of C: 𝑢1, 𝑢2…𝑢𝑁 form a basis, so as we’ve seen:  
x = 𝑏1𝑢1 + 𝑏2𝑢2 +⋯+ 𝑏𝐾𝑢𝑘 

6. Reduce the dimension from N to K by keeping the K largest 
eigenvalues: 𝑥 ⇒  𝑥  

 

So 𝑥  − 𝑥 = [𝑏1 𝑏2  … 𝑏𝐾]  
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Application to eigenfaces  

1. For face Images 𝐼1, 𝐼2…𝐼𝑀 of the same size 

2. Convert every image 𝐼𝑖 to vector Γ𝑖 

 

𝑁 × 𝑁 𝑁2 × 1 vector 
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Application to eigenfaces  

3. Compute the average face: Ψ =
1

𝑀
 Γ𝑖
𝑀
𝑖=1  

4. Subtract : Φ𝑖 = Γ𝑖 −Ψ 

5. Compute the covariance matrix C: 

 𝐶 =
1

𝑀
 Φ𝑖Φ𝑖

𝑇𝑀
𝑖=1 = 𝐴𝐴𝑇 (𝑁2 × 𝑁2) 

 𝐴 = [Φ1 Φ2  …Φ𝑀] (𝑁
2 ×𝑀) 
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The catch 

o Now we must compute the eigenvectors 𝑢𝑖  of 𝐴𝐴𝑇  
◦ But that is not practical, as it is very large! (𝑁2 × 𝑁2) 

o However if the number of points in the image space is less 
than the dimension of the space (𝑀 < 𝑁2), there will be only 
𝑀 − 1 meaningful eigenvectors 

o We can solve for an 𝑀 ×𝑀 matrix 𝐴𝑇𝐴 instead of the  

 𝑁2 × 𝑁2  𝐴𝐴𝑇 
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The Trick 

o Compute the eigenvectors 𝑣𝑖 of 𝐴𝑇𝐴 
◦𝐴𝑇𝐴𝑣𝑖 = 𝜇𝑖𝑣𝑖 

◦ Multiply both sides by A and we get: 

◦𝐴𝐴𝑇𝐴𝑣𝑖 = 𝜇𝑖𝐴𝑣𝑖 ⇒ 

◦𝑢𝑖 = 𝐴𝑣𝑖 and 𝜆i = 𝜇𝑖 

o Or in other words 𝐴𝑇𝐴 and 𝐴𝐴𝑇 have the same eigenvalues, 
and their eigenvectors correspond to 𝑢𝑖 = 𝐴𝑣𝑖 

o With this, calculations are reduced from an order of 𝑁2 to an 
order of 𝑀 ≪ 𝑁2 
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Visual examples 

Training set 

Average face Ψ 

HTTP://CNX.ORG/CONTENT/M33183/LATEST/?COLLECTION=COL11153/LATEST 



Visual examples 

Averaging process 

HTTP://JEREMYKUN.COM/2011/07/27/EIGENFACES/ 



Visual examples 

Top K eigenvectors 

HTTP://CNX.ORG/CONTENT/M33183/LATEST/?COLLECTION=COL11153/LATEST 



Visual examples 

Reconstruct with eigenvectors 

HTTP://JEREMYKUN.COM/2011/07/27/EIGENFACES/ 



Visual examples 

Projections 



Visual examples 

Eigenfaces 
in color! 



What more can it do? 

o Eigenfaces does more then just recognition 

oDetection 
◦Basically a template matching problem 

◦Problematic at high dimension space 

◦Map to lower dimensions first 

oReconstruction 
◦Works well! 

REF 1 



Problems and Limitations 

oBackground dependent (changes cause problems). 

o Light changes 



Problems and Limitations 

o Face size and orientation 

oChanges in expression 

o Faces must be centered! 
◦Misalignment problems: 
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Problems and Limitations 

oPCA is not an optimal 
dimensional reduction for 
classification purposes: 
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LDA – Linear Discriminant Analysis 

oAn enhancement to PCA 

oAlso called FLD 

oConstructs a subspace that: 
◦Minimizes the scatter between data 
points of the same class 

◦Maximizes the scatter between data 
points of different classes 
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FDA Methodology 

o For c face classes 𝑋1, 𝑋2…𝑋𝑐, each face class has k 
images 𝑥1, 𝑥2…𝑥𝑘 

oCompute the mean for each class: 

◦𝜇𝑖 =
1

𝑘
 𝑥𝑗
𝑘
𝑗=1  

o The mean of all classes can be calculated as: 

◦𝜇 =
1

𝑐
 𝜇𝑖
𝑐
𝑖=1  
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FDA Methodology 

o The scatter within the class is: 

◦𝑆𝑊 =   𝑥𝑗 − 𝜇𝑖 𝑥𝑗 − 𝜇𝑖
𝑇

𝑥𝑗∋𝑋𝑖
𝑐
𝑖=1  

oWhile the scatter between the classes is: 

◦𝑆𝐵 =  𝑋𝑖 𝜇𝑖 − 𝜇 𝜇𝑖 − 𝜇 𝑇𝑐
𝑖=1  
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FDA Methodology 

o If 𝑆𝑊 is non singular, the optimal projection 𝑊  is chosen 
such that: 

◦𝑊 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑊
𝑊𝑇𝑆𝐵𝑊

𝑊𝑇𝑆𝑊𝑊
= 𝑤1 𝑤2  …𝑤𝑚  

o𝑤𝑖 are the generalized eigenvectors of 𝑆𝐵 𝑎𝑛𝑑 𝑆𝑊 
corresponding to generalized eigenvalues 𝜆𝑖 

◦𝑆𝐵𝑤𝑖 = 𝜆𝑖𝑆𝑊𝑤𝑖  
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Visual example 
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Fisherfaces 

o In face recognition 𝑆𝑊 is always singular! 
◦This is because the number of pixels in each image is always 
larger than the number of images in the training set 

oWe can avoid this problem by projecting the image set 
to a lower dimensional space such that 𝑆𝑊 is non 
singular 

o This is done with PCA to 𝑁 − 𝑐 and then using LDA to 
reduce to 𝑐 − 1 
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Fisherfaces 

o In other words: 

o𝑊 = 𝑊𝑓𝑙𝑑𝑊𝑝𝑐𝑎 

o𝑊𝑝𝑐𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑊 𝑊𝑇𝑆𝑇𝑊  

o𝑊𝑓𝑙𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑊
𝑊𝑇𝑊𝑝𝑐𝑎

𝑇 𝑆𝐵𝑊𝑝𝑐𝑎𝑊

𝑊𝑇𝑊𝑝𝑐𝑎
𝑇 𝑆𝑊𝑊𝑝𝑐𝑎𝑊
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Fisherfaces 
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Experimental results 

o Variation in lighting 

 

REF 4 



Experimental results 

o Variation in facial expressions 
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Conclusion 

1. All methods perform well if the image presented is 
similar to an image in the training set 

2. Fisherfaces appears to be the best over variations in 
lighting 

3. Removing the initial three principal components in 
Eigenfaces improves performance over lighting 
variations, but the problem is still present 

4. Fisherfaces is best suited for simultaneous changes in 
lighting and expression 



Questions raised 

oHow well does the Fisherfaces method extend to large 
databases? 

oCan variations in lighting be accommodated if some of 
the people in the training set are observed under one 
lighting condition? 

o Face detection in Fisherfaces breaks down at extreme 
lighting conditions 

oPerformance degrades when shadowed regions 
dominate 
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Thank you for listening! 


