# Illumination in Computer Graphics 

Ann McNamara

## Illumination in Computer Graphics

- Definition of light sources.
- Analysis of interaction between light and objects in a scene.
- Rendering images that are faithful to the physics of light.


## Directions used in computing reflected light



## Emissive Illumination Model

- Objects are emitting light.
- Each point on an object may emit a different color and/or amount of light.
- We define a vector of intensity levels for each point on the surface of an object: $\mathrm{I}=\left(\mathrm{k}_{\mathrm{er}}, \mathrm{k}_{\mathrm{eg}}, \mathrm{k}_{\mathrm{eb}}\right)$.
- Typically I is the same for all points on the surface of a single object.


## Ambient Illumination Model

- Imagine a scene with many light sources and many reflecting surfaces.
- Equal amounts of light travel in all directions.
- The illumination of an object is independent of the position and orientation of the object.


## Ambient Illumination Model

- Define a vector $\left(\mathrm{I}_{\mathrm{ar}}, \mathrm{I}_{\mathrm{ag}}, \mathrm{I}_{\mathrm{ab}}\right)$ representing the ambient amounts of red, green and blue light.
- Determine the coefficients of ambient reflection ( $\mathrm{k}_{\mathrm{ar}}, \mathrm{k}_{\mathrm{ag}}, \mathrm{k}_{\mathrm{ab}}$ ) for each point on each object.
- The color of a point is given by:

$$
\mathrm{I}=\left(\mathrm{I}_{\mathrm{ar}} \mathrm{k}_{\mathrm{ar}}, \mathrm{I}_{\mathrm{ag}} \mathrm{k}_{\mathrm{ag}}, \mathrm{I}_{\mathrm{ab}} \mathrm{k}_{\mathrm{ab}}\right)
$$

## Green Sphere in front of Red Sphere - Ambient Light Only



## Ambient Light

- Objects lit by ambient light are lit evenly on all surfaces in all directions
- Certain lights e.g. tube lights in class-rooms or kitchens try to achieve this by using large diffusers
ambient illumination is characterised by an intensity $L_{a}$ identical at every point in the scene

where $k_{a}$ is proportion of ambient light reflected



## Ambient Illumination in Phong

- Local illumination models account for light scattered from the light sources only.
- Light may be scattered from all surfaces in the scene
- we are missing some light; in fact we are missing a lot of light, typically over $50 \%$.
- Ambient term = a coarse approximation to this missing flux
- The ambient term is a constant everywhere in the scene but is sometimes estimated from the total powers and geometries of the light sources.

$$
I_{a}=k_{a} L_{a}
$$

## Diffuse Reflection Model

- Interaction of light with surfaces that scatter light in all directions.
- Color and intensity of light reflected from a point on an object depend on the following:
- Color and intensity of the light source.
- Distance and direction to the light source.
- Orientation of the surface on which the point lies.
- Reflecting properties of the object's material.


## Diffuse Reflection Model



Surface


# Diffuse Reflection Model <br>  

A surface which is oriented perpendicular to a light source will receive more energy (and thus appear brighter) than a surface oriented at an angle to the light source


As $\theta$ increases, the brightness of a surface decreases by $\cos \theta$

## Diffuse Reflection Model

- We can use the cosine rule to implement shading of Lambertian or diffuse surfaces.



## Lambertian Illumination Model

- To shade a diffuse surface we need to know:
- normal to the surface at the point to be shaded
- diffuse reflectance of the surface
- positions and powers of the light source in the scene
- Lambert's Law: $R_{d} \propto \cos \theta$
- If $L$ and $N a r e$ unit vectors... $\quad \cos \theta=\vec{l} \bullet \vec{n}$
- adding the reflection coefficient (proportion of incoming light reflected) we have the diffuse reflection term

$$
I_{d}=L_{d} k_{d}(\vec{l} \bullet \vec{n})
$$



## Diffuse Reflection Model

- Define a vector $\left(\mathrm{I}_{\mathrm{dr}}, \mathrm{I}_{\mathrm{dg}}, \mathrm{I}_{\mathrm{db}}\right)$ representing the amounts of red, green and blue light in the light source.
- Determine the coefficients of diffuse reflection $\left(k_{d r}, k_{d g}, k_{d b}\right)$ for each point on each object.
- Determine the unit vectors $\mathbf{L}$ and $\mathbf{N}$.
- The color of a point is given by:
$-\mathrm{I}=\left(\mathrm{I}_{\mathrm{dr}} \mathrm{k}_{\mathrm{dr}}, \mathrm{I}_{\mathrm{dg}} \mathrm{k}_{\mathrm{dg}}, \mathrm{I}_{\mathrm{db}} \mathrm{k}_{\mathrm{db}}\right) \operatorname{Max}(\mathrm{L} \cdot \mathrm{N}, 0)$



## Light Source Attenuation

- Our model ignores the distance from the object to the light source.
- We can account for distance by including an additional factor f att in the formula:
$\mathrm{I}=\mathrm{f}_{\mathrm{att}}\left(\mathrm{I}_{\mathrm{dr}} \mathrm{k}_{\mathrm{dr}}, \mathrm{I}_{\mathrm{dg}} \mathrm{k}_{\mathrm{dg}}, \mathrm{I}_{\mathrm{db}} \mathrm{k}_{\mathrm{db}}\right) \operatorname{Max}(\mathrm{L} \cdot \mathrm{N}, 0)$
$-f_{\text {att }}=1 /\left(a+b d+d^{2}\right)$
- Where d is the distance from the object point to the light source.


## Light Source Attenuation

- Using the model so far, two parallel planes at different distances from the light source would be rendered exactly the same: distance from source seems to have no effect
- We need to account for energy transport falling off with distance

$$
I=L_{a} k_{a}+f_{a t t} I_{d} k_{d}(\bar{N} \bullet \bar{L})
$$ from source:

- For a point light source the inverse square law (intensity falls off in proportion to the square of distance

$$
f_{a t t}=\frac{1}{d_{L}{ }^{2}}=\frac{1}{\left|p-p_{0}\right|^{2}}
$$ from source) is a correct model:

## Light Source Attenuation (2)

- However this is not a good model in practice (largely because most objects in the real world are not lit by point sources).
- A better approximation which allows for a richer range of effects is:

$$
f_{a t t}=\frac{1}{a+b d_{L}+c d_{L}^{2}}
$$

Spheres at increasing distances from light source

$$
\mathrm{a}=\mathrm{b}=0 ; \mathrm{c}=1
$$

$$
a=b=0.25 ; c=0.5
$$

$a=0 ; b=1 ; c=0$


## Specular Reflection Model

- Mirrors and shiny surfaces are not properly modeled by the diffuse reflection model.
- They reflect light more strongly in some directions than in others.
- To model these types of objects, we must consider the direction from which they are viewed.


## Specular Reflection



Appearance of a surface depends on the direction $L$ of the light source, direction of the surface normal N , and direction V of viewing

## Reflection by a perfect mirror



Normal
N
Light Source I


Surface
The angle ? of incidence equals the angle ? of reflection.
The vectors $\mathrm{L}, \mathrm{N}$ and R all lie in one plane

## Phong Illumination Model

- Specular surfaces exhibit a high degree of coherence in their reflectance, i.e. the reflected radiance depends very heavily on the outgoing direction.
- An ideal specular surface is optically smooth (smooth even at resolutions comparable to the wavelength of light).
- Most specular surfaces (rough specular) reflect energy in a tight distribution (or lobe) centered on the optical reflection direction:



## Phong's Model of Specular Reflection

- Determine the angle $\alpha$ between the direction $\mathbf{V}$ of viewing and the direction $\mathbf{R}$ of reflection by an ideal mirror.
- Assume the intensity of reflected light is proportional to $(\cos (\alpha)) \mathrm{s}$.
- The exponent s ("shine") is determined empirically.
- Large values of s make the surface behave more like an ideal mirror


## Calculating the Reflection Vector



$$
\mathbf{Q}=\mathbf{N}(\mathbf{N} \cdot \mathbf{L})
$$

$\mathbf{S}=\mathbf{Q}-\mathbf{L}$

$$
\mathrm{R}=\mathrm{L} \| 2 \mathrm{~S}
$$

## Specular Reflection Model

- Define a vector $\left(\mathrm{I}_{\mathrm{sr}}, \mathrm{I}_{\mathrm{sg}}, \mathrm{I}_{\mathrm{sb}}\right)$ representing the amounts of red, green and blue light in the light source.
- Determine the coefficients of specular reflection $\left(\mathrm{k}_{\mathrm{sr}}, \mathrm{k}_{\mathrm{sg}}, \mathrm{k}_{\mathrm{sb}}\right)$ for each point on each object.
- Determine the unit vectors $\mathbf{L}, \mathbf{N}$ and $\mathbf{V}$.
- Compute $\mathbf{R}$ from $\mathbf{L}$ and $\mathbf{N}$.
- The color of a point is given by:
- $\mathrm{I}=\mathrm{f}_{\mathrm{att}}\left(\mathrm{I}_{\mathrm{sr}} \mathrm{k}_{\mathrm{sr}}, \mathrm{I}_{\mathrm{sg}} \mathrm{k}_{\mathrm{sg}}, \mathrm{I}_{\mathrm{sb}} \mathrm{k}_{\mathrm{sb}}\right)[\operatorname{Max}(\mathbf{R} \cdot \mathbf{V}, 0)]^{\mathrm{s}}$


## The $\operatorname{Cos}^{s}$ Function

The cosine function (defined on the sphere) gives us a lobe shape which approximates the distribution of energy about a reflected direction controlled by the shinyness parameter a known as the Phong exponent.
$r=\cos ^{s} \theta$


In the limit $(\mathrm{n} \rightarrow \infty$ ) the function becomes a single spike (i.e. ideal specular).

## Phong Illumination

- Supports:
- Lambertian model for diffuse reflection
- Cosine lobe for specular reflection
- Ambient term to approximate all other light
- Based on 4 important Vectors:
- pis a surface point
- $\boldsymbol{l}$ is direction to light source
- $\boldsymbol{n}$ is surface normal
- $\boldsymbol{v}$ is direction to $C O P$
- $\boldsymbol{r}$ (depends on $\boldsymbol{l}$ and $\boldsymbol{n}$ ) is direction of perfectly reflected ray



## The Phong Model



$$
I_{s}=k_{s} L_{s} \cos ^{s} \phi
$$

$\alpha$ : shininess (phong exponent)
$\mathrm{k}_{\mathrm{s}}$ : specular reflectivity coefficient

## Radiance of reflected light given by cosine function




## The Halfway Specular Reflection Model

- Let $\mathbf{H}=(\mathbf{L}+\mathbf{V}) /(|\mathbf{L}+\mathbf{V}|)$ be the unit vector that lies half way between the direction of the light source and the direction of viewing.
- The vector $\mathbf{H}$ is called the "direction of maximum highlights".
- The color of a point is given by:
$\mathrm{I}=\mathrm{f}_{\text {att }}\left(\mathrm{I}_{\text {sr }} \mathrm{k}_{\text {sr }}, \mathrm{I}_{\mathrm{sg}} \mathrm{k}_{\mathrm{sg}}, \mathrm{I}_{\mathrm{sb}} \mathrm{k}_{\mathrm{sb}}\right)[\operatorname{Max}(\mathbf{N} \cdot \mathbf{H}, 0)]^{\mathrm{s}}$


## Advantage of the Halfway Model

- Suppose the light source and the viewer are taken to be at infinity.
- Then the vectors $\mathbf{L}$ and $\mathbf{V}$ are constant for all points in the scene.
- The direction $\mathbf{H}$ can be computed once for the entire scene.
- OpenGL uses this technique.



## Lighting Examples

- First Column: Diffuse blue reflection only.
- Second Column: Same as first column, but with addition of specular reflection with low shininess.
- Third Column: Same as second column, but with high shininess in specular component.
- Fourth Column: Same as third column, but with addition of emissive light component.


## Lighting Examples

- First row: No ambient reflection.
- Second row: Significant ambient reflection.
- Third Row: Coloured ambient reflection.


## Phong Illumination Model

- To simulate reflection we should examine surfaces in the reflected direction to determine incoming light $\Rightarrow$ global illumination
- The Phong model is an empirical local model of shiny surfaces - A local model used to simulate effects which can be global in nature
- We only consider reflections of light sources. Assume that the BRDF of shiny surfaces may be approximated by a spherical cosine function raised to a power (known as the Phong exponent).
- A useful approximation for efficient computation of light-material interactions which produces good renderings under a variety of lighting conditions and material properties


## Material Properties

- An object must have material data associated with it to define how diffuse, specular (and shiny) or ambient it is

$$
\text { SurfaceData }=\left\{\begin{array}{l}
k_{\mathrm{a}}: \text { ambient reflectance } \\
\mathrm{k}_{\mathrm{d}}: \text { diffuse reflectance } \\
k_{\mathrm{s}}: \text { specular reflectance } \\
\alpha: \text { phong exponent }
\end{array}\right.
$$

- Each reflectance factor $\left(\mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\mathrm{d}}, \mathrm{k}_{\mathrm{s}}\right.$, respectively for ambient, diffuse and specular reflectance) is the proportion of incoming light reflected due to each lightmaterial interaction
- The phong exponent affects the shininess of the object


## Putting it All Together

- Now we can sum the three light contributions - diffuse, specular and ambient to form the total amount of light $I$ that reaches the eye from a point $P$
$-I=I_{a} k_{a}+I_{d} k_{d} \times$ Lambert $+I_{s p} k_{s} \times$ phong $^{s}$
- Lambert $=\max (0$, L.N $)$
- Phong $=\max (0$, H.N $)$


## Putting it All Together

- $\mathrm{I}_{\mathrm{d}}$ and $\mathrm{I}_{\mathrm{sp}}$ have been given different names because OpenGL allows you to set them separately, but usually they are set to same values.


## Adding Colour

- Light of any colour can be constructed by adding certain amounts of red, green and blue.
- Calculate each colour component indiviually and simply add them to form the final colour of the reflected light


## Adding Colour

- $\mathrm{I}=\mathrm{I}_{\mathrm{ar}} \mathrm{k}_{\mathrm{ar}}+\mathrm{I}_{\mathrm{dr}} \mathrm{k}_{\mathrm{dr}} \times$ Lambert $+\mathrm{I}_{\mathrm{spr}} \mathrm{k}_{\mathrm{sr}} \times$ phong $^{\mathrm{s}}$
- $\mathrm{I}=\mathrm{I}_{\mathrm{ag}} \mathrm{k}_{\mathrm{ag}}+\mathrm{I}_{\mathrm{dg}} \mathrm{k}_{\mathrm{dg}} \times$ Lambert $+\mathrm{I}_{\mathrm{spg}} \mathrm{k}_{\mathrm{sg}} \times$ phong $^{\mathrm{s}}$
- $\mathrm{I}=\mathrm{I}_{\mathrm{ab}} \mathrm{k}_{\mathrm{ab}}+\mathrm{I}_{\mathrm{db}} \mathrm{k}_{\mathrm{db}} \times$ Lambert $+\mathrm{I}_{\mathrm{spb}} \mathrm{k}_{\mathrm{sb}} \times$ phong $^{\mathrm{s}}$
- Note Lambert \& Phong don't depend on colour and need to be computed only only once

