UNSUPERVISED LEARNING 2011

LECTURE : MANIFOLD LEARNING

Rita Osadchy
slides are due to L.Saul and A. Ghodsi

Topics

- PCA
- MDS
- IsoMap
- LLE
- EigenMaps

Types of Structure in High Dimension

- Clumps
- Clustering
- Density Estimation

- Low Dimensional Manifolds
- Linear
- NonLinear

Dimensionality Reduction

- Data representation

Inputs are real-valued vectors in a high dimensional space.

- Linear structure

Does the data live in a low dimensional subspace?

- Nonlinear structure

Does the data live on a low dimensional submanifold?

Dimensionality Reduction

- Question

How can we detect low dimensional structure in high dimensional data?

- Applications
- Digital image and speech processing
- Analysis of neuronal populations
- Gene expression microarray data
- Visualization of large networks

Notations

- Inputs (high dimensional)
$x_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ points in R^{D}
© Outputs (low dimensional)

$$
\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{n} \text { points in } \mathrm{R}^{\mathrm{d}}(\mathrm{~d} \ll \mathrm{D})
$$

- Goals

Nearby points remain nearby.
Distant points remain distant.

Linear Methods

- PCA
- MDS

Principle Component Analysis

good representation

the projected data has a fairly large variance, and the points tend to be far from zero.
poor representation

the projections have a significantly smaller variance, and are much closer to the origin.

Principle Component Analysis

- Seek most accurate data representation in a lower dimensional space.
- The good direction/subspace to use for projection lies in the direction of largest variance.

Maximum Variance Subspace

- Assume inputs are centered: $\sum_{i} x_{i}=0$
- Given a unit vector u and a point x, the length of the projection of x onto u is given by $x^{T} u$
- Maximize projected variance:

$$
\begin{aligned}
& \operatorname{var}(y)=\frac{1}{n} \sum_{i}\left(x_{i}^{T} u\right)^{2}=\frac{1}{n} \sum_{i} u^{T} x_{i} x_{i}^{T} u \\
& =u^{T}\left(\frac{1}{n} \sum_{i} x_{i} x_{i}^{T}\right) u
\end{aligned}
$$

1D Subspace

- Maximizing $u^{T} C u$ subject to $\|\mathrm{u}\|=1$
where $C=n^{-1} \sum_{i} x_{i} x_{i}^{T}$ is the empirical
covariance matrix of the data, gives the principle eigenvector of C.

d-dimensional Subspace

- to project the data into a d-dimensional subspace (d <<D), we should choose u_{1}, \ldots, u_{d} to be the top d eigenvectors of C.
- u_{1}, \ldots, u_{d} now form a new, orthogonal basis for the data.
- The low dimensional representation of x is given by

$$
y_{i}=\left[\begin{array}{c}
u_{1}^{T} x_{i} \\
u_{2}^{T} x_{i} \\
\vdots \\
u_{k}^{T} x_{i}
\end{array}\right] \in \mathfrak{R}^{d} .
$$

Interpreting PCA

- Eigenvectors:
principal axes of maximum variance subspace.
- Eigenvalues:
variance of projected inputs along principle axes.
- Estimated dimensionality:
number of significant (nonnegative) eigenvalues.

PCA summary

$$
\text { Input: } z_{i} \in R^{D}, i=1, . ., n \quad \text { Output: } y_{i} \in R^{d}, i=1, . ., n
$$

1. Subtract sample mean from the data

$$
x_{i}=z_{i}-\hat{\mu}, \quad \hat{\mu}=1 / n \sum_{i} z_{i}
$$

2. Compute the covariance matrix

$$
C=1 / n \sum_{i=1}^{n} x_{i} x_{i}^{t}
$$

3. Compute eigenvectors $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{d}$ corresponding to the \boldsymbol{d} largest eigenvalues of $C(\mathrm{~d} \ll \mathrm{D})$.
4. The desired y is

$$
y=P^{t} x, P=\left[e_{1}, \ldots, e_{d}\right]
$$

Equivalence

- PCA finds the directions that have the most variance.

$$
\operatorname{var}(y)=\frac{1}{n} \sum_{i}\left\|P^{T} x_{i}\right\|^{2}
$$

- Same result can be obtained by minimizing the squared reconstruction error.

$$
\operatorname{err}(y)=\frac{1}{n} \sum_{i}\left\|x_{i}-P P^{T} x_{i}\right\|^{2}
$$

Example of PCA

Eigenvectors and eigenvalues of covariance matrix for $n=1600$ inputs in $d=3$ dimensions.

Example: faces

Eigenfaces from 7562 Images:
top left image
is linear
combination of the rest.
Sirovich \& Kirby (1987)
Turk \& Pentland (1991)

Properties of PCA

- Strengths:
- Eigenvector method
- No tuning parameters
- Non-iterative
- No local optima
- Weaknesses:

- Limited to second order statistics
- Limited to linear projections

Multidimensional Scaling (MDS)

- MDS attempts to preserve pairwise distances.
- Attempts to construct a configuration of n points in Euclidian space by using the information about the distances between the n patterns.

Example : Distances between US Cities

	BOS	CHI	DC	DEN	LA	MIA	NY	SEA	SF
BOS	0	963	429	1,949	2,979	1,504	206	2,976	3,095
CHI	963	0	671	996	2,054	1,329	802	2,013	2,142
DC	429	671	0	1,616	2,631	1,075	233	2,684	2,799
DEN	1,949	996	1,616	0	1,059	2,037	1,771	1,307	1,235
LA	2,979	2,054	2,631	1,059	0	2,687	2,786	1,131	379
MIA	1,504	1,329	1,075	2,037	2,687	0	1,308	3,273	3,053
NY	206	802	233	1,771	2,786	1,308	0	2,815	2,934
SEA	2,976	2,013	2,684	1,307	1,131	3,273	2,815	0	808
SF	3,095	2,142	2,799	1,235	379	3,053	2,934	808	0

Multidimensional Scaling (MDS)

- A $n \times n$ matrix \mathcal{D} is called a distance or affinity matrix if it is symmetric, $\mathrm{d}_{i i}=0$, and $\mathrm{d}_{i j}>0, \quad i \neq j$.
- Given a distance matrix $\mathcal{D}^{(X)}$, MDS attempts to find n data points y_{1}, \ldots, y_{n} in d dimensions, such that if $d_{i j}^{(Y)}$ denotes the Euclidean distance between y_{i} and y_{j}, then \mathcal{D}^{Y} is similar to $\mathcal{D}^{(X)}$.

Metric MDS

- Metric MDS minimizes

$$
\min _{Y} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(d_{i j}^{(X)}-d_{i j}^{(Y)}\right)^{2}
$$

where

$$
d_{i j}^{(X)}=\left\|x_{i}-x_{j}\right\| \quad \text { and } \quad d_{i j}^{(Y)}=\left\|y_{i}-y_{j}\right\|
$$

Metric MDS

- The distance matrix $D^{(X)}$ can be converted to a Gram matrix K by

$$
K=-\frac{1}{2} H\left(D^{(X)}\right)^{2} H
$$

where $H=I-\frac{1}{n} e e^{T}$ and e is the vector of ones.

Metric MDS

- K is p.s.d, thus it can be written as $K=X^{T} X$
- $\min _{Y} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(d_{i j}^{(X)}-d_{i j}^{(Y)}\right)^{2}$ is equivalent to $\min _{Y} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}^{T} x_{j}-y_{i}^{T} y_{j}\right)^{2}$
- The norm can be converted to a trace:

$$
\min _{Y} \operatorname{Tr}\left(X^{T} X-Y^{T} Y\right)^{2}
$$

Metric MDS

- Using Singular Value Decomposition we can decompose:

$$
\begin{aligned}
& X^{T} X=V \Lambda V^{T} \\
& Y^{T} Y=Q \hat{\Lambda} Q^{T}
\end{aligned}
$$

- Since $Y^{T} Y$ is p.s.d., $\hat{\Lambda}$ has no negative values, thus

$$
Y=\hat{\Lambda}^{1 / 2} Q^{T}
$$

Metric MDS

- Returning to the minimization, we can write

$$
\begin{aligned}
& \min _{Q, \hat{\Lambda}} \operatorname{Tr}\left(V \Lambda V^{T}-Q \hat{\Lambda} Q^{T}\right)^{2} \\
& =\min _{Q, \Lambda} \operatorname{Tr}\left(\Lambda-V^{T} Q \hat{\Lambda} Q^{T} V\right)^{2} \\
& =\min _{G, \hat{\Lambda}} \operatorname{Tr}\left(\Lambda-G \hat{\Lambda} G^{T}\right)^{2} \\
& =\min _{G, \hat{\Lambda}} \operatorname{Tr}\left(\Lambda^{2}+G \hat{\Lambda} G^{T} G \hat{\Lambda} G^{T}-2 \Lambda G \hat{\Lambda} G^{T}\right)
\end{aligned}
$$

Metric MDS

- For a fixed $\hat{\Lambda}$ we can minimize for G, obtaining

$$
\begin{aligned}
& G=I \\
& \min _{\hat{\Lambda}} \operatorname{Tr}\left(\Lambda^{2}+\hat{\Lambda}^{2}-2 \Lambda \hat{\Lambda} G\right) \\
& =\min _{\hat{\Lambda}} \operatorname{Tr}(\Lambda-\hat{\Lambda})^{2}
\end{aligned}
$$

Metric MDS

- To make the two matrices Λ and $\hat{\Lambda}$ similar, we can make $\hat{\Lambda}$ to be the top d diagonal elements of Λ.
- Also $G=V^{T} Q$ and $G=I$ imply that $V=Q$.
- Therefore,

$$
Y=\hat{\Lambda}^{1 / 2} Q^{T} \quad \Longrightarrow \quad Y=\hat{\Lambda}^{1 / 2} V^{T}
$$

where V comprises the eigenvectors of $X^{T} X$ corresponding to the top d eigenvalues and $\hat{\Lambda}$ comprises the top d eigenvalues of $X^{T} X$.

Interpreting MDS

- Eigenvectors:

Ordered, scaled, and truncated to yield low dimensional embedding.

- Eigenvalues:

Measure how each dimension contributes to dot products.

- Estimated dimensionality:

Number of significant (nonnegative) eigenvalues.

Relation to PCA

	PCA	MDS
Spectral Decomposition	Covariance matrix $(D \times D)$	Gram matrix $(n \times n)$
Eigenvalues	Matrices share nonzero eigenvalues up to constant factor	
Results	Same	
Computation	$\boldsymbol{O}\left((n+d) D^{2}\right)$	$\boldsymbol{O}\left((\boldsymbol{D}+d) n^{2}\right)$

Non-Metric MDS

- Transform pairwise distances: $\delta_{i j} \rightarrow g\left(\delta_{i j}\right)$
- Transformation: nonlinear, but monotonic.
- Preserves rank order of distances.
- Find vectors y_{i} such that $\left\|y_{i}-y_{j}\right\| \approx g\left(\delta_{i j}\right)$

$$
\text { Cost }=\min _{y} \sum_{i j}\left(g\left(\delta_{i j}\right)-\left\|y_{i}-y_{j}\right\|\right)^{2}
$$

Non-Metric MDS

- Possible objective function:

$$
\operatorname{Cost}=\sum_{i j}\left(\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|-\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|}{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|}\right)^{2}
$$

Properties of non-metric MDS

- Strengths
- Relaxes distance constraints.
- Yields nonlinear embeddings.
- Weaknesses
- Highly nonlinear, iterative optimization with local minima.
- Unclear how to choose distance transformation.

