
Measures of complexity

• “Complexity” is a measure of a set of classifiers, not any

specific (fixed) classifier

• Many possible measures

– degrees of freedom

– description length

– Vapnik-Chervonenkis dimension

etc.

• There are many reasons for introducing a measure of

complexity

– generalization error guarantees

– selection among competing families of classifiers
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VC-dimension: preliminaries

• A set of classifiers F:

For example, this could be the set of all possible linear

separators, where h ∈ F means that

h(x) = sign
(

w0 + w
T
x

)

for some values of the parameters w, w0.
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VC-dimension: preliminaries

• Complexity: how many different ways can we label n

training points {x1, . . . ,xn} with classifiers h ∈ F?

In other words, how many distinct binary vectors

[h(x1) h(x2) . . . h(xn)]

do we get by trying each h ∈ F in turn?

[ -1 1 . . . 1 ] h1

[ 1 -1 . . . 1 ] h2

. . .
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VC-dimension: shattering

• A set of classifiers F shatters n points {x1, . . . ,xn} if

[h(x1) h(x2) . . . h(xn)], h ∈ F

generates all 2n distinct labelings.

• Example: linear decision boundaries shatter (any) 3 points

in 2D
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but not any 4 points...
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VC-dimension: shattering cont’d

• We cannot shatter 4 points in 2D with linear separators

For example, the following labeling

x

x

x

x

+ -

+-

cannot be produced with any linear separator

• More generally: the set of all d-dimensional linear separators

can shatter exactly d + 1 points
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VC-dimension

• The VC-dimension dV C of a set of classifiers F is the largest

number of points that F can shatter

• This is a combinatorial concept and doesn’t depend on what

type of classifier we use, only how “flexible” the set of

classifiers is

Example: Let F be a set of classifiers defined in terms of

linear combinations of m fixed basis functions

h(x) = sign (w0 + w1φ1(x) + . . . + wmφm(x) )

dV C is at most m + 1 regardless of the form of the fixed

basis functions.
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Learning and VC-dimension

• We learn something only after we no longer can shatter the

training points (have more than dV C training examples)

Rationale: suppose we have n training examples and labels

(x1, y1), . . . , (xn, yn) and n < dV C. Does the training set

constrain our prediction for xn+1?

Because we expect to be able to shatter n+1 points (≤ dV C)

it follows that we can find h1, h2 ∈ F , both consistent with

training labels, but

h1(xn+1) = 1, h2(xn+1) = −1

We therefore cannot determine which label to predict for

xn+1.
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Learning and VC-dimension

• We don’t really learn anything until after we have more than

dV C training examples
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• The number of labelings that the set of classifiers can

generate over n points increases sub-exponentially after

n > dV C (in this case dV C = 100)
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Learning and VC-dimension

• When the VC-dimension is finite, the probability (over the

choice of the training set) that we would find any h ∈ F for

which the difference

∣
∣
∣
∣

Empirical loss
︷ ︸︸ ︷

1

n

n∑

i=1

Loss(yi, h(xi))−

Expected loss
︷ ︸︸ ︷

E{Loss(y, h(x)) }

∣
∣
∣
∣

is large goes down exponentially fast as a function of the size

of the training set n. Here Loss(y, h(x)) = 1 if y 6= h(x)

and zero otherwise (so called zero-one loss)

• This result holds for any underlying probability distribution

from which the examples and the labels are generated
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Extensions: complexity and margin

• The number of possible labelings of points with large margin

can be dramatically less than the (basic) VC-dimension
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• The set of separating hyperplaces which attain margin γ

or better for examples within a sphere of radius R has

VC-dimension bounded by dV C(γ) ≤ R2/γ2
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Model selection

• We try to find the model with the best balance of complexity

and the fit to the training data

• Ideally, we would select a model from a nested sequence of

models of increasing complexity

Model 1 d1

Model 2 d2

Model 3 d3

where d1 ≤ d2 ≤ d3 ≤ . . .

• Basic model selection criterion:

Criterion = (empirical) score + Complexity penalty
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Structural risk minimization

• In structural risk minimization we define the models in terms

of VC-dimension (or refinements)

Model 1 dV C = d1

Model 2 dV C = d2

Model 3 dV C = d3

where d1 ≤ d2 ≤ d3 ≤ . . .

• The selection criterion: lowest upper bound on the expected

loss

Expected loss ≤ Empirical loss + Complexity penalty
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Example

• Models of increasing complexity

Model 1 K(x1,x2) = (1 + (xT
1
x2))

Model 2 K(x1,x2) = (1 + (xT
1
x2))

2

Model 3 K(x1,x2) = (1 + (xT
1
x2))

3

. . . . . .

• These are nested, i.e.,

F1 ⊆ F2 ⊆ F3 ⊆ . . .

where Fk refers to the set of possible decision boundaries

that the model k can represent.

• Still need to derive the criterion...
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Bounds on expected loss

• For simplicity, let’s look at a single fixed classifier h(x) and

n training points

ε(n,δ)

Expected loss 

δ

With probability at least 1− δ over the choice of the training

set

Expected loss
︷ ︸︸ ︷

E{Loss(y, h(x)) } ≤

Empirical loss
︷ ︸︸ ︷

1

n

n∑

i=1

Loss(yi, h(xi))+

sampling penalty
︷ ︸︸ ︷

ǫ(n, δ)

• For the bound to be valid uniformly for all classifiers in the

set F , we have to include the VC-dim
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Structural risk minimization

• Finite VC-dimension gives us some guarantees about how

close the empirical loss is to the expected loss

With probability at least 1− δ over the choice of the training

set, for all h ∈ Fk

Expected loss
︷ ︸︸ ︷

E{Loss(y, h(x)) } ≤

Empirical loss
︷ ︸︸ ︷

1

n

n∑

i=1

Loss(yi, h(xi))+

Complexity penalty
︷ ︸︸ ︷

ǫ(n, δ, dk)

where

dk = VC-dimension of model (set of hypothesis) k

δ = Confidence parameter (probability of failure)

• We find model k that has the lowest bound on the expected

loss
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Structural risk minimization cont’d

• For our zero-one loss (classification error), we can derive the

following complexity penalty (Vapnik 1995):

ǫ(n, δ, d) =

√

dV C(log(2n/dV C) + 1) + log(1/(4δ))

n

1. This is an increasing function of dV C

2. Increases as δ decreases

3. Decreases as a function of n

(this is not the only choice...)
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Structural risk minimization cont’d

• Competition of terms...

1. Empirical loss decreases with increasing dV C

2. Complexity penalty increases with increasing dV C
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• We find the minimum of the model score (bound).
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Structural risk minimization: example
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Structural risk minimization: example cont’d

• Number of training examples n = 50, confidence parameter

δ = 0.05.

Model dV C Empirical fit Complexity penalty ǫ(n, δ, dV C)

1st order 3 0.06 0.5501

2nd order 6 0.06 0.6999

4th order 15 0.04 0.9494

8th order 45 0.02 1.2849

• Structural risk minimization would select the simplest (linear)

model in this case.
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