Measures of complexity

e “Complexity” is a measure of a set of classifiers, not any
specific (fixed) classifier

e Many possible measures
— degrees of freedom
— description length
— Vapnik-Chervonenkis dimension
etc.

e There are many reasons for introducing a measure of
complexity
— generalization error guarantees
— selection among competing families of classifiers
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VC-dimension: preliminaries

e A set of classifiers F:
For example, this could be the set of all possible linear
separators, where h € F' means that

h(x) = sign (wo + w'x)

for some values of the parameters w, wy.
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VC-dimension: preliminaries

e Complexity: how many different ways can we label n
training points {x1,...,x,} with classifiers h € F'?

In other words, how many distinct binary vectors

h(x1) h(x2) ... h(xy)]

do we get by trying each A € F' in turn?

11 ... 1] M
1 -1 ... 1] hs
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VC-dimension: shattering
e A set of classifiers F' shatters n points {x1,...,x,} if
h(x1) h(x2) ... h(xy,)], h€F
generates all 2™ distinct labelings.

e Example: linear decision boundaries shatter (any) 3 points
in 2D

X X X
X X X
+ B
X/ X X X
\’f\x
X

but not any 4 points...
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VC-dimension: shattering cont’d

e \We cannot shatter 4 points in 2D with linear separators
For example, the following labeling

cannot be produced with any linear separator

e More generally: the set of all d-dimensional linear separators
can shatter exactly d + 1 points
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VC-dimension

e The V(C-dimension dy ¢ of a set of classifiers F' is the largest
number of points that F' can shatter

e This is a combinatorial concept and doesn’t depend on what
type of classifier we use, only how “flexible” the set of
classifiers is

Example: Let F' be a set of classifiers defined in terms of
linear combinations of m fixed basis functions

h(x) = sign (wg + w1¢1(X) + ... + Windm(X) )

dyc 1s at most m + 1 regardless of the form of the fixed
basis functions.
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e

CSAIL Learning and VC-dimension

e \We learn something only after we no longer can shatter the
training points (have more than dy ¢ training examples)

Rationale: suppose we have n training examples and labels
(X1,91),--+5(Xn,yn) and n < dyo. Does the training set
constrain our prediction for x,,117

Because we expect to be able to shatter n+1 points (< dy¢)
it follows that we can find hqy, ho € F', both consistent with
training labels, but

hi(Xnt1) =1, ha(Xp41) = —1

We therefore cannot determine which label to predict for

Xn_|_1.
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Learning and VC-dimension

e We don't really learn anything until after we have more than
dy ¢ training examples
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e The number of labelings that the set of classifiers can
generate over m points increases sub-exponentially after
n > dy o (in this case dy ¢ = 100)
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Learning and VC-dimension

e When the VC-dimension is finite, the probability (over the
choice of the training set) that we would find any h € F for
which the difference

Empirical loss

— ~ Expected loss
=3 Loss(yi, h(x;)) — B{ Loss(y, h(x)) }
n

i=1

is large goes down exponentially fast as a function of the size
of the training set n. Here Loss(y, h(x)) = 1 if y # h(x)
and zero otherwise (so called zero-one loss)

e This result holds for any underlying probability distribution
from which the examples and the labels are generated
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Extensions: complexity and margin

e The number of possible labelings of points with large margin
can be dramatically less than the (basic) VC-dimension

e The set of separating hyperplaces which attain margin ~
or better for examples within a sphere of radius R has

VC-dimension bounded by dyc(v) < R2/~2
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Model selection

e We try to find the model with the best balance of complexity
and the fit to the training data

e |deally, we would select a model from a nested sequence of
models of increasing complexity

Model 1 d1
Model 2 d>
Model 3 dj

Wheredlgdggdgg...

e Basic model selection criterion:

Criterion = (empirical) score + Complexity penalty
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Structural risk minimization

e In structural risk minimization we define the models in terms
of VC-dimension (or refinements)

Model 1 dyeo = dy
Model 2 dy o = ds
Model 3 dy o = ds

Whered1§d2§d3§...

e [he selection criterion: lowest upper bound on the expected
loss

Expected loss < Empirical loss + Complexity penalty
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Example

e Models of increasing complexity

Model 1 K (x1,x2) = (1 + (xTx5))
Model 2 K(x1,%2) = (1 + (xTx2))?
Model 3  K(x1,x2) = (1 + (x{x2))*

e [ hese are nested, i.e.,
Fir CFy Ch3C ...

where Fj. refers to the set of possible decision boundaries
that the model k& can represent.

e Still need to derive the criterion...
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Bounds on expected loss

e For simplicity, let's look at a single fixed classifier h(x) and
n training points

1
Expected loss

With probability at least 1 — 0 over the choice of the training
set

Empirical loss

Expected Ioss ~ sampling penalty
B{ Loss(y, h(x ZLOSS Yi, h(x;)) + e(n, )

e For the bound to be valid uniformly for all classifiers in the
set ', we have to include the VC-dim
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Structural risk minimization

Finite VC-dimension gives us some guarantees about how
close the empirical loss is to the expected loss

With probability at least 1 — 0 over the choice of the training
set, for all h € F},

Empirical loss

Expected Ioss ~  Complexity penalty
E{ Loss(y, h(x ZLOSS yi, h(x;)) + e(n,d,dy)
where

di = VC-dimension of model (set of hypothesis) k

0 = Confidence parameter (probability of failure)

e We find model k£ that has the lowest bound on the expected
loss
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Structural risk minimization cont’d

e For our zero-one loss (classification error), we can derive the
following complexity penalty (Vapnik 1995):

(n.6.d) — \/dvc(log(%/dvc) +1) +log(1/(49))

n

1. This is an increasing function of dy ¢
2. Increases as & decreases
3. Decreases as a function of n

(this is not the only choice...)
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Structural risk minimization cont’d

e Competition of terms...
1. Empirical loss decreases with increasing dy ¢
2. Complexity penalty increases with increasing dy ¢

1
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0 | | | |
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e We find the minimum of the model score (bound).
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Structural risk minimization: example

2 T T T T T T 2

4t" order polynomial 8" order polynomial
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Structural risk minimization: example cont’d

e Number of training examples n = 50, confidence parameter

0 = 0.05.
Model dyvc Empirical fit  Complexity penalty €(n,d, dy¢)
15¢ order 3 0.06 0.5501
274 order 6 0.06 0.6999
A order 15  0.04 0.9494
8" order 45  0.02 1.2849

e Structural risk minimization would select the simplest (linear)
model in this case.
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