Measures of complexity

- "Complexity" is a measure of a set of classifiers, not any specific (fixed) classifier
- Many possible measures
 - degrees of freedom
 - description length
 - Vapnik-Chervonenkis dimension etc.
- There are many reasons for introducing a measure of complexity
 - generalization error guarantees
 - selection among competing families of classifiers

VC-dimension: preliminaries

• A set of classifiers F:

For example, this could be the set of all possible linear separators, where $h \in F$ means that

$$h(\mathbf{x}) = \operatorname{sign}\left(w_0 + \mathbf{w}^T \mathbf{x}\right)$$

for some values of the parameters \mathbf{w}, w_0 .

VC-dimension: preliminaries

• Complexity: how many different ways can we label n training points $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ with classifiers $h \in F$?

In other words, how many distinct binary vectors

$$[h(\mathbf{x}_1) h(\mathbf{x}_2) \dots h(\mathbf{x}_n)]$$

do we get by trying each $h \in F$ in turn?

$$\begin{bmatrix} -1 & 1 & \dots & 1 \end{bmatrix} h_1 \\ \begin{bmatrix} 1 & -1 & \dots & 1 \end{bmatrix} h_2$$

. . .

VC-dimension: shattering

• A set of classifiers F shatters n points $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ if $[h(\mathbf{x}_1) \ h(\mathbf{x}_2) \ \dots \ h(\mathbf{x}_n)], \ h \in F$

generates all 2^n distinct labelings.

 Example: linear decision boundaries shatter (any) 3 points in 2D

but not any 4 points...

VC-dimension: shattering cont'd

• We cannot shatter 4 points in 2D with linear separators For example, the following labeling

cannot be produced with any linear separator

• More generally: the set of all d-dimensional linear separators can shatter exactly d + 1 points

VC-dimension

- The VC-dimension d_{VC} of a set of classifiers F is the largest number of points that F can shatter
- This is a combinatorial concept and doesn't depend on what type of classifier we use, only how "flexible" the set of classifiers is

Example: Let F be a set of classifiers defined in terms of linear combinations of m **fixed** basis functions

$$h(\mathbf{x}) = \operatorname{sign} \left(w_0 + w_1 \phi_1(\mathbf{x}) + \ldots + w_m \phi_m(\mathbf{x}) \right)$$

 d_{VC} is at most m+1 regardless of the form of the fixed basis functions.

Learning and VC-dimension

• We learn something only after we no longer can shatter the training points (have more than d_{VC} training examples)

Rationale: suppose we have *n* training examples and labels $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$ and $n < d_{VC}$. Does the training set constrain our prediction for \mathbf{x}_{n+1} ?

Because we expect to be able to shatter n+1 points ($\leq d_{VC}$) it follows that we can find $h_1, h_2 \in F$, both consistent with training labels, but

$$h_1(\mathbf{x}_{n+1}) = 1, \quad h_2(\mathbf{x}_{n+1}) = -1$$

We therefore cannot determine which label to predict for \mathbf{x}_{n+1} .

Learning and VC-dimension

• We don't really learn anything until after we have more than d_{VC} training examples

• The number of labelings that the set of classifiers can generate over n points increases sub-exponentially after $n > d_{VC}$ (in this case $d_{VC} = 100$)

Learning and VC-dimension

• When the VC-dimension is finite, the probability (over the choice of the training set) that we would find any $h \in F$ for which the difference

$$\underbrace{\frac{1}{n}\sum_{i=1}^{n} \operatorname{Loss}(y_i, h(\mathbf{x}_i))}_{i=1} - \underbrace{\frac{1}{E} \{\operatorname{Loss}(y, h(\mathbf{x}))\}}_{i=1}$$

is large goes down exponentially fast as a function of the size of the training set n. Here $Loss(y, h(\mathbf{x})) = 1$ if $y \neq h(\mathbf{x})$ and zero otherwise (so called zero-one loss)

• This result holds for **any** underlying probability distribution from which the examples and the labels are generated

Extensions: complexity and margin

• The number of possible labelings of points with large margin can be dramatically less than the (basic) VC-dimension

• The set of separating hyperplaces which attain margin γ or better for examples within a sphere of radius R has VC-dimension bounded by $d_{VC}(\gamma) \leq R^2/\gamma^2$

Model selection

- We try to find the model with the best balance of complexity and the fit to the training data
- Ideally, we would select a model from a nested sequence of models of increasing complexity
 - Model 1 d_1
 - Model 2 d_2
 - Model 3 d_3

where $d_1 \leq d_2 \leq d_3 \leq \ldots$

• Basic model selection criterion:

Criterion = (empirical) score + Complexity penalty

Structural risk minimization

• In structural risk minimization we define the models in terms of VC-dimension (or refinements)

Model 1 $d_{VC} = d_1$ Model 2 $d_{VC} = d_2$ Model 3 $d_{VC} = d_3$ where $d_1 < d_2 < d_3 < \dots$

• The selection criterion: lowest upper *bound* on the expected loss

Expected loss \leq Empirical loss + Complexity penalty

Example

- Models of increasing complexity
 - $\begin{array}{ll} \text{Model 1} & K(\mathbf{x}_1, \mathbf{x}_2) = (1 + (\mathbf{x}_1^T \mathbf{x}_2)) \\ \text{Model 2} & K(\mathbf{x}_1, \mathbf{x}_2) = (1 + (\mathbf{x}_1^T \mathbf{x}_2))^2 \\ \text{Model 3} & K(\mathbf{x}_1, \mathbf{x}_2) = (1 + (\mathbf{x}_1^T \mathbf{x}_2))^3 \end{array}$

• These are nested, i.e.,

.

$$F_1 \subseteq F_2 \subseteq F_3 \subseteq \ldots$$

where F_k refers to the set of possible decision boundaries that the model k can represent.

• Still need to derive the criterion...

Bounds on expected loss

• For simplicity, let's look at a single fixed classifier $h(\mathbf{x})$ and n training points

With probability at least $1-\delta$ over the choice of the training set

$$\underbrace{\text{Expected loss}}_{E\{\text{Loss}(y,h(\mathbf{x}))\}} \leq \underbrace{\frac{1}{n}\sum_{i=1}^{n}\text{Loss}(y_i,h(\mathbf{x}_i))}_{i=1} + \underbrace{\frac{1}{n}\sum_{i=1}^{n}\text{Loss}(y_i,h(\mathbf{x}_i))}_{\epsilon(n,\delta)}$$

• For the bound to be valid uniformly for all classifiers in the set *F*, we have to include the VC-dim

Structural risk minimization

• Finite VC-dimension gives us some guarantees about how close the empirical loss is to the expected loss With probability at least $1-\delta$ over the choice of the training set, for all $h \in F_k$

$$\underbrace{\text{Expected loss}}_{E\{\text{Loss}(y, h(\mathbf{x}))\}} \leq \underbrace{\frac{1}{n} \sum_{i=1}^{n} \text{Loss}(y_i, h(\mathbf{x}_i))}_{i=1} + \underbrace{\text{Complexity penalty}}_{\epsilon(n, \delta, d_k)}$$

where

- $d_k = \text{VC-dimension of model (set of hypothesis) } k$
 - δ = Confidence parameter (probability of failure)
- We find model k that has the lowest bound on the expected loss

Structural risk minimization cont'd

• For our zero-one loss (classification error), we can derive the following complexity penalty (Vapnik 1995):

$$\epsilon(n,\delta,d) = \sqrt{\frac{d_{VC}(\log(2n/d_{VC})+1) + \log(1/(4\delta))}{n}}$$

- 1. This is an increasing function of d_{VC}
- 2. Increases as δ decreases
- 3. Decreases as a function of \boldsymbol{n}

(this is not the only choice...)

Structural risk minimization cont'd

- Competition of terms...
 - 1. Empirical loss decreases with increasing d_{VC}
 - 2. Complexity penalty increases with increasing d_{VC}

• We find the minimum of the model score (bound).

Structural risk minimization: example

Structural risk minimization: example cont'd

• Number of training examples n = 50, confidence parameter $\delta = 0.05$.

Model	d_{VC}	Empirical fit	Complexity penalty $\epsilon(n, \delta, d_{VC})$
1^{st} order	3	0.06	0.5501
2^{nd} order	6	0.06	0.6999
4^{th} order	15	0.04	0.9494
8^{th} order	45	0.02	1.2849

• Structural risk minimization would select the simplest (linear) model in this case.