## Bayesian Decision Theory Tutorial

## Tutorial 1 - the outline

- Bayesian decision making with discrete probabilities - an example
- Looking at continuous densities
- Bayesian decision making with continuous probabilities - an example
- The Bayesian Doctor Example


## Example 1 - checking on a course

- A student needs to achieve a decision on which courses to take, based only on his first lecture.
- Define 3 categories of courses $\omega_{;}$: good, fair, bad.
- From his previous experience, he knows:

| Quality of <br> the course | good | fair | bad |
| :--- | :---: | :---: | :---: |
| Probability <br> (prior) | 0.2 | 0.4 | 0.4 |

- These are prior probabilities.


## Example 1 - continued

- The student also knows the class-conditionals:

| $\operatorname{Pr}\left(x / \omega_{j}\right)$ | good | fair | bad |
| :--- | :---: | :---: | :---: |
| Interesting <br> lecture | 0.8 | 0.5 | 0.1 |
| Boring lecture | 0.2 | 0.5 | 0.9 |

- The loss function is given by the matrix

| $\lambda\left(a_{i} / \omega_{j}\right)$ | good course | fair course | bad course |
| :--- | :---: | :---: | :---: |
| Taking the <br> course | 0 | 5 | 10 |
| Not taking <br> the course | 20 | 5 | 0 |

## Example 1 - continued

- The student wants to make an optimal decision=> minimal possible $R(\alpha)$, while $\alpha: x->\{$ take the course, drop the course\}
- The student needs to minimize the conditional risk;

$$
\begin{gathered}
R\left(\alpha_{i} \mid x\right)=\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) P\left(\omega_{j} \mid x\right) \\
\text { given } \\
\text { compute } \quad P\left(\omega_{j} \mid x\right)=\frac{P\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)}{P(x)} \\
5
\end{gathered}
$$

## Example 1 : compute $\mathbf{P}(\mathbf{x})$

- The probability to get an "interesting lecture" ( $\mathrm{x}=$ interesting):
$\operatorname{Pr}($ interesting $)=\operatorname{Pr}(\text { interesting } \mid \text { good course })^{*} \operatorname{Pr}($ good course $)$
$+\operatorname{Pr}($ interesting|fair course)* $\operatorname{Pr}$ (fair course)
$+\operatorname{Pr}($ interesting|bad course)* $\operatorname{Pr}($ bad course)
$=0.8^{*} 0.2+0.5^{*} 0.4+0.1^{*} 0.4=0.4$
- Consequently, $\operatorname{Pr}($ boring $)=1-0.4=0.6$


## Example 1 : compute $P\left(\omega_{j} \mid x\right)$

Suppose the lecture was interesting. Then we want to compute the posterior probabilities of each one of the 3 possible "states of nature".
$\operatorname{Pr}($ good course $\mid$ interesting lecture $)$
$=\frac{\operatorname{Pr}(\text { interesting } \mid \text { good }) \operatorname{Pr}(\text { good })}{\operatorname{Pr}(\text { interesting })}=\frac{0.8 * 0.2}{0.4}=0.4$
$\operatorname{Pr}($ fair|interesting $)$

$$
=\frac{\operatorname{Pr}(\text { interesting } \mid \text { fair }) \operatorname{Pr}(\text { fair })}{\operatorname{Pr}(\text { interesting })}=\frac{0.5 * 0.4}{0.4}=0.5
$$

- We can get $\operatorname{Pr}($ bad|interesting $)=0.1$ either by the same method, or by noting that it complements to 1 the above two.


## Example $1 \quad R\left(\alpha_{i} \mid x\right)=\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) P\left(\omega_{j} \mid x\right)$

- The student needs to minimize the conditional risk; take the course:
$R$ (taking| interesting) $=\lambda$ (taking $\mid$ good) $\operatorname{Pr}($ good $\mid$ interesting $)$

$$
\begin{aligned}
& +\lambda \text { (taking| fair) } \operatorname{Pr}(\text { fair } \mid \text { interesting }) \\
& +\lambda \text { (taking| bad) } \operatorname{Pr}(\text { bad } \mid \text { interesting }) \\
& =0.4^{*} 0+0.5^{*} 5+0.1^{*} 10=3.5
\end{aligned}
$$

or drop it:
$R$ (droping |interesting) $=\lambda$ (droping| good) $\operatorname{Pr}$ (good| interesting)
$+\lambda$ (droping $\mid$ fair $) \operatorname{Pr}$ (fair $\mid$ interesting)
$+\lambda$ (droping $\mid$ bad) $\operatorname{Pr}($ bad $\mid$ interesting $)$
$=0.4^{*} 20+0.5^{*} 5+0.1^{*} 0=10.5$

## Constructing an optimal decision function

- So, if the first lecture was interesting, the student will minimize the conditional risk by taking the course.
- In order to construct the full decision function, we need to define the risk minimization action for the case of boring lecture, as well.
Do it!


## Example 2 - continuous density

- Let $X$ be a real value r.v., representing a number randomly picked from the interval [0,1]; its distribution is known to be uniform.
- Then let $Y$ be a real r.v. whose value is chosen at random from $[0, X]$ also with uniform distribution.
- We are presented with the value of $Y$, and need to "guess" the most "likely" value of $X$.
- In a more formal fashion:given the value of $Y$, find the probability density function of $X$ and determine its maxima.


## Example 2 - continued

- What we look for is $\mathrm{P}(X=x \mid Y=y)$ - that is, the p.d.f.
- The class-conditional (given the value of $X$ ):

$$
P(Y=y \mid X=x)=\left\{\begin{array}{cc}
\frac{1}{x} & y \leq x \leq 1 \\
0 & y>x
\end{array}\right.
$$

- For the given evidence:

$$
P(Y=y)=\int_{y}^{1} \frac{1}{x} d x=\ln \left(\frac{1}{y}\right)
$$

(using total probability)

## Example 2 - conclusion

- Applying Bayes' rule:

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}=\frac{\frac{1}{x} 1}{\ln \left(\frac{1}{y}\right)}
$$

- This is monotonically decreasing function, over [y,1].
- So (informally) the most "likely" value of $X$ (the one with highest probability density value) is $X=y$.


## Illustration - conditional p.d.f.



## Example 3: hiring a secretary

- A manager needs to hire a new secretary, and a good one.
- Unfortunately, good secretary are hard to find:

$$
\operatorname{Pr}\left(w_{g}\right)=0.2, \quad \operatorname{Pr}\left(w_{b}\right)=0.8
$$

- The manager decides to use a new test. The grade is a real number in the range from 0 to 100 .
- The manager's estimation of the possible losses:

| $\lambda\left(\right.$ decision,$\left.w_{i}\right)$ | $w_{g}$ | $w_{b}$ |
| :--- | :---: | :---: |
| Hire | 0 | 20 |
| Reject | 5 | 0 |

## Example 3: continued

- The class conditional densities are known to be approximated by a normal p.d.f.:

$$
\begin{aligned}
& p(\text { grade } \mid \text { good sec retary }) \sim N(85,5) \\
& p(\text { grade } \mid \text { bad sec retary }) \sim N(40,13)
\end{aligned}
$$



## Example 3: continued

- The resulting probability density for the grade looks as follows: $p(x)=p\left(x / w_{b}\right) p\left(w_{b}\right)+p\left(x / w_{g}\right) p\left(w_{g}\right)$



## Example 3: continued $R\left(\alpha_{i} \mid x\right)=\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) P\left(\omega_{j} \mid x\right)$

- We need to know for which grade values hiring the secretary would minimize the risk:
$R($ hire $\mid x)<R($ reject $\mid x) \Leftrightarrow$
$p\left(w_{b} \mid x\right) \lambda\left(\right.$ hire,$\left.w_{b}\right)+p\left(w_{g} \mid x\right) \lambda\left(\right.$ hire,$\left.w_{g}\right)$
$<p\left(w_{b} \mid x\right) \lambda\left(\right.$ reject,$\left.w_{b}\right)+p\left(w_{g} \mid x\right) \lambda\left(\right.$ reject,$\left.w_{g}\right) \Leftrightarrow$
$\left[\lambda\left(\right.\right.$ hire,$\left.w_{b}\right)-\lambda\left(\right.$ reject,$\left.\left.w_{b}\right)\right] \cdot p\left(w_{b} \mid x\right)<\left[\lambda\left(\right.\right.$ reject,$\left.w_{g}\right) \lambda\left(\right.$ hire,$\left.\left.w_{g}\right)\right] p\left(w_{g} \mid x\right)$
- The posteriors are given by

$$
p\left(w_{i} \mid x\right)=\frac{p\left(x \mid w_{i}\right) p\left(w_{i}\right)}{p(x)}
$$

## Example 3: continued

- The posteriors scaled by the loss differences,

$$
\left[\lambda\left(\text { hire }, w_{b}\right)-\lambda\left(\text { reject }, w_{b}\right)\right] \cdot p\left(w_{b} \mid x\right)
$$

and
$\left[\lambda\left(\right.\right.$ reject,$\left.w_{g}\right)-\lambda\left(\right.$ hire,$\left.\left.w_{g}\right)\right] \cdot p\left(w_{g} \mid x\right)$
look like:


## Example 3: continued

- Numerically, we have:

$$
\begin{gathered}
p(x)=\frac{0.2}{5 \sqrt{2 \pi}} e^{-\frac{(x-85)^{2}}{2 \cdot 5^{2}}}+\frac{0.8}{13 \sqrt{2 \pi}} e^{-\frac{(x-40)^{2}}{2 \cdot 13^{2}}} \\
p\left(w_{b} \mid x\right)=\frac{\frac{0.8}{13 \sqrt{2 \pi}} e^{-\frac{(x-40)^{2}}{2 \cdot 13^{2}}}}{p(x)}, \quad p\left(w_{g} \mid x\right)=\frac{\frac{0.2}{5 \sqrt{2 \pi}} e^{-\frac{(x-85)^{2}}{2 \cdot 5^{2}}}}{p(x)}
\end{gathered}
$$

- We need to solve $20 p\left(w_{b} \mid x\right)>5 p\left(w_{g} \mid x\right)$
- Solving numerically yields one solution in [0, 100]:

$$
x \approx 76
$$

## The Bayesian Doctor Example

A person doesn't feel well and goes to the doctor.
Assume two states of nature:
$\omega_{1}$ : The person has a common flue.
$\omega_{2}$ : The person is really sick (a vicious bacterial infection).
The doctors prior is: $\quad \mathrm{p}\left(\omega_{1}\right)=0.9 \quad \mathrm{p}\left(\omega_{2}\right)=0.1$
This doctor has two possible actions: "prescribe" hot tea or antibiotics. Doctor can use prior and predict optimally: always flue. Therefore doctor will always prescribe hot tea.

## The Bayesian Doctor - Cntd.

- But there is very high risk: Although this doctor can diagnose with very high rate of success using the prior, (s)he can lose a patient once in a while.
- Denote the two possible actions:
$a_{1}=$ prescribe hot tea
$a_{2}=$ prescribe antibiotics
- Now assume the following cost (loss) matrix:

$$
\lambda_{i, j}=\begin{array}{c|c|c|} 
& \omega_{1} & \omega_{2} \\
\hline a_{1} & 0 & 10 \\
\hline a_{2} & 1 & 0 \\
\hline
\end{array}
$$

## The Bayesian Doctor - Cntd.

- Choosing $a_{1}$ results in expected risk of

$$
\begin{aligned}
R\left(a_{1}\right) & =p\left(\omega_{1}\right) \cdot \lambda_{1,1}+p\left(\omega_{2}\right) \cdot \lambda_{1,2} \\
& =0+0.1 \cdot 10=1
\end{aligned}
$$

- Choosing $a_{2}$ results in expected risk of

$$
\begin{aligned}
R\left(a_{2}\right) & =p\left(\omega_{1}\right) \cdot \lambda_{2,1}+p\left(\omega_{2}\right) \cdot \lambda_{2,2} \\
& =0.9 \cdot 1+0=0.9
\end{aligned}
$$

- So, considering the costs it's much better (and optimal!) to always give antibiotics.


## The Bayesian Doctor - Cntd.

- But doctors can do more. For example, they can take some observations.
- A reasonable observation is to perform a blood test.
- Suppose the possible results of the blood test are:
$x_{1}=$ negative (no bacterial infection)
$x_{2}=$ positive (infection)
- But blood tests can often fail. Suppose (class conditional probabilities.)
infection
flue

$$
\begin{array}{ll}
p\left(x_{1} \mid \omega_{2}\right)=0.3 & p\left(x_{2} \mid \omega_{2}\right)=0.7 \\
p\left(x_{2} \mid \omega_{1}\right)=0.2 & p\left(x_{1} \mid \omega_{1}\right)=0.8
\end{array}
$$

## The Bayesian Doctor - Cntd.

- Define the conditional risk given the observation

$$
\mathrm{R}\left(\mathrm{a}_{\mathrm{i}} \mid \mathrm{x}\right)=\sum_{\omega_{\mathrm{j}}} \mathrm{p}\left(\omega_{\mathrm{j}} \mid \mathrm{x}\right) \cdot \lambda_{\mathrm{i}, \mathrm{j}}
$$

- We would like to compute the conditional risk for each action and observation so that the doctor can choose an optimal action that minimizes risk.
- How can we compute $\mathrm{p}\left(\omega_{\mathrm{j}} \mid \mathrm{x}\right)$ ?
- We use the class conditional probabilities and Bayes inversion rule.


## The Bayesian Doctor - Cntd.

- Let's calculate first $\mathrm{p}\left(x_{1}\right)$ and $\mathrm{p}\left(x_{2}\right)$

$$
\begin{aligned}
\mathrm{p}\left(\mathrm{x}_{1}\right) & =\mathrm{p}\left(\mathrm{x}_{1} \mid \omega_{1}\right) \cdot \mathrm{p}\left(\omega_{1}\right)+\mathrm{p}\left(\mathrm{x}_{1} \mid \omega_{2}\right) \cdot \mathrm{p}\left(\omega_{2}\right) \\
& =0.8 \cdot 0.9+0.3 \cdot 0.1 \\
& =0.75
\end{aligned}
$$

- $\mathrm{p}\left(x_{2}\right)$ is complementary to $\mathrm{p}\left(x_{1}\right)$, so $\mathrm{p}\left(\mathrm{x}_{2}\right)=0.25$


## The Bayesian Doctor - Cntd.

$$
\begin{aligned}
& \mathrm{R}\left(a_{1} \mid x_{1}\right)=p\left(\omega_{1} \mid x_{1}\right) \cdot \lambda_{1,1}+p\left(\omega_{2} \mid x_{1}\right) \cdot \lambda_{1,2} \\
& \quad=0+p\left(\omega_{2} \mid x_{1}\right) \cdot 10 \\
& \quad=10 \cdot \frac{p\left(x_{1} \mid \omega_{2}\right) \cdot p\left(\omega_{2}\right)}{p\left(x_{1}\right)} \\
& \quad=10 \cdot \frac{0.3 \cdot 0.1}{0.75}=0.4
\end{aligned}
$$

$$
\begin{aligned}
& R\left(a_{2} \mid x_{1}\right)=p\left(\omega_{1} \mid x_{1}\right) \cdot \lambda_{2,1}+p\left(\omega_{2} \mid x_{1}\right) \cdot \lambda_{2,2} \\
& \quad=p\left(\omega_{1} \mid x_{1}\right) \cdot 1+p\left(\omega_{2} \mid x_{1}\right) \cdot 0 \\
& \quad=\frac{p\left(x_{1} \mid \omega_{1}\right) \cdot p\left(\omega_{1}\right)}{p\left(x_{1}\right)} \\
& \quad=\frac{0.8 \cdot 0.9}{0.75}=0.96
\end{aligned}
$$

## The Bayesian Doctor - Cntd.

$$
\begin{aligned}
& R\left(a_{1} \mid x_{2}\right)=p\left(\omega_{1} \mid x_{2}\right) \cdot \lambda_{1,1}+p\left(\omega_{2} \mid x_{2}\right) \cdot \lambda_{1,2} \\
& \quad=0+p\left(\omega_{2} \mid x_{2}\right) \cdot 10 \\
& \quad=10 \cdot \frac{p\left(x_{2} \mid \omega_{2}\right) \cdot p\left(\omega_{2}\right)}{p\left(x_{2}\right)} \\
& \quad=10 \cdot \frac{0.7 \cdot 0.1}{0.25}=2.8 \\
& R\left(a_{2} \mid x_{2}\right)=p\left(\omega_{1} \mid x_{2}\right) \cdot \lambda_{2,1}+p\left(\omega_{2} \mid x_{2}\right) \cdot \lambda_{2,2} \\
& \quad=p\left(\omega_{1} \mid x_{2}\right) \cdot 1+p\left(\omega_{2} \mid x_{2}\right) \cdot 0 \\
& \quad=\frac{p\left(x_{2} \mid \omega_{1}\right) \cdot p\left(\omega_{1}\right)}{p\left(x_{2}\right)} \\
& \quad=\frac{0.2 \cdot 0.9}{0.25}=0.72
\end{aligned}
$$

## The Bayesian Doctor - Cntd.

- To summarize: $R\left(a_{1} \mid x_{1}\right)=0.4$

$$
\begin{aligned}
& R\left(a_{2} \mid x_{1}\right)=0.96 \\
& R\left(a_{1} \mid x_{2}\right)=2.8 \\
& R\left(a_{2} \mid x_{2}\right)=0.72
\end{aligned}
$$

- Whenever we encounter an observation $x$, we can minimize the expected loss by minimizing the conditional risk.
- Makes sense: Doctor chooses hot tea if blood test is negative, and antibiotics otherwise.


## Optimal Bayes Decision Strategies

- A strategy or decision function $\alpha(x)$ is a mapping from observations to actions.
- The total risk of a decision function is given by

$$
E_{p(x)}[R(\alpha(x) \mid x)]=\sum_{x} p(x) \cdot R(\alpha(x) \mid x)
$$

- A decision function is optimal if it minimizes the total risk. This optimal total risk is called Bayes risk.
- In the Bayesian doctor example:
- Total risk if doctor always gives antibiotics $\left(a_{2}\right): 0.9$
- Bayes risk: 0.48 How have we got it?

