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Tutorial 1 — the outline

+ Bayesian decision making with discrete
probabilities — an example

+ Looking at continuous densities

+ Bayesian decision making with continuous
probabllities — an example

+ The Bayesian Doctor Example
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Example 1 — checking on a course

¢ A student needs to achieve a decision on which
courses to take, based only on his first lecture.

¢+ Define 3 categories of courses »: good, fair, bad.
¢ From his previous experience, he knows:

Quality of good fair bad
the course

Probability 0.2 0.4 0.4
(prior)

¢ These are prior probabilities.
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Example 1 — continued

 The student also knows the class-conditionals:

Pr(x|w) good fair bad

Interesting 0.8 0.5 0.1

lecture

Boring lecture 0.2 0.5 0.9
¢ The loss function is given by the matrix

Maj|m) good course | fair course bad course

Taking the 0 5 10

course

Not taking 20 5 0

the course
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Example 1 — continued

¢ The student wants to make an optimal decision=>
minimal possible R(a),

while a: x->{take the course, drop the course}
e The student needs to minimize the conditional risk;

R(@ 1) =3 e | @))P(@; 1

l

given given

N\

P(Xla)j)P(wj)

compute P(@;|Xx)= 5 (x)

/

compute



Example 1 : compute P(x)

¢ The probability to get an “interesting lecture”
(x= Interesting):

Pr(interesting)= Pr(interesting|good course)* Pr(good course)

+ Pr(interesting|fair course)* Pr(fair course)
+ Pr(interesting|bad course)* Pr(bad course)
=0.8*0.2+0.5*0.4+0.1*0.4=0.4

¢ Consequently, Pr(boring)=1-0.4=0.6
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Example 1 : compute P(®; |X)

Suppose the lecture was interesting. Then we want to compute
the posterior probabilities of each one of the 3 possible “states of

nature”.

Pr(good course|interesting lecture)
_ Pr(interesting|good)Pr(good) 0.8*%0.2

: _ 0.4
Pr(interesting) 0.4

Pr(fair|interesting)

_ Pr(interesting|fair)Pr(fair) 0.5*0.4 05

Pr(interesting) 0.4

* We can get Pr(bad|interesting)=0.1 either by the same method, or
by noting that it complements to 1 the above two.
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Example 1 R |><)=_§(::;L(ogi |@,)P(o, | X)

¢ The student needs to minimize the conditional risk;

take the course:

R(taking| interesting)= A(taking
+ A(taking
+ A(taking

good) Pr(good| interesting)
fair) Pr(fair| interesting)
bad) Pr(bad| interesting)

= 0.4*0+0.5*5+0.1*10=3.5

or drop it:

R(droping| interesting)= A(droping| good) Pr(good| interesting)
+ A(droping| fair) Pr(fair| interesting)
+ A(droping| bad) Pr(bad| interesting)
= 0.4*20+0.5*5+0.1*0=10.5
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Constructing an optimal decision
function

¢ S0, If the first lecture was interesting, the student will
minimize the conditional risk by taking the course.

¢ |n order to construct the full decision function, we need
to define the risk minimization action for the case of
boring lecture, as well.

Do it!
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Example 2 — continuous density

Let X be a real value r.v., representing a number
randomly picked from the interval [0,1]; its distribution is
known to be uniform.

Then let Y be a real r.v. whose value is chosen at
random from [0, X] also with uniform distribution.

We are presented with the value of Y, and need to
“‘guess” the most “likely” value of X.

In a more formal fashion:given the value of Y, find the
probability density function of X and determine its
maxima.
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Example 2 — continued

¢ \What we look for is P(X=x | Y=y) — that is, the p.d.f.
¢ The class-conditional (given the value of X):

1 <x<1
P(Y=y|X =x)=4y Y%=

X
0 y>x

¢ [or the given evidence:

(using total probability)

PY=y)= j&dx =1In [%)
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Example 2 — conclusion

¢ Applying Bayes' rule: .
~1
ply[x)p(x) _

p(x| y)= o) In[lj
y

¢ This is monotonically decreasing function, over [y, 1].

¢ So (informally) the most “likely” value of X (the one with
highest probability density value) is X=y.
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Illustration — conditional p.d.f.

The conditional density p(x|y=0.6)
35 L L L L L L L L L

2.5

1.5~

0.5
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Example 3: hiring a secretary

A manager needs to hire a new secretary, and a good
one.

Unfortunately, good secretary are hard to find:
Pr(wg)=0.2,  Pr(w,)=0.8

The manager decides to use a new test. The grade is a
real number in the range from 0 to 100.

The manager’s estimation of the possible losses:

A(decision,w;) Wy Wi,
Hire 0 20
Reject 5 0
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Example 3: continued

¢ The class conditional densities are known to be
approximated by a normal p.d.f.:

p(grade | good secretary) ~ N(85,5)
p(grade | bad secretary) ~ N(40,13)

p(grade|bad)Pr(bad) p(grade|good)Pr(good)
0025 L L L L L L L L
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Example 3: continued

¢ The resulting probability density for the grade looks as
follows: p(x)=p( x|w, )p( Wy, )+ p(X|wg)p(wy )

p(x)
0.025 ‘
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Example 3: continued R(« |><)=Zi)i(ai | @;)P(e; | X)

+ \We need to know for which grade values hiring the
secretary would minimize the risk:

R(hire | x) < R(reject| x) <

p(w, | x)A(hire,w,) + p(w, | x)A(hire,w, )

< p(w, | x)A(reject, w,) + p(w, | x)A(reject,w,) <

[ A(hire,w,) —A(reject, w,)]- p(w, | X) <[A(reject, Wg) A(hire, w, )] p(w, | X)

¢ The posteriors are given by

P(x|w,) p(w)
p(x)

p(w, | x) =
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Example 3: continued

¢ The posteriors scaled by the loss differences,
[ A(hire,w, ) — A(reject, w, )] p(w, | X)

and [A(reject, w, ) - A(hire, w,)]- p(w, | X)
look like: "
20 \\

15 - ‘1

10 - \

5ﬁ \
ﬁ
\
0 r r r r r r t Lr
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Example 3: continued

¢ Numerically, we have:

0.2 _ (x-85)° 0.8 _(x-40)°

x) = e 25 4 a 21%
P(x) 527 1327
0.8 e—“;f;f 0.2 e—‘*;_ii”z
p(w, | x) = 3% L plw, | x) =N
b g
p(x) p(X)

¢ We need to solve  20p(w, | X) >5p(w, | X)

¢ Solving numerically yields one solution in [0, 100]:

X =16
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The Bayesian Doctor Example

A person doesn'’t feel well and goes to the doctor.
Assume two states of nature:
®, : The person has a common flue.

®, . The person is really sick (a vicious bacterial
Infection).

The doctors prioris:  p(w,)=0.9 p(w,)=0.1

This doctor has two possible actions: “prescribe” hot tea
or antibiotics. Doctor can use prior and predict
optimally: always flue. Therefore doctor will always
prescribe hot tea.
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The Bayesian Doctor - Cntd.

« But there is very high risk: Although this doctor can
diagnose with very high rate of success using the
prior, (s)he can lose a patient once in a while.

* Denote the two possible actions:
a, = prescribe hottea
a, = prescribe antibiotics
* Now assume the following cost (loss) matrix:

W, | W,
A.=a | 010
a, | 1|0
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The Bayesian Doctor - Cntd.

» Choosing a, results in expected risk of

R(a,) = p(wl)';im + p(a)Z)'ﬂi,Z
=0+0.1-10=1

« Choosing a, results in expected risk of

R(a,) = p(a)l)'ﬂ'z,l + p(w,) Ay

=09-1+0=0.9

« S0, considering the costs it's much better (and
optimal!) to always give antibiotics.
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The Bayesian Doctor - Cntd.

* But doctors can do more. For example, they can take
some observations.
« A reasonable observation is to perform a blood test.

e Suppose the possible results of the blood test are:
X, = negative (no bacterial infection)
X, = positive (infection)
« But blood tests can often fail. Suppose
(class conditional probabilities.)

infection p(X |®,)=0.3 p(X, |w,)=0.7

flue P(X, | @) =0.2 pP(X | )=0.8
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The Bayesian Doctor - Cntd.

Define the conditional risk given the observation

R [x )= Zp(w [ X)- 4 ;

We would like to compute the conditional risk for
each action and observation so that the doctor can
choose an optimal action that minimizes risk.

How can we compute P(®; [X) 2

We use the class conditional probabilities and Bayes
Inversion rule.
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The Bayesian Doctor - Cntd.

» Let's calculate first p(x,) and p(x.)

p(X)=pX,|®) p(o)+p(X,|®,) p(w®,)
~0.8-0.9+0.3-0.1
~0.75

. p(x,) is complementary to p(x,) ,so P(X,)=0.25
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The Bayesian Doctor - Cntd.

R(a1 | X1) — p(a)l | Xl) '/11,1 + p(a)z | X1) 'ﬂl,z
=0+ p(a)z | Xl)’lo
~10. p(X | @,)- plw,)
p(x,)
_0.3-0.1:0.4

=10

R(a, | %)= play | %) A1+ Pl@, | %) 4,
= p(a@, | X)) -1+ p(w, | %) -0
_ P(% | @) plar)
p(x)
- 0.8-0.9

= =0.96
0.75
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The Bayesian Doctor - Cntd.

R(a, | X;) = p(e, | X;) A+ P(@, | X;) Ay
=0+ p(w, | X,)-10

—10. P(X; |@,) - p(@,)
P(Xx;)
. 0.7-0.1 _-8
0.25
R(a, | X,) = p(ao, | X2)°/12,1 + p(@, | X,) ’ﬂvz,z
= p(o, | X;) -1+ p(w, | X,)-0
_ p(X, | @) p(a,)
p(x,)
_ 0.2-0.9
0.25

=10

=0.72
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The Bayesian Doctor - Cntd.

e TO summarize: R(al | X1) ~04
R(a, | x,) =0.96

R(a, | x,)=2.8
R(a, | x,) =0.72

« Whenever we encounter an observation x, we can

minimize the expected loss by minimizing the
conditional risk.

« Makes sense: Doctor chooses hot tea If blood test is
negative, and antibiotics otherwise.
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Optimal Bayes Decision
Strategies

A strategy or decision function «(X) is a mapping
from observations to actions.

The total risk of a decision function is given by

E 0 [R(@(X) [ )]= > p(X) - R(@(x) | x)

A decision function is optimal if it minimizes the total
risk. This optimal total risk is called Bayes risk.

In the Bayesian doctor example:
— Total risk if doctor always gives antibiotics(a,): 0.9
— Bayes risk: 0.48 How have we got it?
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