
Support Vector Machines



Problem Definition

Consider a training set of n iid samples

where x i is a vector of length m and                 
is the class label for data point x i.
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Find a separating hyperplane
corresponding to the decision function
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Separating Hyperplanes
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� which separating hyperplane should we choose?



Separating Hyperplanes

x(2)

� Training data is just a subset of of all possible data
� Suppose hyperplane is close to sample x i

� If we see new sample close to sample i, it is likely 
to be on the wrong side of the hyperplane

x(1)

x i

� Poor generalization (performance on unseen data)



Separating Hyperplanes
� Hyperplane as far as possible from any sample

x(2)

x i

x(1)

� New samples close to the old samples will be 
classified correctly

� Good generalization



SVM
� Idea: maximize distance to the closest example

x(2)

x i

x(2)

x i

x(1) x(1)

smaller distance larger distance

� For the optimal hyperplane
� distance to the closest negative example = distance to 

the closest positive example



SVM: Linearly Separable Case
� SVM:  maximize the margin

x(2)

x(1)

� margin is twice the absolute value of distance d of  
the closest examples to the separating hyperplane 

� Better generalization (performance on test data)
� in practice 
� and in theory



SVM: Linearly Separable Case

x(1)
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x(1)

� Support vectors are the samples closest to the 
separating hyperplane
� they are the most difficult patterns to classify
� Optimal hyperplane is completely defined by support vectors

� of course, we do not know which samples are support vectors without 
finding the optimal hyperplane



SVM: Formula for the Margin

� g(x) = wtx + b  
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x
� absolute distance between x 

and the boundary g(x) = 0
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� distance is unchanged for hyperplane � distance is unchanged for hyperplane 
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� Now the largest margin hyperplane is unique



SVM: Formula for the Margin

� now distance from closest sample x i to g(x) = 0 is
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� For uniqueness, set                      for any example 
x i closest to the boundary
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SVM: Optimal Hyperplane
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� Maximize margin 
w
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subject to constraints

� Can convert our problem to  

� J(w) is a quadratic function, thus there is a single 
global minimum  
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Constrained Quadratic Programming

� Introduce Lagrange multipliers
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Minimize

Primal Problem:

� Introduce Lagrange multipliers

associated with the constraints

� The solution to the primal problem is equivalent to 
determining the saddle point of the function
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Solving Constrained QP

� At saddle point, LP has minimum requiring
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Primal-Dual 
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Primal:

minimize  LP  with respect to w,b, 
subject to
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Solving QP using dual problem

maximize 

constrained to
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� α α α α ={αααα1,…, ααααn} are new variables, one for each sample

� LD(αααα) can be optimized by quadratic programming

� LD(αααα) formulated in terms of αααα
� it depends on w and b indirectly

� LD(αααα) depends on the number of samples, not on 
dimension of samples



Threshold

� b can be determined from the optimal      and  
Karush-Kuhn-Tucker (KKT) conditions

� implies
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Support Vectors

� For every sample i, one of the following must hold
� ααααi = 0 
� ααααi >0 and y i(w .x i+b - 1) = 0
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� Samples with are Support Vectors and they 
are the closest to the separating hyperplane

� Optimal hyperplane is completely defined by support 
vectors
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SVM: Classification
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SVM: Example

� Class 2:  [5,2], [7,6], [10,4] 

� Class 1:  [1,6], [1,10], [4,11] 



SVM: Example
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SVM: Non Separable Case
� Data is most likely to be not linearly separable, but 

linear classifier may still be appropriate

x(2)

outliers

x(1)

� Can apply SVM in non linearly separable case
� data should be “almost” linearly separable for good 

performance



� Change constraints from                                 to 

SVM with slacks
� Use nonnegative “slack” variables ξξξξ1,…, ξξξξn  (one for 

each sample)

x(2)
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� ξξξξi is a measure of 
deviation from the ideal 
position for sample i
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position for sample i
� ξξξξi >1  sample i is on the wrong 

side of the separating 
hyperplane

� 0< ξξξξi <1 sample i is on the 
right side of separating  
hyperplane but within the 
region of maximum margin

ξξξξi > 1

0< ξξξξi <1



� constrained to                                  and ii ∀∀∀∀≥≥≥≥ 0ξξξξ

SVM with slacks
� Would like to minimize
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� C > 0 is a constant which measures relative weight of the 
first and second terms
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first and second terms
� if C is small, we allow a lot of samples not in ideal position
� if C is large, we want to have very few samples not in ideal 

position



SVM with slacks
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large C , , , , few samples not  in 
ideal position
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small C ,  ,  ,  ,  a lot of samples 
not  in ideal position



SVM with slacks– Dual Formulation

maximize 
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Non Linear Mapping
� Cover’s theorem:  

� “pattern-classification problem cast in a high dimensional 
space non-linearly is more likely to be linearly separable 
than in a low-dimensional space” 

� One dimensional space, not linearly separable

0 1 2 3 5-2-3
� Lift to two dimensional space with ϕϕϕϕ(x)=(x,x2 )

0 1 2 3 5-2-3



Non Linear Mapping
� Solve a non linear classification problem with a linear 

classifier
1. Project data x to high dimension using function ϕϕϕϕ(x)
2. Find a linear discriminant function for transformed data ϕϕϕϕ(x)
3. Final nonlinear discriminant function is g(x) = w t ϕϕϕϕ(x) +w0

ϕϕϕϕ(x)=(x,x2 )

0 1 2 3 5-2-3

�In 2D, discriminant function is linear
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Non Linear Mapping: Another Example



Non Linear SVM

� Can use any linear classifier after lifting data into a 
higher dimensional space.  However we will have to 
deal with the “curse of dimensionality”

1. poor generalization to test data 
2. computationally expensive

� SVM handles the “curse of dimensionality” problem:� SVM handles the “curse of dimensionality” problem:
1. enforcing largest margin permits good generalization

� It can be shown that generalization in SVM is a function of the 
margin, independent of the dimensionality

2. computation in the higher dimensional case is performed 
only implicitly through the use of kernel functions



Non Linear SVM: Kernels

� Recall SVM optimization

maximize (((( )))) ∑∑∑∑∑∑∑∑∑∑∑∑
==== ========

−−−−====
n

i

n

j

j

t

ijiii

n

i

iD xxyyL
1 11 2

1
αααααααααααααααα

� Note that samples x i appear only through the dot 
products  x i

tx j, x i
tx .

and classification )xx(
1

i bysigny
n

i

ii ++++⋅⋅⋅⋅==== ∑∑∑∑
====

αααα

products  x i
tx j, x i

tx .

� If we lift x i to high dimensional space F using ϕϕϕϕ(x), 
need to compute high dimensional product ϕϕϕϕ(x i)tϕϕϕϕ(x j)
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� The dimensionality of space F not necessarily  
important. May not even know the map φ.



Kernel

� A function that returns the value of the dot product 
between the images of the two arguments:
K(x,y)=ϕϕϕϕ(x i)tϕϕϕϕ(x j)

� Given a function K, it is possible to verify that it is 
a kernel.
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K(x i,x j)

� Now we only need to compute K(x i,x j) instead of 
ϕϕϕϕ(x i)tϕϕϕϕ(x j)

� “kernel trick”: do not need to perform operations in high 
dimensional space explicitly



Kernel Matrix
� (aka the Gram matrix):

� The central structure in kernel machines
� Contains all necessary information for the learning 

algorithm
� Fuses information about the data AND the kernel
� Many interesting properties:

From www.support-vector.net



Mercer’s Theorem

� The kernel matrix is Symmetric Positive Definite
� Any symmetric positive definite matrix can be 

regarded as a kernel matrix, that is as an inner 
product matrix in some space

Every (semi)positive definite, symmetric
function is a kernel: i.e. there exists a mapping φ such 
that it is possible to write:

K(x,y )=ϕϕϕϕ(x)tϕϕϕϕ(y)
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From www.support-vector.net



Examples of Kernels

� Some common choices (both satisfying Mercer’s 
condition):

� Polynomial kernel (((( )))) (((( )))) p
j

t
iji xxxxK 1, ++++====

� Gaussian radial Basis kernel (data is lifted in infinite 
dimension)
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From www.support-vector.net



Example Polynomial Kernels

From www.support-vector.net



Example: the two spirals

� Separated by a hyperplane in feature space 
(gaussian kernels)

From www.support-vector.net



Making Kernels

� The set of kernels is closed under some 
operations. If K, K’ are kernels, then:

� K+K’ is a kernel
� cK is a kernel, if c>0
� aK+bK’ is a kernel, for a,b >0� aK+bK’ is a kernel, for a,b >0
� Etc etc etc……
� can make complex kernels from simple 

ones: modularity !

From www.support-vector.net



Non Linear SVM Recepie

� Choose kernel K(x i,x j) corresponding to some 
function ϕϕϕϕ(x i) which takes sample x i to a higher 
dimensional space

� Start with data x1,…,xn which lives in feature space 
of dimension d

� Find the largest margin linear discriminant function in 
the higher dimensional space by using quadratic the higher dimensional space by using quadratic 
programming package to solve:
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Non Linear SVM Recipe

� Linear discriminant function of largest margin in the 
high dimensional space:
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� Weight vector w in  the high dimensional space:
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� Non linear discriminant function in the original space:
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� decide class 1 if g (x ) > 0, otherwise decide class 2 
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Non Linear SVM

(((( )))) (((( ))))∑∑∑∑
∈∈∈∈

====
Sx

iii
i

xxKzxg ,αααα

� Nonlinear discriminant function

(((( )))) ∑∑∑∑====xg weight of support 
vector  x i

mmmm1 “inverse distance” 
from x to

support vector x
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most important
training samples,

i.e. support vectors
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Higher Order Polynomials
Taken from Andrew Moore

Poly-
nomial

φφφφ(x) Cost to 
build H 
matrix 
tradition
ally

Cost if 
d=100

φφφφ(a)tφφφφ(b) Cost to 
build H 
matrix 
sneakily

Cost if 
d=100

Quadratic All d2/2 
terms up to 

d2 n2 /4 2,500 n2 (atb+1)2 d n2 / 2 50 n2

terms up to 
degree 2

Cubic All d3/6 
terms up to 
degree 3

d3 n2 /12 83,000 n2 (atb+1)3 d n2 / 2 50 n2

Quartic All d4/24 
terms up to 
degree 4

d4 n2 /48 1,960,000 n2 (atb+1)4 d n2 / 2 50 n2

n is the number of samples, d is number of features



SVM Summary

� Advantages:
� Based on nice theory
� excellent generalization properties
� objective function has no local minima
� can be used to find non linear discriminant functions
� Complexity of the classifier is characterized by the number 

of support vectors rather than the dimensionality of the of support vectors rather than the dimensionality of the 
transformed space

� Disadvantages: 
� It’s not clear how to select a kernel function in a principled 

manner
� tends to be slower than other methods (in non-linear case).


