Support Vector Machines

Problem Definition

Consider a training set of n iid samples $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ where x_i is a vector of length m and

 $y_i \in \{+1, -1\}$ is the class label for data point x_i .

Find a separating hyperplane $W \cdot x + b = 0$ corresponding to the decision function $f(x) = sign(W \cdot x + b)$

Separating Hyperplanes

which separating hyperplane should we choose?

Separating Hyperplanes

- Training data is just a subset of of all possible data
- Suppose hyperplane is close to sample x_i
- If we see new sample close to sample *i*, it is likely to be on the wrong side of the hyperplane

Separating Hyperplanes

Hyperplane as far as possible from any sample

- New samples close to the old samples will be classified correctly
- Good generalization

SVM

Idea: maximize distance to the closest example

- For the optimal hyperplane
 - distance to the closest negative example = distance to the closest positive example

SVM: Linearly Separable Case

SVM: maximize the margin

- margin is twice the absolute value of distance d of the closest examples to the separating hyperplane
- Better generalization (performance on test data)
 - in practice
 - and in theory

SVM: Linearly Separable Case

- Support vectors are the samples closest to the separating hyperplane
 - they are the most difficult patterns to classify
 - Optimal hyperplane is completely defined by support vectors
 - of course, we do not know which samples are support vectors without finding the optimal hyperplane

SVM: Formula for the Margin

- $g(x) = w^t x + b$
- absolute distance between *x* and the boundary g(x) = 0 $\frac{|\mathbf{w}^t \mathbf{x} + b|}{\|\mathbf{w}\|}$

- distance is unchanged for hyperplane $g_1(\mathbf{x}) = \alpha g(\mathbf{x})$ $\frac{|\alpha w^t x + \alpha b|}{\|\alpha w\|} = \frac{|w^t x + b|}{\|w\|}$
- Let \mathbf{x}_i be an example closest to the boundary. Set $|\mathbf{w}^t \mathbf{x}_i + b| = 1$
- Now the largest margin hyperplane is unique

SVM: Formula for the Margin

- For uniqueness, set $|w^t x_i + b| = 1$ for any example x_i closest to the boundary
- now distance from closest sample x_i to g(x) = 0 is

$$\frac{|\mathbf{w}^t \mathbf{x}_i + \boldsymbol{b}|}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$$

Thus the margin is

$$oldsymbol{m}=rac{2}{\|oldsymbol{w}\|}$$

SVM: Optimal Hyperplane

• Maximize margin $m = \frac{2}{\|w\|}$ subject to constraints

$$\begin{cases} \mathbf{w}^{\mathsf{t}} \mathbf{x}_{i} + b \ge \mathbf{1} & \mathbf{y}_{i} = \mathbf{1} \\ \mathbf{w}^{\mathsf{t}} \mathbf{x}_{i} + b \le -\mathbf{1} & \mathbf{y}_{i} = -\mathbf{1} \end{cases}$$

- Can convert our problem to $J(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|^2 \qquad \text{s.t} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$
- J(w) is a quadratic function, thus there is a single global minimum

Constrained Quadratic Programming

Primal Problem:

Minimize $\frac{1}{2} \| \mathbf{w} \|^2$ subject to $Y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, \forall i$

- Introduce Lagrange multipliers $\alpha_i \ge \mathbf{0}$ associated with the constraints
- The solution to the primal problem is equivalent to determining the saddle point of the function

$$L_{P} \equiv L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{n} \alpha_{i} (y_{i}(\mathbf{x}_{i} \cdot \mathbf{w} + b) - 1)$$

Solving Constrained QP

At saddle point, L_P has minimum requiring

$$\frac{\partial L_P}{\partial W} = W - \sum_i \alpha_i y_i \mathbf{x}_i = \mathbf{0} \implies W = \sum_i \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L_P}{\partial b} = \sum_i \alpha_i y_i = \mathbf{0}$$

 ~ 1

Primal-Dual

Primal:

$$L_{P} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{n} \alpha_{i} y_{i} (\mathbf{x}_{i} \cdot \mathbf{w} + b) + \sum_{i=1}^{n} \alpha_{i}$$

minimize L_{P} with respect to w,b,
subject to $\alpha_{i} \ge 0$

$$w = \sum_{i} \alpha_{i} y_{i} x_{i}$$
 $\sum_{i} \alpha_{i} y_{i} = 0$ substitute

i

Dual:

$$\begin{split} L_D &= \sum_{i=1}^l \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i x_j \\ \text{maximize } L_D \text{ with respect to } \alpha \\ \text{subject to } \alpha_i \geq 0, \quad \sum \alpha_i y_i = 0 \end{split}$$

Solving QP using dual problem

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_j y_j \mathbf{x}_i^t \mathbf{x}_j$$

constrained to $\alpha_i \ge \mathbf{0} \quad \forall i \quad and \quad \sum_{i=1}^n \alpha_i y_i = \mathbf{0}$

- $\alpha = \{\alpha_1, \dots, \alpha_n\}$ are new variables, one for each sample
- $L_D(\alpha)$ can be optimized by quadratic programming
- *L_D*(*α*) formulated in terms of *α* it depends on *w* and *b* indirectly
- $L_D(\alpha)$ depends on the number of samples, not on dimension of samples

Threshold

- **b** can be determined from the optimal α and Karush-Kuhn-Tucker (KKT) conditions $\alpha_i [y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1] = \mathbf{0}, \forall \mathbf{i}$
- $\alpha_i > \mathbf{0}$ implies $y_i (\mathbf{W} \cdot \mathbf{x}_i + b) = \mathbf{1} \implies \mathbf{W} \cdot \mathbf{x}_i + b = y_i$

$$b = y_i - W \cdot x_i$$

Support Vectors

- For every sample *i*, one of the following must hold
 - $\alpha_i = 0$
 - $\alpha_i > 0$ and $y_i(w \cdot x_i + b 1) = 0$
- Many $\alpha_i = \mathbf{0} \implies w = \sum_i \alpha_i y_i x_i$ sparse solution
- Samples with α_i > 0 are Support Vectors and they are the closest to the separating hyperplane
- Optimal hyperplane is completely defined by support vectors

SVM: Classification

• Given a new sample x, finds its label y

$$y = sign(\mathbf{w} \cdot \mathbf{x} + b)$$

$$\mathbf{W} = \sum_{i=1}^{n} \alpha_i y_i X_i$$

SVM: Example

- Class 1: [1,6], [1,10], [4,11]
- Class 2: [5,2], [7,6], [10,4]

SVM: Example

• find **w** using
$$w = \sum_{i=1}^{n} \alpha_i y_i x_i = (\alpha \cdot * y)^t x = \begin{bmatrix} -0.33 \\ 0.20 \end{bmatrix}$$

since $\alpha_1 > 0$, can find **b** using

$$b = y_1 - W^t x_1 = 0.13$$

SVM: Non Separable Case

 Data is most likely to be not linearly separable, but linear classifier may still be appropriate

- Can apply SVM in non linearly separable case
 - data should be "almost" linearly separable for good performance

SVM with slacks

- Use nonnegative "slack" variables ξ_1, \ldots, ξ_n (one for each sample)
- Change constraints from $y_i (\mathbf{w}^t \mathbf{x}_i + b) \ge 1 \quad \forall i$ to

$$y_i (\mathbf{w}^t \mathbf{x}_i + b) \ge \mathbf{1} - \xi_i \quad \forall i$$

- ξ_i is a measure of deviation from the ideal position for sample *i*
 - $\xi_i > 1$ sample *i* is on the wrong side of the separating hyperplane
 - $0 < \xi_i < 1$ sample *i* is on the right side of separating hyperplane but within the region of maximum margin

SVM with slacks

Would like to minimize

$$J(W,\xi_{1},...,\xi_{n}) = \frac{1}{2} \|W\|^{2} + C \sum_{i=1}^{n} \xi_{i}$$

• constrained to $y_i(\mathbf{w}^t \mathbf{x}_i + b) \ge \mathbf{1} - \xi_i$ and $\xi_i \ge \mathbf{0} \quad \forall i$

- C > 0 is a constant which measures relative weight of the first and second terms
 - if C is small, we allow a lot of samples not in ideal position
 - if C is large, we want to have very few samples not in ideal position

SVM with slacks

large C, few samples not in ideal position

small C, a lot of samples not in ideal position

SVM with slacks– Dual Formulation

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i y_j y_j x_i^t x_j$$

constrained to $\mathbf{0} \le \alpha_i \le C \quad \forall i \text{ and } \sum_{i=1}^n \alpha_i y_i = \mathbf{0}$

• find **w** using
$$W = \sum_{i=1}^{n} \alpha_i y_i x_i$$

• solve for **b** using any $0 < \alpha_i < C$ and $\alpha_i [y_i (\mathbf{w}^t \mathbf{x}_i + b) - 1] = 0$

Non Linear Mapping

Cover's theorem:

 "pattern-classification problem cast in a high dimensional space non-linearly is more likely to be linearly separable than in a low-dimensional space"

-3 -2 0 1 2 3 5

One dimensional space, not linearly separable

Non Linear Mapping

- Solve a non linear classification problem with a linear classifier
 - 1. Project data **x** to high dimension using function $\varphi(\mathbf{x})$
 - 2. Find a linear discriminant function for transformed data $\varphi(\mathbf{x})$
 - 3. Final nonlinear discriminant function is $g(\mathbf{x}) = \mathbf{w}^t \varphi(\mathbf{x}) + \mathbf{w}_0$

In 2D, discriminant function is linear $g\left(\begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix}\right) = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 \end{bmatrix} \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix} + \mathbf{w}_0$

In 1D, discriminant function is not linear $g(x) = w_1 x + w_2 x^2 + w_0$

Non Linear Mapping: Another Example

Non Linear SVM

- Can use any linear classifier after lifting data into a higher dimensional space. However we will have to deal with the "curse of dimensionality"
 - 1. poor generalization to test data
 - 2. computationally expensive
- SVM handles the "curse of dimensionality" problem:
 - 1. enforcing largest margin permits good generalization
 - It can be shown that generalization in SVM is a function of the margin, independent of the dimensionality
 - 2. computation in the higher dimensional case is performed only implicitly through the use of *kernel* functions

Non Linear SVM: Kernels

- Recall SVM optimization maximize $L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_i y_j y_j \frac{x_i^t x_j}{x_i^t x_j}$ and classification $y = sign(\sum_{i=1}^n \alpha_i y_i \frac{x_i \cdot x}{x_i \cdot x_i} + b)$
- Note that samples x_i appear only through the dot products x_i^tx_j, x_i^tx_j
- If we lift \mathbf{x}_i to high dimensional space F using $\varphi(\mathbf{x})$, need to compute high dimensional product $\varphi(\mathbf{x}_i)^t \varphi(\mathbf{x}_j)$ maximize $L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_j \alpha_j y_j y_j \varphi(x_j)^t \varphi(x_j)$
 - The dimensionality of space F not necessarily important. May not even know the map φ.

Kernel

- A function that returns the value of the dot product between the images of the two arguments:
 K(x,y)=φ(x_i)^tφ(x_i)
- Given a function K, it is possible to verify that it is a kernel.

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_j \alpha_i y_j y_j \varphi(x_i)^t \varphi(x_j) \frac{\varphi(x_j)}{K(x_i, x_j)}$$

- Now we only need to compute K(x_i, x_j) instead of φ(x_i)^tφ(x_j)
 - "kernel trick": do not need to perform operations in high dimensional space explicitly

Kernel Matrix

(aka the Gram matrix):

	K(1,1)	K(1,2)	K(1,3)	 K(1,m)
	K(2,1)	K(2,2)	K(2,3)	 K(2,m)
<=				
	K(m,1)	K(m,2)	K(m,3)	 K(m,m)

- The central structure in kernel machines
- Contains all necessary information for the learning algorithm
- Fuses information about the data AND the kernel
- Many interesting properties:

From www.support-vector.net

Mercer's Theorem

- The kernel matrix is Symmetric Positive Definite
- Any symmetric positive definite matrix can be regarded as a kernel matrix, that is as an inner product matrix in some space

Every (semi)positive definite, symmetric function is a kernel: i.e. there exists a mapping φ such that it is possible to write:

 $K(\mathbf{x},\mathbf{y}) = \varphi(\mathbf{x})^{t} \varphi(\mathbf{y})$

Positive definite

 $\int K(x,y)f(x)f(y)dxdy \ge 0$ $\forall f \in L_2$

From www.support-vector.net

Examples of Kernels

- Some common choices (both satisfying Mercer's condition):
 - Polynomial kernel $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^t \mathbf{x}_j + \mathbf{1})^p$
 - Gaussian radial Basis kernel (data is lifted in infinite dimension)

$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{1}{2\sigma^2} \|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2\right)$$

Example Polynomial Kernels

From www.support-vector.net

Example: the two spirals

 Separated by a hyperplane in feature space (gaussian kernels)

From www.support-vector.net

Making Kernels

- The set of kernels is closed under some operations. If K, K' are kernels, then:
- K+K' is a kernel
- cK is a kernel, if c>0
- aK+bK' is a kernel, for a,b >0
- Etc etc etc.....
- can make complex kernels from simple ones: modularity !

Non Linear SVM Recepie

- Start with data x_1, \dots, x_n which lives in feature space of dimension d
- Choose kernel $K(x_i, x_j)$ corresponding to some function $\varphi(x_i)$ which takes sample x_i to a higher dimensional space
- Find the largest margin linear discriminant function in the higher dimensional space by using quadratic programming package to solve:

maximize
$$L_D(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_j y_j \mathcal{K}(x_i, x_j)$$

constrained to $\mathbf{0} \le \alpha_i \le C \quad \forall i \text{ and } \sum_{i=1}^n \alpha_i y_i = \mathbf{0}$

Non Linear SVM Recipe

- Weight vector **w** in the high dimensional space: $w = \sum_{i}^{n} \alpha_{i} y_{i} \varphi(x_{i})$
- Linear discriminant function of largest margin in the high dimensional space:

$$\boldsymbol{g}(\varphi(\boldsymbol{x})) = \boldsymbol{w}^{t}\varphi(\boldsymbol{x}) = \left(\sum_{x_{i} \in S} \alpha_{i} y_{i} \varphi(x_{i})\right)^{t} \varphi(x)$$

- Non linear discriminant function in the original space: $g(x) = \left(\sum_{x_i \in S} \alpha_i y_i \varphi(x_i)\right)^t \varphi(x) = \sum_{x_i \in S} \alpha_i y_i \varphi^t(x_i) \varphi(x) = \sum_{x_i \in S} \alpha_i y_i \mathcal{K}(x_i, x)$
- decide class 1 if g(x) > 0, otherwise decide class 2

Non Linear SVM

Nonlinear discriminant function

$$g(\mathbf{x}) = \sum_{\mathbf{x}_i \in S} \alpha_i \mathbf{z}_i \mathbf{K}(\mathbf{x}_i, \mathbf{x})$$

$$g(\mathbf{x}) = \sum_{\mathbf{x}_i \in S} \text{weight of support}_{\text{vector } \mathbf{x}_i} \mp 1 \quad \text{``inverse distance''}_{\text{from } \mathbf{x} \text{ to}_{\text{support vector } \mathbf{x}_i}}$$

$$\text{most important}_{\text{training samples,}}, \quad \mathbf{K}(\mathbf{x}_i, \mathbf{x}) = \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{x}_i - \mathbf{x}\|^2\right)$$

Higher Order Polynomials Taken from Andrew Moore

Poly- nomial	φ(x)	Cost to build <i>H</i> matrix tradition ally	Cost if d=100	φ(a) ^t φ(b)	Cost to build <i>H</i> matrix sneakily	Cost if d=100
Quadratic	All <i>d</i> ² /2 terms up to degree 2	d ² n ² /4	2,500 <i>n</i> ²	(a t b +1) ²	d n² / 2	50 <i>n</i> ²
Cubic	All <i>d</i> ³ /6 terms up to degree 3	d ³ n ² /12	83,000 <i>n</i> ²	(a t b +1) ³	d n² / 2	50 <i>n</i> ²
Quartic	All <i>d⁴/24</i> terms up to degree 4	d ⁴ n ² /48	1,960,000 <i>n</i> ²	(a t b +1) ⁴	d n² / 2	50 <i>n</i> ²

n is the number of samples, *d* is number of features

SVM Summary

Advantages:

- Based on nice theory
- excellent generalization properties
- objective function has no local minima
- can be used to find non linear discriminant functions
- Complexity of the classifier is characterized by the number of support vectors rather than the dimensionality of the transformed space

Disadvantages:

- It's not clear how to select a kernel function in a principled manner
- tends to be slower than other methods (in non-linear case).