Support Vector Machines



Problem Definition

Consider a training set of n 1id samples

(X1, 51), (X5, V2 )0 (X, )
where X; Is a vector of length m and
y, € {+1,-1} Is the class label for data point x;.

Find a separating hyperplane w-x+b=0
corresponding to the decision function
f(x)=signw-x + b)



Separating Hyperplanes

x(2) ¢

= which separating hyperplane should we choose?



Separating Hyperplanes

= Training data is just a subset of of all possible data
= Suppose hyperplane is close to sample x;

= |If we see new sample close to sample I, it is likely
to be on the wrong side of the hyperplane

x@ 1 =

" @)
= Poor generalization (performance on unseen data)



Separating Hyperplanes

= Hyperplane as far as possible from any sample

= New samples close to the old samples will be
classified correctly

= Good generalization



SVM

= |dea: maximize distance to the closest example

¥ (2)

> X(l)

smaller distance

= For the optimal hyperplane

X (2 =

larger distance

= distance to the closest negative example = distance to

the closest positive example



SVM: Linearly Separable Case

= SVM: maximize the margin
x(2) 1 2

= margin Is twice the absolute value of distance d of
the closest examples to the separating hyperplane

= Better generalization (performance on test data)

= in practice
= and in theory



SVM: Linearly Separable Case

x(@) 1t

= Support vectors are the samples closest to the
separating hyperplane
= they are the most difficult patterns to classify

= Optimal hyperplane is completely defined by support vectors

= of course, we do not know which samples are support vectors without
finding the optimal hyperplane



SVM: Formula for the Margin

X (2)y

gX)=wix +Db

absolute distance between X
and the boundary g(x) =0

distance Is unchanged for hyperplane
9,(x)=ag (x)

‘awtx+ab‘ ‘th+b‘

jaw| wl

Let x; be an example closest to the boundary. Set
‘WtXi + b‘ =1

Now the largest margin hyperplane is unigue



SVM: Formula for the Margin

= For uniqueness, set |w'x,+b=1 for any example
X; closest to the boundary

= now distance from closest sample x; to g(x) =0 Is

W w (@)

*= Thus the margin Is

m

_ 2
Iw]

(1)




SVM: Optimal Hyperplane

" _ 2
= Maximize margin M= —:
[w]

subject to constraints

wix, +b21 y, =1

WX, +b<-1 y, =-1

= Can convert our problem to
1 2 . b >1
Iw) =W st VWX +b)2

= J(w) Is a quadratic function, thus there Is a single
global minimum



Constrained Quadratic Programming

Primal Problem:
T AT
Minimize —HWH
2
subjectto V(W X, +0)>1 Vi

= Introduce Lagrange multipliers @; =0

assoclated with the constraints

= The solution to the primal problem is equivalent to
determining the saddle point of the function

Ly = L(w,b,0) = 2wl = Y e (v, (¢, - w + 5) - 1)
/=1



Solving Constrained QP

= At saddle point, Ly has minimum requiring

oL
8!/1/; =W—ZO€/J//X/ =0 = W=ZOC,-J/,-X,-
oLy =ZC¥,-J/,-=O

ob 5



Primal-Dual

primal Ly = - ay (x web) Y -
=1 =1

minimize L, with respect to w,b,
subjectto «¢; =0

W:Zai VX, Zai Yi =0 “supstitute

Dual: —Za __ZZO‘O‘ Yi Y XiX;

=1 j=1
maximize Lywith respect to a
subjectto & 20, Y ay =



Solving QP using dual problem

maximize Lo( Za ——ZZ ayy XX,

/1/1

constrained to a >0 Vi and Z“i y, =0
i=1

 a={a,,..., a,} are new variables, one for each sample
= | y(a) can be optimized by quadratic programming

" | y(a) formulated in terms of a
= it depends on w and b indirectly

" |L,(a) depends on the number of samples, not on
dimension of samples



Threshold

= b can be determined from the optimal @ and
Karush-Kuhn-Tucker (KKT) conditions

a,ly,(w-x,+b)-1]=0, Vi

= «a;, >0 implies
y.w-x,+b)=1 => w-X. +b=y,

b:J//_W'X/



Support Vectors

= For every sample I, one of the following must hold
m all =0
= g >0andy,(w x;+b-1)=0

" Many ;=0 = W= ) o VX, sparse solution
i

= Samples with a;, > 0 are Support Vectors and they
are the closest to the separating hyperplane

= Optimal hyperplane is completely defined by support
vectors



SVM: Classification

= Given a new sample x, finds its label y

y =sign(w -X + D)

n
W = Z ay.X;
=il



SVM: Example

Class 1: [1,6], [1,10], [4,11]
Class 2: [5,2], [7,6], [10,4]
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SVM: Example

= find w using szn:a,y, ,:(a_*y)fxz{_o'?’g}

0
0.076
0

10.036
0

. support
Solution a=|%%33 T ettors ——

—

since a; >0, can find b using

b

y,—-w'x,=0.13

12

10

8 L

2,

O_




SVM: Non Separable Case

= Data is most likely to be not linearly separable, but
linear classifier may still be appropriate

2 X(2)
[]

outliers

¥ (1)

= Can apply SVM in non linearly separable case

= data should be “almost” linearly separable for good
performance



SVM with slacks

= Use nonnegative “slack” variables &,,..., &, (one for
each sample)

= Change constraints from y (wx, +5)>1 V/ to
y,.(wfx,+b)21—§, \7

= & IS a measure of
deviation from the ideal

position for sample | .

= & >1 samplei is on the wrong
side of the separating
hyperplane

= 0< ¢ <1lsamplei ison the
right side of separating
hyperplane but within the
region of maximum margin

%e




SVM with slacks
= \Would like to minimize

1 n
JWw.8p8) =W+ C ¢
/=1
= constrained to  y,(w'x, +b)>1-¢& and &£ >0 Vi

= C >0iIs a constant which measures relative weight of the
first and second terms
= if Cis small, we allow a lot of samples not in ideal position

= If C is large, we want to have very few samples not in ideal
position



SVM with slacks

J(W,fl,...,fn)=%HWH 2+c§§,

(1)

large C, few samples not in small C, alot of samples
ideal position not in ideal position



SVM with slacks— Dual Formulation

n 1/7 n

Za/ _Ezza/a/ iij;Xj
/=1

/=1 j=1

maximize L,(«)

constrained to 0<e;<C Vi and Y a,y,=0
/=1

= find w using W= a;yX,
/=1

= solve for b using any 0 <a; < C and a,-[y,(w"x,. +b)—1] =0



Non Linear Mapping

= Cover’'s theorem:

= “pattern-classification problem cast in a high dimensional
space non-linearly is more likely to be linearly separable
than in a low-dimensional space”

= One dimensional space, not linearly separable

00 —oo00 00
3 -2 012 3 5

= Lift to two dimensional space with @(x)=(x,x?)




Non Linear Mapping

= Solve a non linear classification problem with a linear
classifier

1. Project data x to high dimension using function ¢(x)
2. Find a linear discriminant function for transformed data ¢(x)
3. Final nonlinear discriminant function is g(x) = w! ¢(x) +w,

POX)=(x,X?) u .

W WO o
:3 -2 40 1 2‘ 3 5 ‘ B *
/ .
. ~

=|n 2D, discriminant function is linear

() (1)
g([;:@)}] = [Wl Wz][)):(Z)} W,

=In 1D, discriminant function is not linear  g(x)=w,x +w,x? +w,



Non Linear Mapping: Another Example




Non Linear SVM

= Can use any linear classifier after lifting data into a
higher dimensional space. However we will have to

deal with the “curse of dimensionality”
1. poor generalization to test data
2. computationally expensive

= SVM handles the “curse of dimensionality” problem:

1. enforcing largest margin permits good generalization

= It can be shown that generalization in SVM is a function of the
margin, independent of the dimensionality

2. computation in the higher dimensional case is performed
only implicitly through the use of kernel functions



Non Linear SVM: Kernels

= Recall SVM optlmlzatlon
maXImIZe D Za __Zza/a/y/y/

/1/1

and classification - s,gn(za/_ X X +b)

= Note that samples x; appear only through the dot
products X;'x;, X;'x.

= Ifwe lift x; to high dimensional space F using ¢(x),
need to compute high dimensional product @(x;)'@(x;)

maximize L Za —_Zza y/.y/.(p(X/.)tgp(X/-)

/1/1

= The dimensionality of space F not necessarily
Important. May not even know the map .



Kernel

= A function that returns the value of the dot product
between the images of the two arguments:

K(x,y)=o(x;) o(x;)
= Given a function K, It is possible to verify that it Is
a kernel.
n 1 n n

maximize L,( Za, —EZZ“

/=1 j=1

= Now we only need to compute K(x;,x;) iInstead of

o(x) o(x))
= “kernel trick”: do not need to perform operations in high
dimensional space explicitly



Kernel Matrix

= (aka the Gram matrix):

K(1,1) |K({1,2) |K(1,3) |.. K1, m)

K(2,1) |K(Z2,2) |K(2,3) |.. K2, m)
K=

Kim, 1) | Kim,2) [K(m,3) | ... K(m,m)

The central structure in kernel machines

Contains all necessary information for the learning
algorithm

= Fuses information about the data AND the kernel
Many interesting properties:

From www.support-vector.net



Mercer's Theorem

= The kernel matrix is Symmetric Positive Definite

= Any symmetric positive definite matrix can be
regarded as a kernel matrix, that is as an inner
product matrix in some space

Every (semi)positive definite, symmetric

function is a kernel: i.e. there exists a mapping ¢ such
that it is possible to write:

K(X,y)=8(x)'o(y)

Positive definite I K(x,»)f(x)f(y)dxdy =0
Vfel,

From www.support-vector.net



Examples of Kernels

= Some common choices (both satisfying Mercer’s
condition):
= Polynomial kernel  K(x,,x,)=(x'x, +1)°

= Gaussian radial Basis kernel (data is lifted in infinite
dimension)
1
2

Ko )= o0 ~ b

From www.support-vector.net



Example Polynomial Kernels

From www.support-vector.net



Example: the two spirals

= Separated by a hyperplane in feature space
(gaussian kernels)

From www.support-vector.net



Making Kernels

= The set of kernels Is closed under some
operations. If K, K’ are kernels, then:

= K+K'’ Is a kernel

= cK is a kernel, if c>0

= aK+bK’ Is a kernel, for a,b >0
= Etc etc etc......

= can make complex kernels from simple
ones:. modularity !

From www.support-vector.net



Non Linear SVM Recepie

Start with data x4,...,X, which lives in feature space
of dimension d

Choose kernel K(x;,x;) corresponding to some
function ¢(x;) which takes sample x; to a higher

dimensional space
Find the largest margin linear discriminant function in

the higher dimensional space by using quadratic
programming package to solve:

maximize L,( Za ——ZZa vy K, x,)

/1/1

constrainedto 0<a,<C Vi and Za, y, =0
/=1




Non Linear SVM Recipe

=  Weight vector w In the high dimensional space:

WZZO‘/J//(”(X/)

= Linear discriminant function of largest margin in the
high dimensional space:

o(o0) =w'olx) = Zaviols )j})(x)

X, eS
= Non linear discriminant function in the original space:

o06) = Zeaviole)] o)~ Sy )olx) - Tyt

X,'ES

= decideclass 1ifg (x) > 0, otherwise decide class 2



Non Linear SVM

=  Nonlinear discriminant function

g(X)= Z a4 K(XUX)

XiES

g (X ) — Z weight of support | |F1 "inve{f:oemdi?’gt%nce”
Yo support vector X;

most important
_training samples, 1 2
l.e. support vectors K(x;,x)= EXD(— 0r? x; = x| )
(o)




Higher Order Polynomials
Taken from Andrew Moore

Poly- @x) Costto |Costif @a)i@eb) | Costto |Costif
nomial build H |d=100 build H |d=100
matrix matrix
tradition sneakily
ally
Quadratic | All d?/2 d?n2/4 | 2,500 n? (@'b+1)? |dn?/2 |50n?
terms up to
degree 2
Cubic All d3/6 d®n2/12 | 83,000 n? (@b+1)® [dn?/2 |50n?
terms up to
degree 3
Quartic | All d4/24 d*n2/48 |1,960,000 n% | (atb+1)* |dn?/2 |50 n?
terms up to
degree 4

IS the number of samples, d is number of features




SVM Summary

= Advantages:
= Based on nice theory
= excellent generalization properties
= objective function has no local minima
= can be used to find non linear discriminant functions

= Complexity of the classifier is characterized by the number
of support vectors rather than the dimensionality of the
transformed space

= Disadvantages:

= |t's not clear how to select a kernel function in a principled
manner

= tends to be slower than other methods (in non-linear case).



