Support Vector Machines

Problem Definition

Consider a training set of n iid samples

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

where \boldsymbol{x}_{i} is a vector of length m and
$\boldsymbol{y}_{\boldsymbol{i}} \in\{+\mathbf{1},-\mathbf{1}\}$ is the class label for data point $\boldsymbol{x}_{\boldsymbol{i}}$.
Find a separating hyperplane $\boldsymbol{\omega} \cdot \boldsymbol{x}+\boldsymbol{b}=\mathbf{0}$ corresponding to the decision function

$$
f(x)=\operatorname{sign}(w \cdot x+b)
$$

Separating Hyperplanes

- which separating hyperplane should we choose?

Separating Hyperplanes

- Training data is just a subset of of all possible data
- Suppose hyperplane is close to sample $\boldsymbol{x}_{\boldsymbol{i}}$
- If we see new sample close to sample \boldsymbol{i}, it is likely to be on the wrong side of the hyperplane

- Poor generalization (performance on unseen data)

Separating Hyperplanes

- Hyperplane as far as possible from any sample

- New samples close to the old samples will be classified correctly
- Good generalization

SVM

- Idea: maximize distance to the closest example

- For the optimal hyperplane
- distance to the closest negative example = distance to the closest positive example

SVM: Linearly Separable Case

- SVM: maximize the margin

- margin is twice the absolute value of distance \boldsymbol{d} of the closest examples to the separating hyperplane
- Better generalization (performance on test data)
- in practice
- and in theory

SVM: Linearly Separable Case

- Support vectors are the samples closest to the separating hyperplane
- they are the most difficult patterns to classify
- Optimal hyperplane is completely defined by support vectors
- of course, we do not know which samples are support vectors without finding the optimal hyperplane

SVM: Formula for the Margin

- $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{w}^{t} \boldsymbol{x}+\boldsymbol{b}$
- absolute distance between \boldsymbol{x} and the boundary $\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}$

$$
\frac{\left|\mathbf{w}^{\mathbf{t}} \mathbf{x}+\boldsymbol{b}\right|}{\|\mathbf{w}\|}
$$

- distance is unchanged for hyperplane $g_{1}(\boldsymbol{x})=\alpha \boldsymbol{g}(\boldsymbol{x})$

$$
\frac{\left|\alpha \mathbf{w}^{\prime} \mathbf{x}+\alpha \boldsymbol{b}\right|}{\|\alpha \mathbf{w}\|}=\frac{\left|\mathbf{w}^{\prime} \mathbf{x}+\boldsymbol{b}\right|}{\|\mathbf{w}\|}
$$

- Let \mathbf{x}_{i} be an example closest to the boundary. Set

$$
\left|\mathbf{w}^{t} \mathbf{x}_{i}+b\right|=\mathbf{1}
$$

- Now the largest margin hyperplane is unique

SVM: Formula for the Margin

- For uniqueness, set $\left|\boldsymbol{w}^{\mathbf{t}} \mathbf{x}_{i}+\boldsymbol{b}\right|=\mathbf{1} \quad$ for any example $\boldsymbol{x}_{\boldsymbol{i}}$ closest to the boundary
- now distance from closest sample $\boldsymbol{x}_{\boldsymbol{i}}$ to $\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}$ is

$$
\frac{\left|\mathbf{w}^{\prime} \mathbf{x}_{i}+b\right|}{\|\mathbf{w}\|}=\frac{1}{\|\mathbf{w}\|}
$$

- Thus the margin is

$$
m=\frac{2}{\|w\|}
$$

SVM: Optimal Hyperplane

- Maximize margin $m=\frac{2}{\|\mathrm{w}\|}$ subject to constraints

$$
\begin{cases}w^{t} x_{i}+b \geq 1 & y_{i}=1 \\ w^{t} x_{i}+b \leq-1 & y_{i}=-1\end{cases}
$$

- Can convert our problem to

$$
J(\mathbf{w})=\frac{\mathbf{1}}{\mathbf{2}}\|\mathrm{w}\|^{2} \quad \text { s.t } \quad y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq \mathbf{1}
$$

- $J(w)$ is a quadratic function, thus there is a single global minimum

Constrained Quadratic Programming

Primal Problem:
Minimize $\frac{1}{2}\|w\|^{2}$
subject to $\quad \boldsymbol{y}_{\boldsymbol{i}}\left(\mathbf{w} \cdot \mathbf{x}_{\boldsymbol{i}}+\boldsymbol{b}\right) \geq \mathbf{1}, \forall \mathbf{i}$

- Introduce Lagrange multipliers $\alpha_{i} \geq 0$ associated with the constraints
- The solution to the primal problem is equivalent to determining the saddle point of the function

$$
\boldsymbol{L}_{P} \equiv \boldsymbol{L}(\mathbf{w}, \boldsymbol{b}, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathrm{x}_{i} \cdot \mathbf{w}+\boldsymbol{b}\right)-1\right)
$$

Solving Constrained QP

- At saddle point, L_{P} has minimum requiring

$$
\begin{aligned}
& \frac{\partial \boldsymbol{L}_{p}}{\partial \boldsymbol{w}}=\boldsymbol{w}-\sum_{i} \alpha_{i} \boldsymbol{y}_{i} \mathbf{x}_{i}=\mathbf{0} \Rightarrow \boldsymbol{w}=\sum_{i} \alpha_{i} \boldsymbol{y}_{i} \mathbf{x}_{i} \\
& \frac{\partial \boldsymbol{L}_{p}}{\partial \boldsymbol{b}}=\sum_{i} \alpha_{i} \boldsymbol{y}_{i}=\mathbf{0}
\end{aligned}
$$

Primal-Dual

Primal: $\quad L_{P}=\frac{1}{2}\|\mathrm{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i} y_{i}\left(\mathrm{x}_{i} \cdot \mathrm{~W}+b\right)+\sum_{i=1}^{n} \alpha_{i}$
minimize L_{P} with respect to w, b, subject to $\alpha_{i} \geq 0$

$$
\mathrm{w}=\sum_{i} \alpha_{i} y_{i} \mathrm{x}_{i} \quad \sum_{i} \alpha_{i} y_{i}=0 \quad
$$

Dual: $\quad L_{D}=\sum_{i=1}^{l} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathrm{x}_{i} \mathrm{x}_{j}$
maximize L_{D} with respect to α subject to $\quad \alpha_{i} \geq 0, \quad \sum_{i} \alpha_{i} y_{i}=0$

Solving QP using dual problem

maximize $\boldsymbol{L}_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{t} \mathbf{x}_{j}$
constrained to $\quad \alpha_{i} \geq 0 \quad \forall i$ and $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$

- $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ are new variables, one for each sample
- $L_{D}(\alpha)$ can be optimized by quadratic programming
- $L_{D}(\alpha)$ formulated in terms of α
- it depends on \boldsymbol{w} and \boldsymbol{b} indirectly
- $L_{D}(\alpha)$ depends on the number of samples, not on dimension of samples

Threshold

- \boldsymbol{b} can be determined from the optimal α and Karush-Kuhn-Tucker (KKT) conditions $\alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+\boldsymbol{b}\right)-1\right]=0, \quad \forall i$
- $\alpha_{i}>0$ implies
$y_{i}\left(u \cdot x_{i}+b\right)=1 \Rightarrow w \cdot x_{i}+b=y_{i}$
$b=y_{i}-w \cdot x_{i}$

Support Vectors

- For every sample \boldsymbol{i}, one of the following must hold
- $\alpha_{i}=0$
- $\alpha_{i}>0$ and $\boldsymbol{y}_{i}\left(\boldsymbol{w} \cdot \boldsymbol{x}_{i}+\boldsymbol{b}-\mathbf{1}\right)=\mathbf{0}$
- Many $\alpha_{\boldsymbol{i}}=\mathbf{0} \Rightarrow \mathrm{w}=\sum_{i} \alpha_{i} y_{i} \mathrm{x}_{i}$ sparse solution
- Samples with $\alpha_{i}>0$ are Support Vectors and they are the closest to the separating hyperplane
- Optimal hyperplane is completely defined by support vectors

SVM: Classification

- Given a new sample x, finds its label y

$$
\begin{aligned}
y= & =\operatorname{sign}(w \cdot x+\boldsymbol{b}) \\
w & =\sum_{\pi / 2, y, y, x_{1}}
\end{aligned}
$$

SVM: Example

- Class 1: [1,6], [1,10], [4,11]
- Class 2: [5,2], [7,6], [10,4]

SVM: Example

- Solution $\alpha=\left[\begin{array}{r}0.036 \\ 0.039 \\ 0.076 \\ 0\end{array}\right]$ vectors support $\xrightarrow{\sim}$
- find w using $\boldsymbol{w}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{y}_{i} \boldsymbol{x}_{\boldsymbol{i}}=(\alpha . * \boldsymbol{y})^{\boldsymbol{t}} \boldsymbol{x}=\left[\begin{array}{r}-0.33 \\ 0.20\end{array}\right]$
- \quad since $\alpha_{1}>0$, can find b using

$$
b=y_{1}-w^{*} x_{1}=0.13
$$

SVM: Non Separable Case

- Data is most likely to be not linearly separable, but linear classifier may still be appropriate

- Can apply SVM in non linearly separable case " data should be "almost" linearly separable for good performance

SVM with slacks

- Use nonnegative "slack" variables ξ_{1}, \ldots, ξ_{n} (one for each sample)
- Change constraints from $y_{i}\left(w^{t} x_{i}+\boldsymbol{b}\right) \geq \mathbf{1} \quad \forall i$ to

$$
y_{i}\left(w^{t} \mathrm{x}_{i}+b\right) \geq 1-\xi_{i} \quad \forall i
$$

- ξ_{i} is a measure of deviation from the ideal position for sample \boldsymbol{i}
- $\xi_{i}>1$ sample i is on the wrong side of the separating hyperplane
- $0<\xi_{i}<1$ sample i is on the right side of separating hyperplane but within the region of maximum margin

SVM with slacks

- Would like to minimize

$$
J\left(\boldsymbol{w}, \xi_{1}, \ldots, \xi_{n}\right)=\frac{1}{2} \|\left.\boldsymbol{w}\right|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

- constrained to $\boldsymbol{y}_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+\boldsymbol{b}\right) \geq \mathbf{1 - \xi _ { i }}$ and $\xi_{i} \geq 0 \quad \forall i$
- $\mathbf{C}>\mathbf{0}$ is a constant which measures relative weight of the first and second terms
- if C is small, we allow a lot of samples not in ideal position
- if C is large, we want to have very few samples not in ideal position

SVM with slacks

$$
J\left(w, \xi_{1}, \ldots, \xi_{n}\right)=\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

large C, few samples not in ideal position

small C, a lot of samples not in ideal position

SVM with slacks- Dual Formulation

maximize $\quad L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} \boldsymbol{y}_{i} \boldsymbol{y}_{j} \boldsymbol{x}_{\boldsymbol{i}}^{t} \boldsymbol{x}_{j}$
constrained to $0 \leq \alpha_{i} \leq \boldsymbol{C} \quad \forall i$ and $\sum_{i=1}^{n} \alpha_{i} \boldsymbol{y}_{i}=\mathbf{0}$

- find \boldsymbol{w} using $\quad \boldsymbol{w}=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{y}_{i} \boldsymbol{x}_{\boldsymbol{i}}$
- solve for \boldsymbol{b} using any $0<\alpha_{i}<\mathrm{C}$ and $\alpha_{i}\left[\boldsymbol{y}_{\boldsymbol{i}}\left(\mathbf{w}^{\boldsymbol{t}} \mathbf{x}_{\boldsymbol{i}}+\boldsymbol{b}\right)-\mathbf{1}\right]=\mathbf{0}$

Non Linear Mapping

- Cover's theorem:
- "pattern-classification problem cast in a high dimensional space non-linearly is more likely to be linearly separable than in a low-dimensional space"
- One dimensional space, not linearly separable

- Lift to two dimensional space with $\boldsymbol{\varphi}(\boldsymbol{x})=\left(\boldsymbol{x}, \boldsymbol{x}^{2}\right)$

Non Linear Mapping

- Solve a non linear classification problem with a linear classifier

1. Project data \boldsymbol{x} to high dimension using function $\boldsymbol{\varphi}(\boldsymbol{x})$
2. Find a linear discriminant function for transformed data $\varphi(\boldsymbol{x})$
3. Final nonlinear discriminant function is $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{w}^{t} \varphi(\boldsymbol{x})+\boldsymbol{w}_{\boldsymbol{0}}$

-In 2D, discriminant function is linear

$$
g\left(\left[\begin{array}{l}
\left.\boldsymbol{x}^{(1)}\right) \\
\boldsymbol{x}^{(2)}
\end{array}\right]\right)=\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x}^{(1)} \\
\boldsymbol{x}^{(2)}
\end{array}\right]+w_{0}
$$

-In 1D, discriminant function is not linear $\quad g(x)=w_{1} x+w_{2} x^{2}+w_{0}$

Non Linear Mapping: Another Example

Non Linear SVM

- Can use any linear classifier after lifting data into a higher dimensional space. However we will have to deal with the "curse of dimensionality"

1. poor generalization to test data
2. computationally expensive

- SVM handles the "curse of dimensionality" problem:

1. enforcing largest margin permits good generalization

- It can be shown that generalization in SVM is a function of the margin, independent of the dimensionality

2. computation in the higher dimensional case is performed only implicitly through the use of kernel functions

Non Linear SVM: Kernels

- Recall SVM optimization

$$
\operatorname{maximize} \quad \boldsymbol{L}_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} \boldsymbol{y}_{i} \boldsymbol{y}_{j} \boldsymbol{x}_{i}^{t} \boldsymbol{x}_{j}
$$

and classification $\quad \boldsymbol{y}=\boldsymbol{\operatorname { s i g n }}\left(\sum_{i=1}^{\boldsymbol{n}} \alpha_{i} \boldsymbol{y}_{i} \mathbf{x}_{\mathbf{i}} \cdot \mathbf{x}+\boldsymbol{b}\right)$

- Note that samples $\boldsymbol{x}_{\boldsymbol{i}}$ appear only through the dot products $\boldsymbol{x}_{i}{ }_{i} \boldsymbol{x}_{\boldsymbol{j}}, \boldsymbol{x}_{i}^{t} \boldsymbol{X}$.
- If we lift $\boldsymbol{x}_{\boldsymbol{i}}$ to high dimensional space F using $\varphi(\boldsymbol{x})$, need to compute high dimensional product $\varphi\left(\boldsymbol{x}_{i}\right)^{t} \varphi\left(\boldsymbol{x}_{j}\right)$

$$
\text { maximize } L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} \boldsymbol{y}_{i} \boldsymbol{y}_{j} \varphi\left(\boldsymbol{x}_{i}\right)^{t} \varphi\left(\boldsymbol{x}_{j}\right)
$$

- The dimensionality of space F not necessarily important. May not even know the map φ.

Kernel

- A function that returns the value of the dot product between the images of the two arguments:

$$
K(x, y)=\varphi\left(x_{i}\right)^{t} \varphi\left(x_{j}\right)
$$

- Given a function K , it is possible to verify that it is a kernel.

$$
\text { maximize } L_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} \boldsymbol{y}_{i} y\binom{\varphi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{t} \varphi\left(\boldsymbol{x}_{j}\right)}{K\left(x_{i} x_{j}\right)}
$$

- Now we only need to compute $\boldsymbol{K}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)$ instead of $\varphi\left(x_{i}\right)^{t} \varphi\left(x_{j}\right)$
- "kernel trick": do not need to perform operations in high dimensional space explicitly

Kernel Matrix

- (aka the Gram matrix):

$K=$| $K(1,1)$ | $K(1,2)$ | $K(1,3)$ | \cdots | $K(1, m)$ |
| :--- | :--- | :--- | :--- | :--- |
| $K(2,1)$ | $K(2,2)$ | $K(2,3)$ | \cdots | $K(2, m)$ |
| | | | | |
| \cdots | \cdots | \cdots | \cdots | \cdots |
| $K(m, 1)$ | $K(m, 2)$ | $K(m, 3)$ | \cdots | $K(m, m)$ |

- The central structure in kernel machines
- Contains all necessary information for the learning algorithm
- Fuses information about the data AND the kernel
- Many interesting properties:

From www.support-vector.net

Mercer's Theorem

- The kernel matrix is Symmetric Positive Definite
- Any symmetric positive definite matrix can be regarded as a kernel matrix, that is as an inner product matrix in some space

Every (semi)positive definite, symmetric function is a kernel: i.e. there exists a mapping φ such that it is possible to write:

$$
K(x, y)=\varphi(x)^{t} \varphi(y)
$$

Positive definite

$$
\int_{\forall f \in L_{2}} \boldsymbol{K}(x, y) \boldsymbol{f}(x) f(y) d x d y \geq 0
$$

Examples of Kernels

- Some common choices (both satisfying Mercer's condition):
- Polynomial kernel $\boldsymbol{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left(\boldsymbol{x}_{i}^{t} \boldsymbol{x}_{\boldsymbol{j}}+\mathbf{1}\right)^{p}$
- Gaussian radial Basis kernel (data is lifted in infinite dimension)

$$
K\left(x_{i}, x_{j}\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{i}-x_{j}\right\|^{2}\right)
$$

Example Polynomial Kernels

From www.support-vector.net

Example: the two spirals

- Separated by a hyperplane in feature space (gaussian kernels)

Making Kernels

- The set of kernels is closed under some operations. If $\mathrm{K}, \mathrm{K}^{\prime}$ are kernels, then:
- $K+K^{\prime}$ is a kernel
- cK is a kernel, if c>0
- aK+bK' is a kernel, for $a, b>0$
- Etc etc etc......
- can make complex kernels from simple ones: modularity !

Non Linear SVM Recepie

- Start with data $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ which lives in feature space of dimension \boldsymbol{d}
- Choose kernel $\boldsymbol{K}\left(\boldsymbol{x}_{i} ; \boldsymbol{x}_{j}\right)$ corresponding to some function $\varphi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$ which takes sample $\boldsymbol{x}_{\boldsymbol{i}}$ to a higher dimensional space
- Find the largest margin linear discriminant function in the higher dimensional space by using quadratic programming package to solve:

$$
\operatorname{maximize} \boldsymbol{L}_{D}(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{i} \boldsymbol{y}_{i} \boldsymbol{y}_{j} \boldsymbol{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

constrained to $0 \leq \alpha_{i} \leq \boldsymbol{C} \quad \forall i \quad$ and $\sum_{i=1}^{n} \alpha_{i} \boldsymbol{y}_{i}=0$

Non Linear SVM Recipe

- Weight vector \boldsymbol{w} in the high dimensional space:

$$
\boldsymbol{w}=\sum_{i}^{\boldsymbol{n}} \alpha_{i} \boldsymbol{y}_{i} \varphi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)
$$

- Linear discriminant function of largest margin in the high dimensional space:

$$
g(\varphi(x))=\boldsymbol{w}^{t} \varphi(x)=\left(\sum_{x_{i}, S} \alpha_{i} \boldsymbol{y}_{i} \varphi\left(\boldsymbol{x}_{i}\right)\right)^{t} \varphi(\boldsymbol{x})
$$

- Non linear discriminant function in the original space:

$$
\boldsymbol{g}(\boldsymbol{x})=\left(\sum_{\boldsymbol{x}_{i} \in \mathcal{S}} \alpha_{i} \boldsymbol{y}_{i} \varphi\left(\boldsymbol{x}_{i}\right)\right)^{t} \varphi(\boldsymbol{x})=\sum_{\boldsymbol{x}_{i} \in S} \alpha_{i} \boldsymbol{y}_{i} \varphi^{t}\left(\boldsymbol{x}_{i}\right) \varphi(\boldsymbol{x})=\sum_{\boldsymbol{x}_{i} \in S} \alpha_{i} \boldsymbol{y}_{i} \boldsymbol{K}\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right)
$$

- decide class 1 if $\boldsymbol{g}(\boldsymbol{x})>0$, otherwise decide class 2

Non Linear SVM

- Nonlinear discriminant function

$$
\begin{aligned}
& g(x)=\sum_{x, \in S} \alpha_{i} z_{i} K\left(x_{i}, x\right) \\
& \boldsymbol{g}(\boldsymbol{x})=\sum \begin{array}{c}
\text { weight of support } \\
\text { vector } \boldsymbol{x}_{\boldsymbol{i}}
\end{array} \quad \mp \boldsymbol{1} \begin{array}{c}
\left.\begin{array}{c}
\text { inverse distance" } \\
\text { from } \boldsymbol{x} \text { to } \\
\text { support vector } \boldsymbol{x}_{\boldsymbol{i}}
\end{array}\right]
\end{array} \\
& K\left(x_{i}, x\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|x_{i}-x\right\|^{2}\right)
\end{aligned}
$$

Higher Order Polynomials
 Taken from Andrew Moore

Polynomial	$\phi(\boldsymbol{x})$	Cost to build H matrix tradition ally	Cost if d=100	$\phi(a)^{t} \boldsymbol{\phi}(\mathrm{~b})$	Cost to build H matrix sneakily	Cost if $d=100$
Quadratic	All d ${ }^{2} / 2$ terms up to degree 2	$d^{2} n^{2} / 4$	2,500 n^{2}	$\left(a^{t} b+1\right)^{2}$	$d n^{2} / 2$	$50 n^{2}$
Cubic	All d ${ }^{3} / 6$ terms up to degree 3	$d^{3} n^{2} / 12$	83,000 n^{2}	$\left(a^{t} b+1\right)^{3}$	$d n^{2} / 2$	$50 n^{2}$
Quartic	All $d^{4} / 24$ terms up to degree 4	$d^{4} n^{2} / 48$	1,960,000 n^{2}	$\left(a^{t} b+1\right)^{4}$	$d n^{2} / 2$	$50 n^{2}$

\boldsymbol{n} is the number of samples, \boldsymbol{d} is number of features

SVM Summary

- Advantages:
- Based on nice theory
- excellent generalization properties
- objective function has no local minima
- can be used to find non linear discriminant functions
- Complexity of the classifier is characterized by the number of support vectors rather than the dimensionality of the transformed space
- Disadvantages:
- It's not clear how to select a kernel function in a principled manner
- tends to be slower than other methods (in non-linear case).

