
Linear Regression
Linear Regression with Shrinkage

Some slides are due to Tommi Jaakkola, MIT AI Lab



Introduction
� The goal of regression is to make quantitative (real 

valued) predictions on the basis of a (vector of) 
features or attributes.

� Examples: house prices, stock values, survival 
time, fuel efficiency of cars, etc.

Predicting vehicle fuel efficiency (mpg) from 8 attributes:



A generic regression problem

� The input attributes are given as fixed length vectors
that could come from different sources: inputs,
transformation of inputs (log, square root, etc…) or basis 
functions.

� The outputs are assumed to be real valued           (with 
some possible restrictions).
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some possible restrictions).

� Given n iid training samples                                    from 
unknown distribution P(x, y), the goal is to minimize the 
prediction error (loss) on new examples (x, y) drawn at 
random from the same P(x, y).

� An a example of a loss function:
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Regression Function

� We need to define a class of functions (types of � We need to define a class of functions (types of 
predictions we make).

Linear prediction: 

xwwwwxf 1010 ),;( +=

where           are the parameters we need estimate.10,ww



Typically we have a set of training data         
from which we estimate the parameters          . 

Linear Regression
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Each                           is a vector of measurements for ith
case.
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Basis Functions

� There are many basis functions we can use e.g.
� Polynomial 

� Radial basis functions 
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� Sigmoidal

� Splines, Fourier, Wavelets, etc
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Estimation Criterion

� We need a fitting/estimation criterion to select appropriate � We need a fitting/estimation criterion to select appropriate 
values for the parameters            based on the training set

� For example, we can use the empirical loss:
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Empirical loss: motivation

� Ideally, we would like to find the parameters , that 
minimize the expected loss (unlimited training data):

where the expectation is over samples from P(x,y).
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� When the number of training examples n is large:
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Linear Regression Estimation
� Minimize the empirical squared loss
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� By setting the derivatives with respect to             to zero 
we get necessary conditions for the “optimal” parameter 
values.
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Interpretation
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The optimality conditions

ensure that the prediction error 
is decorrelated with any linear function of the inputs.
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Linear Regression Solution

� By setting the derivatives of  
to zero,  
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The solution is a linear function of the outputs y.



Statistical view of linear regression

� In a statistical regression model we model both 
the function and noise

Observed output = function + noise
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� Whatever we cannot capture with our chosen 
family of functions will be interpreted as noise
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Statistical view of linear regression

� f(x;w) is trying to capture the mean of the 
observations y given the input x:

� where E[ y| x] is the conditional expectation of y
given x, evaluated according to the model (not 
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given x, evaluated according to the model (not 
according to the underlying distribution of X)



Statistical view of linear regression

� According to our statistical model

the outputs y given x are normally distributed with 
mean f (x;w) and variance σ2:
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mean f (x;w) and variance σ2:

(we model the uncertainty in the predictions, not 
just the mean)
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Maximum likelihood estimation

� Given observations                                   we find 
the parameters w that maximize the likelihood of 
the outputs:
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� Maximize log-likelihood
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� Thus

� But the empirical squared loss is

Maximum likelihood estimation
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Least-squares Linear Regression is MLE for 
Gaussian noise !!!



Linear Regression (is it “good”?)

� Simple model
� Straightforward solution

• MLS is not a good estimator for prediction error

BUTBUT

• MLS is not a good estimator for prediction error

• The matrix XTX could be ill conditioned
�Inputs are correlated
�Input dimension is large
�Training set is small



Linear Regression - Example
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In this example the output is generated by the 
model (where ε is a small white Gaussian noise):

Three training sets with different correlations Three training sets with different correlations 
between the two inputs were randomly chosen, 
and the linear regression solution was applied.



Linear Regression – Example

And the results are…
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Strong correlation can cause the coefficients 
to be very large, and they will cancel each 
other to achieve a good RSS.
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Linear Regression

What can be done?



Shrinkage methods

� Ridge Regression
� Lasso
� PCR (Principal Components Regression)
� PLS (Partial Least Squares)� PLS (Partial Least Squares)



Shrinkage methods

Before we proceed:
� Since the following methods are not invariant under input 

scale, we will assume the input is normalized (mean 0, 
variance 1):
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� The offset is always estimated as 
and we will work with centered y (meaning y � y-w0)
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Ridge Regression
� Ridge regression shrinks the regression coefficients by 

imposing a penalty on their size ( also called weight decay)
� In ridge regression, we add a quadratic penalty on the 

weights:
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where λ ≥ 0 is a tuning parameter that controls the amount of 
shrinkage. 

� The size constraint prevents the phenomenon of wildly large 
coefficients that cancel each other from occurring.



Ridge Regression Solution
� Ridge regression in matrix form:

� The solution is 
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� The solution adds a positive constant to the 
diagonal of XTX before inversion. This makes the 
problem non singular even if X does not have full 
column rank.

� For orthogonal inputs the ridge estimates are the 
scaled version of least squares estimates: 
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Ridge Regression (insights)

TUDVX =

The matrix X can be represented by it’s SVD:

• U is a N*M matrix, it’s columns span the column space of X

• D is a M*M diagonal matrix of singular values• D is a M*M diagonal matrix of singular values

• V is a M*M matrix, it’s columns span the row space of X

Lets see how this method looks in the Principal 
Components coordinates of X



Ridge Regression (insights)
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The Ridge Regression is similarly given by:

Diagonal



Ridge Regression (insights)
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In the PCA axes, the ridge coefficients are just scaled LS coefficients!

The coefficients that correspond to smaller input variance directions are 
scaled down more.
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scaled down more.



Ridge Regression
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In the following simulations, quantities are plotted versus 
the quantity

This monotonic decreasing function is the effective 
degrees of freedom of the ridge regression fit.



Ridge Regression
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Ridge regression is MAP with Gaussian 
prior
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Lasso
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Lasso is a shrinkage method like ridge, with a subtle but 
important difference. It is defined by
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There is a similarity to the ridge regression problem: the 
L2 ridge regression penalty is replaced by the L1 lasso 
penalty.

The L1 penalty makes the solution non-linear in y and 
requires a quadratic programming algorithm to compute 
it.



Lasso
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then the lasso estimation is identical to the least squares. On 
the other hand, for say t=t0/2, the least squares coefficients 
are shrunk by about 50% on average.

For convenience we will plot the simulation results versus 
shrinkage factor s:

∑
=

=≡ M

j

lsw

t

t

t
s

1

0 ˆ



Lasso

Simulation results:

No correlation
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L2 vs L1 penalties
Contours of the LS error function
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In Lasso the constraint region has corners; 
when the solution hits a corner the 
corresponding coefficients becomes 0 (when 
M>2 more than one).



Problem:
Figure 1 plots linear regression results on the basis of only three data points. We used 
various types of regularization to obtain the plots (see below) but got confused about
which plot corresponds to which regularization method. Please assign each plot to one 
(and only one) of the following regularization method.


